1
|
Vachali PP, Kish-Trier E, Steckel S, Frank EL. Instrument Multiplexing: Amplified Throughput for Measurement of Vitamin B1 in Whole Blood Using Parallel Liquid Chromatography Systems Interfaced to a Single Mass Spectrometer. Clin Chem 2025:hvaf029. [PMID: 40203145 DOI: 10.1093/clinchem/hvaf029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 02/11/2025] [Indexed: 04/11/2025]
Abstract
BACKGROUND Thiamine diphosphate (TDP), the active form of vitamin B1, plays an essential role in energy metabolism. TDP is analyzed in the clinical laboratory to assess the nutritional status of individuals at risk of deficiency. In recent years, demand for vitamin B1 testing has increased dramatically, prompting implementation of a high-throughput assay. We developed a method using rapid sample preparation and multiplex electrospray LC-MS/MS analysis. METHODS Whole blood samples were deproteinized using trichloroacetic acid after the addition of isotope-labeled analyte (TDP-d3). TDP was separated by reversed-phase chromatography on extended pH, trifunctional silane-bonded C18 columns and analyzed using positive electrospray ionization and multiple reaction monitoring mass spectrometry. The system consisted of 4 LC instruments plumbed to a single mass spectrometer. TDP eluted in 3.15 ± 0.08 min with a run time of 9.0 min for a single stream; results for 4 streams were produced every 2.25 min. Passivation of the system was required to optimize sensitivity and peak quality. RESULTS The method was linear from 20 to 1000 nmol/L. Spike-recovery experiments showed an accuracy of ±15%. The intra- and inter-day assay imprecision was ≤3%. Repeated injections of calibrators and QC materials across the four LC streams showed excellent parity (<2% imprecision). No carryover was detected. Each plate produced 81 results in 4.5 h. CONCLUSIONS An accurate, specific, and high-throughput LC-MS/MS method was developed and validated to measure TDP in whole blood. Simple, fast sample preparation was employed for adaptation to a staggered injection, multiple LC-stream platform, which minimized mass spectrometer idle time significantly and improved efficiency.
Collapse
Affiliation(s)
- Preejith P Vachali
- Mass Spectrometry Department, ARUP Institute for Clinical and Experimental Pathology, Salt Lake City, UT, United States
| | - Erik Kish-Trier
- Mass Spectrometry Department, ARUP Institute for Clinical and Experimental Pathology, Salt Lake City, UT, United States
| | - Sophie Steckel
- Mass Spectrometry Department, ARUP Institute for Clinical and Experimental Pathology, Salt Lake City, UT, United States
| | - Elizabeth L Frank
- Mass Spectrometry Department, ARUP Institute for Clinical and Experimental Pathology, Salt Lake City, UT, United States
- Department of Pathology, University of Utah Health, Salt Lake City, UT, United States
| |
Collapse
|
2
|
Zahr NM. Race explains substantial variance in whole blood thiamine diphosphate concentrations. Nutr Res 2024; 126:138-150. [PMID: 38696890 PMCID: PMC11179978 DOI: 10.1016/j.nutres.2024.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 03/21/2024] [Accepted: 03/21/2024] [Indexed: 05/04/2024]
Abstract
Deficiency for thiamine (vitamin B1), traditionally assessed via the activity of the thiamine-dependent enzyme erythrocyte transketolase, has been reported in individuals with alcohol use disorder (AUD) and in people with HIV; concentrations of the metabolically active diphosphate form, however, have yet to be reported in HIV cohorts and results in AUD are equivocal. In this cross-sectional study, samples from 170 AUD, 130 HIV, and 100 healthy control individuals were analyzed to test the hypothesis that AUD and HIV groups relative to healthy controls would show low whole blood thiamine diphosphate (TDP) concentrations related to peripheral neuropathy. TDP concentrations were not different in the 3 study groups (P = .6141) but were lower in Black (n = 172) relative to White (n = 155) individuals (P < .0001) regardless of group. In a multiple regression, race relative to diagnoses explained more than 10 times the variance in whole blood TDP concentrations (F4,395 = 3.5, P = .0086; r2 = 15.1]. Performance on a measure of peripheral neuropathy (2-point discrimination) was worse in the HIV and AUD cohorts relative to the healthy control group (P < .0001) but was not associated with TDP concentrations. These findings suggest that Black individuals carry a heightened vulnerability for low whole blood TDP concentrations, but the clinical significance and mechanisms underlying these results remain to be determined.
Collapse
Affiliation(s)
- Natalie M Zahr
- Department of Psychiatry & Behavioral Sciences, Stanford University, School of Medicine, Stanford, CA 94305, USA; Neuroscience Program, SRI International, Menlo Park, CA, 94025, USA.
| |
Collapse
|
3
|
Qian T, Zhao L, Pan X, Sang S, Xu Y, Wang C, Zhong C, Fei G, Cheng X. Association Between Blood Biochemical Factors Contributing to Cognitive Decline and B Vitamins in Patients With Alzheimer's Disease. Front Nutr 2022; 9:823573. [PMID: 35265656 PMCID: PMC8898888 DOI: 10.3389/fnut.2022.823573] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 01/27/2022] [Indexed: 01/01/2023] Open
Abstract
Background Malnutrition, metabolism stress, inflammation, peripheral organs dysfunction, and B vitamins deficiency significantly contribute to the progression and mortality of Alzheimer's disease (AD). However, it is unclear which blood biochemical indicators are most closely related to cognitive decline and B vitamins deficiency (thiamine, folate, vitamin B12) in patients with AD. Methods This was a cross-sectional study of 206 AD patients recruited from six hospitals in China. Thiamine diphosphate (TDP), the bioactive form of thiamine, was measured by high-performance liquid chromatography fluoroscopy (HPLC) at a single center. Levels of biochemical indicators (except TDP) were measured by regular and standard laboratory tests in each hospital. Pearson's rank correlation analysis was used to assess relationships between B vitamins and biochemical indicators. T-test was used to compare the difference between ApoE ε4 and non-ApoE ε4 groups. Differences were considered statistically significant as P < 0.05. Results Among the biochemical results, in AD population, malnutrition indicators (erythrocyte, hemoglobin, serum albumin, and total protein) were most significantly associated with cognitive function, as was free triiodothyronine (FT3) levels which had been observed in previous study. Malnutrition and FT3 levels depend on age but not apolipoprotein E (ApoE) genotype. Meanwhile, Among the B vitamins, TDP was the most significantly associated with malnutrition indicators and FT3. Conclusion Our results indicated that TDP reduction could be a modifiable risk factor for malnutrition and FT3 that contributed to cognitive decline in AD patients. Correcting thiamine metabolism could serve as an optional therapy target for AD treatment.
Collapse
Affiliation(s)
- Ting Qian
- Department of Neurology, Zhongshan Hospital (Xiamen Branch), Fudan University, Shanghai, China.,State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Lei Zhao
- Department of Neurology, Ninth People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoli Pan
- Department of Neurology, Zhongshan Hospital (Xiamen Branch), Fudan University, Shanghai, China.,State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Shaoming Sang
- Department of Neurology, Zhongshan Hospital (Xiamen Branch), Fudan University, Shanghai, China.,State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Yangqi Xu
- Department of Neurology, Zhongshan Hospital (Xiamen Branch), Fudan University, Shanghai, China.,State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Changpeng Wang
- Department of Neurology, Zhongshan Hospital (Xiamen Branch), Fudan University, Shanghai, China.,State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Chunjiu Zhong
- Department of Neurology, Zhongshan Hospital (Xiamen Branch), Fudan University, Shanghai, China.,State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Guoqiang Fei
- Department of Neurology, Zhongshan Hospital (Xiamen Branch), Fudan University, Shanghai, China.,State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Xiaoqin Cheng
- Department of Neurology, Zhongshan Hospital (Xiamen Branch), Fudan University, Shanghai, China.,State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
4
|
Hrubša M, Siatka T, Nejmanová I, Vopršalová M, Kujovská Krčmová L, Matoušová K, Javorská L, Macáková K, Mercolini L, Remião F, Máťuš M, Mladěnka P. Biological Properties of Vitamins of the B-Complex, Part 1: Vitamins B 1, B 2, B 3, and B 5. Nutrients 2022; 14:484. [PMID: 35276844 PMCID: PMC8839250 DOI: 10.3390/nu14030484] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/16/2022] [Accepted: 01/17/2022] [Indexed: 02/06/2023] Open
Abstract
This review summarizes the current knowledge on essential vitamins B1, B2, B3, and B5. These B-complex vitamins must be taken from diet, with the exception of vitamin B3, that can also be synthetized from amino acid tryptophan. All of these vitamins are water soluble, which determines their main properties, namely: they are partly lost when food is washed or boiled since they migrate to the water; the requirement of membrane transporters for their permeation into the cells; and their safety since any excess is rapidly eliminated via the kidney. The therapeutic use of B-complex vitamins is mostly limited to hypovitaminoses or similar conditions, but, as they are generally very safe, they have also been examined in other pathological conditions. Nicotinic acid, a form of vitamin B3, is the only exception because it is a known hypolipidemic agent in gram doses. The article also sums up: (i) the current methods for detection of the vitamins of the B-complex in biological fluids; (ii) the food and other sources of these vitamins including the effect of common processing and storage methods on their content; and (iii) their physiological function.
Collapse
Affiliation(s)
- Marcel Hrubša
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Kralove, Czech Republic; (M.H.); (M.V.); (P.M.)
| | - Tomáš Siatka
- Department of Pharmacognosy, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Kralove, Czech Republic; (T.S.); (K.M.)
| | - Iveta Nejmanová
- Department of Biological and Medical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Kralove, Czech Republic;
| | - Marie Vopršalová
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Kralove, Czech Republic; (M.H.); (M.V.); (P.M.)
| | - Lenka Kujovská Krčmová
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Kralove, Czech Republic;
- Department of Clinical Biochemistry and Diagnostics, University Hospital Hradec Králové, Sokolská 581, 500 05 Hradec Kralove, Czech Republic; (K.M.); (L.J.)
| | - Kateřina Matoušová
- Department of Clinical Biochemistry and Diagnostics, University Hospital Hradec Králové, Sokolská 581, 500 05 Hradec Kralove, Czech Republic; (K.M.); (L.J.)
| | - Lenka Javorská
- Department of Clinical Biochemistry and Diagnostics, University Hospital Hradec Králové, Sokolská 581, 500 05 Hradec Kralove, Czech Republic; (K.M.); (L.J.)
| | - Kateřina Macáková
- Department of Pharmacognosy, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Kralove, Czech Republic; (T.S.); (K.M.)
| | - Laura Mercolini
- Research Group of Pharmaco-Toxicological Analysis (PTA Lab), Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum, University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy;
| | - Fernando Remião
- UCIBIO—Applied Molecular Biosciences Unit, REQUINTE, Toxicology Laboratory, Biological Sciences Department Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal;
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Marek Máťuš
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University Bratislava, Odbojárov 10, 83232 Bratislava, Slovak Republic
| | - Přemysl Mladěnka
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Kralove, Czech Republic; (M.H.); (M.V.); (P.M.)
| | | |
Collapse
|
5
|
Pfeiffer CM, Fazili Z, Mineva EM, Ngac PK. First things first: a step in the right direction for the preanalytical phase of thiamine measurements. Am J Clin Nutr 2021; 114:829-830. [PMID: 34236398 PMCID: PMC10103629 DOI: 10.1093/ajcn/nqab186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Christine M Pfeiffer
- Centers for Disease Control and Prevention (CDC), National Center for Environmental Health, Division of Laboratory Sciences, Atlanta, GA, USA
| | - Zia Fazili
- Centers for Disease Control and Prevention (CDC), National Center for Environmental Health, Division of Laboratory Sciences, Atlanta, GA, USA
| | - Ekaterina M Mineva
- Centers for Disease Control and Prevention (CDC), National Center for Environmental Health, Division of Laboratory Sciences, Atlanta, GA, USA
| | - Phuong K Ngac
- Centers for Disease Control and Prevention (CDC), National Center for Environmental Health, Division of Laboratory Sciences, Atlanta, GA, USA
| |
Collapse
|
6
|
Verstraete J, Stove C. Volumetric absorptive microsampling (VAMS) as a reliable tool to assess thiamine status in dried blood microsamples: a comparative study. Am J Clin Nutr 2021; 114:1200-1207. [PMID: 34020458 DOI: 10.1093/ajcn/nqab146] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/06/2021] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Although populations from low- and middle-income countries are at higher risk for thiamine (vitamin B-1) deficiency, accurate data on the global prevalence of thiamine deficiency are still lacking due to the difficult blood collection in remote regions. Volumetric absorptive microsampling (VAMS) from finger prick blood, generating dried blood microsamples, could simplify blood collection and allow the setup of epidemiological studies to improve the diagnosis, treatment, and prevention of thiamine deficiency. OBJECTIVES To explore the potential of VAMS to serve as an alternative, patient-centric sampling strategy to evaluate the thiamine status. METHODS Venous liquid, venous VAMS, and capillary VAMS samples were collected from 50 healthy volunteers to compare thiamine diphosphate results, as a marker of thiamine (vitamin B-1) status, in the different sample types. In addition, capillary VAMS samples were sent through regular mail to evaluate the influence of noncontrolled transport on the final results. All samples were analyzed using previously described fully validated LC-MS/MS methods. RESULTS A good agreement (94-100% of the results lying within 20% of their mean) was obtained for all comparisons: venous VAMS compared with venous liquid blood samples, capillary VAMS compared with venous VAMS samples, and capillary VAMS compared with venous liquid blood samples, with no significant bias (maximum mean bias of -1.0%; 95% CI: -4.1%, 2.0%) observed between the different methods. Finally, we demonstrated that VAMS samples can be safely transported through regular mail without affecting the final results. CONCLUSIONS VAMS sampling can be used as a reliable alternative tool to evaluate the thiamine status, starting from only one drop of finger prick blood, in both developed and developing countries.
Collapse
Affiliation(s)
- Jana Verstraete
- Laboratory of Toxicology, Department of Bioanalysis, Ghent University, Ghent, Belgium
| | - Christophe Stove
- Laboratory of Toxicology, Department of Bioanalysis, Ghent University, Ghent, Belgium
| |
Collapse
|
7
|
Verstraete J, Stove C. Patient-Centric Assessment of Thiamine Status in Dried Blood Volumetric Absorptive Microsamples Using LC–MS/MS Analysis. Anal Chem 2021; 93:2660-2668. [DOI: 10.1021/acs.analchem.0c05018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Jana Verstraete
- Laboratory of Toxicology, Department of Bioanalysis, Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium
| | - Christophe Stove
- Laboratory of Toxicology, Department of Bioanalysis, Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium
| |
Collapse
|
8
|
Feasibility of Mass-Spectrometry to Lower Cost and Blood Volume Requirements for Assessment of B Vitamins in Patients Undergoing Bariatric Surgery. Metabolites 2020; 10:metabo10060240. [PMID: 32531925 PMCID: PMC7345798 DOI: 10.3390/metabo10060240] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/05/2020] [Accepted: 06/08/2020] [Indexed: 01/21/2023] Open
Abstract
Bariatric surgery induces deficiencies in a combination of B vitamins. However, high costs and a large blood volume requirement are barriers to routine screening. We adapted and validated a method coupling tandem mass spectrometry (MS/MS) with high-performance liquid chromatography (HPLC) to facilitate cost-effective analysis for simultaneous detection of B vitamins in low volumes of plasma. Based on existing methods, pooled plasma was extracted using hexane and acetonitrile and seven B vitamin analytes were separated using HPLC. Detection was performed with an Agilent 6460 triple quadrupole tandem mass spectrometer (MS/MS) using electrospray ionization in the positive ion mode. We evaluated linearity, recovery, precision, and limit of detection, as well as costs of the assay. We evaluated seven B vitamins from plasma; five (riboflavin, nicotinamide, pantothenic acid, pyridoxine, and biotin) were detected and quantified with precision and linearity. Recovery ranged from 63 to 81% for each of the vitamins, except for nicotinamide—the recovery of which was suppressed to 40%, due to plasma matrix effects. We demonstrated the feasibility of the HPLC–MS/MS method for use in patients who undergo bariatric surgery by analyzing pooled plasma from patients with a lower cost and blood volume than had we sent the samples to a commercial laboratory. It is advantageous and feasible, in terms of low cost and blood volume requirement, to simultaneously measure plasma concentrations of B vitamins using HPLC–MS/MS. With further improvements, the method may enable personalized nutritional assessment for the nutritionally compromised, bariatric surgery population.
Collapse
|
9
|
Bugiardini E, Pope S, Feichtinger RG, Poole OV, Pittman AM, Woodward CE, Heales S, Quinlivan R, Houlden H, Mayr JA, Hanna MG, Pitceathly RDS. Utility of Whole Blood Thiamine Pyrophosphate Evaluation in TPK1-Related Diseases. J Clin Med 2019; 8:E991. [PMID: 31288420 PMCID: PMC6679130 DOI: 10.3390/jcm8070991] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 06/25/2019] [Accepted: 07/03/2019] [Indexed: 01/08/2023] Open
Abstract
TPK1 mutations are a rare, but potentially treatable, cause of thiamine deficiency. Diagnosis is challenging given the phenotypic overlap that exists with other metabolic and neurological disorders. We report a case of TPK1-related disease presenting with Leigh-like syndrome and review the diagnostic utility of thiamine pyrophosphate (TPP) blood measurement. The proband, a 35-year-old male, presented at four months of age with recurrent episodes of post-infectious encephalopathy. He subsequently developed epilepsy, learning difficulties, sensorineural hearing loss, spasticity, and dysphagia. There was a positive family history for Leigh syndrome in an older brother. Plasma lactate was elevated (3.51 mmol/L) and brain MRI showed bilateral basal ganglia hyperintensities, indicative of Leigh syndrome. Histochemical and spectrophotometric analysis of mitochondrial respiratory chain complexes I, II+III, and IV was normal. Genetic analysis of muscle mitochondrial DNA was negative. Whole exome sequencing of the proband confirmed compound heterozygous variants in TPK1: c. 426G>C (p. Leu142Phe) and c. 258+1G>A (p.?). Blood TPP levels were reduced, providing functional evidence for the deleterious effects of the variants. We highlight the clinical and bioinformatics challenges to diagnosing rare genetic disorders and the continued utility of biochemical analyses, despite major advances in DNA sequencing technology, when investigating novel, potentially disease-causing, genetic variants. Blood TPP measurement represents a fast and cost-effective diagnostic tool in TPK1-related diseases.
Collapse
Affiliation(s)
- Enrico Bugiardini
- MRC Centre for Neuromuscular Diseases, UCL Queen Square Institute of Neurology and National Hospital for Neurology and Neurosurgery, London WC1N 3BG, UK
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Simon Pope
- Neurometabolic Unit, National Hospital for Neurology and Neurosurgery, London WC1N 3BG, UK
| | - René G Feichtinger
- Department of Pediatrics, University Hospital Salzburg, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Olivia V Poole
- MRC Centre for Neuromuscular Diseases, UCL Queen Square Institute of Neurology and National Hospital for Neurology and Neurosurgery, London WC1N 3BG, UK
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Alan M Pittman
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Cathy E Woodward
- Neurogenetics Unit, National Hospital for Neurology and Neurosurgery, London WC1N 3BG, UK
| | - Simon Heales
- Neurometabolic Unit, National Hospital for Neurology and Neurosurgery, London WC1N 3BG, UK
| | - Rosaline Quinlivan
- MRC Centre for Neuromuscular Diseases, UCL Queen Square Institute of Neurology and National Hospital for Neurology and Neurosurgery, London WC1N 3BG, UK
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- Dubowitz Neuromuscular Centre, Great Ormond Street Hospital, London WC1N 3JH, UK
| | - Henry Houlden
- MRC Centre for Neuromuscular Diseases, UCL Queen Square Institute of Neurology and National Hospital for Neurology and Neurosurgery, London WC1N 3BG, UK
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Johannes A Mayr
- Department of Pediatrics, University Hospital Salzburg, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Michael G Hanna
- MRC Centre for Neuromuscular Diseases, UCL Queen Square Institute of Neurology and National Hospital for Neurology and Neurosurgery, London WC1N 3BG, UK
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Robert D S Pitceathly
- MRC Centre for Neuromuscular Diseases, UCL Queen Square Institute of Neurology and National Hospital for Neurology and Neurosurgery, London WC1N 3BG, UK.
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK.
| |
Collapse
|
10
|
Development of an IPRP-LC-MS/MS method to determine the fate of intracellular thiamine in cancer cells. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1124:247-255. [PMID: 31238261 DOI: 10.1016/j.jchromb.2019.05.037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 04/30/2019] [Accepted: 05/30/2019] [Indexed: 12/13/2022]
Abstract
Understanding the mechanisms underlying cancer cell survival is critical toward advancing drug discovery efforts in this field. Supplemental vitamins have been proposed to play a role in cancer cell metabolism because the increased supply of nutrients is thought to provide cofactors supporting the higher metabolic rate of cancer cells. Particularly, the role of thiamine (vitamin B1) in many biochemical pathways that supports cancer cell metabolism has been investigated. Consequently, the analysis of thiamine and its derivatives in a manner that reflects its dynamic response to genetic modification and pathophysiological stimuli is essential. In this work, we developed a mass spectrometry based-analytical method to track metabolites derived from stable isotope tracers for a better understanding of the metabolic fate of thiamine in cancer cells. This method used ion-pair reversed phase liquid chromatography to simultaneously quantify underivatized thiamine, thiamine monophosphate (TMP) and thiamine pyrophosphate (TPP) in cells. Hexylamine was used as an ion-pairing agent. The method was successfully validated for accuracy, precision and selectivity in accordance with U.S. FDA guidance. Furthermore, the method was then applied for the determination of thiamine and its derivatives with stable isotope labeling to explore the metabolic fate of intracellular thiamine in cancer cells. The finding shows that thiamine is rapidly converted to TPP however, the TPP does not return to thiamine. It appears that TPP may be utilized for other purposes rather than simply being an enzyme cofactor, suggesting unexplored roles for thiamine in cancer.
Collapse
|
11
|
Fatima Z, Jin X, Zou Y, Kaw HY, Quinto M, Li D. Recent trends in analytical methods for water-soluble vitamins. J Chromatogr A 2019; 1606:360245. [PMID: 31122728 DOI: 10.1016/j.chroma.2019.05.025] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 04/30/2019] [Accepted: 05/13/2019] [Indexed: 12/28/2022]
Abstract
In this review, recent advances in the analysis of water-soluble vitamins (WSVs) have been reported considering the advantages and disadvantages of various extraction, separation and detection techniques, commonly used for their quantification. Acid hydrolysis, enzyme treatment, SPE based methods and some other extraction methods have been discussed. Particular attention has been devoted to the analytical techniques based on liquid chromatography and electrophoresis. Furthermore, suitability and selectivity of hydrophilic interaction liquid chromatography (HILIC) for WSVs has been discussed in detail. Problems related to these techniques and their possible solutions have also been considered. Special focus has been given to the applications of liquid chromatography (since 2014-2019) for the simultaneous analysis of WSVs and their homologous in complex food samples.
Collapse
Affiliation(s)
- Zakia Fatima
- Department of Chemistry, MOE Key Laboratory of Natural Resources of the Changbai Mountain and Functional Molecules, Yanbian University, Park Road 977, Yanji 133002, Jilin Province, PR China
| | - Xiangzi Jin
- Department of Chemistry, MOE Key Laboratory of Natural Resources of the Changbai Mountain and Functional Molecules, Yanbian University, Park Road 977, Yanji 133002, Jilin Province, PR China
| | - Yilin Zou
- Department of Chemistry, MOE Key Laboratory of Natural Resources of the Changbai Mountain and Functional Molecules, Yanbian University, Park Road 977, Yanji 133002, Jilin Province, PR China
| | - Han Yeong Kaw
- Department of Chemistry, MOE Key Laboratory of Natural Resources of the Changbai Mountain and Functional Molecules, Yanbian University, Park Road 977, Yanji 133002, Jilin Province, PR China
| | - Maurizio Quinto
- Department of Chemistry, MOE Key Laboratory of Natural Resources of the Changbai Mountain and Functional Molecules, Yanbian University, Park Road 977, Yanji 133002, Jilin Province, PR China; SAFE - Department of Science of Agriculture, Food and Environment, University of Foggia, via Napoli 25, I-71100 Foggia, Italy
| | - Donghao Li
- Department of Chemistry, MOE Key Laboratory of Natural Resources of the Changbai Mountain and Functional Molecules, Yanbian University, Park Road 977, Yanji 133002, Jilin Province, PR China.
| |
Collapse
|