1
|
Pariente JÁ, Blanco Á, López C. Colloidal photonic crystals formation studied by real-time light diffraction. NANOPHOTONICS (BERLIN, GERMANY) 2022; 11:3257-3267. [PMID: 39635549 PMCID: PMC11501291 DOI: 10.1515/nanoph-2022-0127] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/30/2022] [Indexed: 12/07/2024]
Abstract
Colloidal suspensions crystallize by a natural sedimentation process under certain conditions, the initial volume fraction being one of the parameters that govern this process. Here, we have developed a simple in-situ, real-time, optical characterization technique to study silica colloidal suspensions during natural sedimentation in order to shed new light on this crystallization process. This technique monitors small variations in the wavelength of the reflectance features, allowing the analysis of the formation of the first layers of the crystal with sub-nanometer precision, and their dynamics, which is crucial to ensure a high quality in the final sample. The experimental results indicate that, in certain range of volume fraction, spontaneous crystallization of a colloidal fluid occurs at the bottom of the suspension, as a phase change, then through evaporation of the water it compacts to near close-packed and, eventually, dries. Understanding self-assembly at these scales is paramount in materials science and our results will contribute to improve and characterize the quality and crystallinity of the materials used in this process.
Collapse
Affiliation(s)
- Jose Ángel Pariente
- Consejo Superior de Investigaciones Científicas (CSIC), Instituto de Ciencia de Materiales de Madrid (ICMM), Calle Sor Juana Inés de la Cruz 3, E-28049Madrid, Spain
| | - Álvaro Blanco
- Consejo Superior de Investigaciones Científicas (CSIC), Instituto de Ciencia de Materiales de Madrid (ICMM), Calle Sor Juana Inés de la Cruz 3, E-28049Madrid, Spain
| | - Cefe López
- Consejo Superior de Investigaciones Científicas (CSIC), Instituto de Ciencia de Materiales de Madrid (ICMM), Calle Sor Juana Inés de la Cruz 3, E-28049Madrid, Spain
| |
Collapse
|
2
|
Ushkov A, Dellea O, Verrier I, Kampfe T, Shcherbakov A, Michalon JY, Jourlin Y. Compensation of disorder for extraordinary optical transmission effect in nanopore arrays fabricated by nanosphere photolithography. OPTICS EXPRESS 2020; 28:38049-38060. [PMID: 33379625 DOI: 10.1364/oe.408772] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 10/23/2020] [Indexed: 06/12/2023]
Abstract
The work considers the effect of extraordinary optical transmission (EOT) in polycrystalline arrays of nanopores fabricated via nanosphere photolithography (NPL). The use of samples with different qualities of polycrystalline structure allows us to reveal the role of disorder for EOT. We propose a phenomenological model which takes the disorder into account in numerical simulations and validate it using experimental data. Due to the NPL flexibility for the structure geometry control, we demonstrate the possiblity to partially compensate the disorder influence on EOT by the nanopore depth adjustments. The proposed experimental and theoretical results are promising to reveal the NPL limits for EOT-based devices and stimulate systematic studies of disorder compensation designs.
Collapse
|
3
|
Chen KY, Jamiolkowski RM, Tate AM, Fiorenza SA, Pfeil SH, Goldman YE. Fabrication of Zero Mode Waveguides for High Concentration Single Molecule Microscopy. J Vis Exp 2020:10.3791/61154. [PMID: 32478723 PMCID: PMC9020539 DOI: 10.3791/61154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
In single molecule fluorescence enzymology, background fluorescence from labeled substrates in solution often limits fluorophore concentration to pico- to nanomolar ranges, several orders of magnitude less than many physiological ligand concentrations. Optical nanostructures called zero mode waveguides (ZMWs), which are 100-200 nm in diameter apertures fabricated in a thin conducting metal such as aluminum or gold, allow imaging of individual molecules at micromolar concentrations of fluorophores by confining visible light excitation to zeptoliter effective volumes. However, the need for expensive and specialized nanofabrication equipment has precluded the widespread use of ZMWs. Typically, nanostructures such as ZMWs are obtained by direct writing using electron beam lithography, which is sequential and slow. Here, colloidal, or nanosphere, lithography is used as an alternative strategy to create nanometer-scale masks for waveguide fabrication. This report describes the approach in detail, with practical considerations for each phase. The method allows thousands of aluminum or gold ZMWs to be made in parallel, with final waveguide diameters and depths of 100-200 nm. Only common lab equipment and a thermal evaporator for metal deposition are required. By making ZMWs more accessible to the biochemical community, this method can facilitate the study of molecular processes at cellular concentrations and rates.
Collapse
Affiliation(s)
- Kevin Y Chen
- Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania
| | - Ryan M Jamiolkowski
- Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania
| | - Alyssa M Tate
- Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania
| | | | | | - Yale E Goldman
- Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania;
| |
Collapse
|
4
|
Phase diagram of colloidal crystals of poly(methyl methacrylate) spheres in the exhaustively deionized dispersion. Colloid Polym Sci 2018. [DOI: 10.1007/s00396-018-4449-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
5
|
Jung S, MacConaghy KI, Kaar JL, Stoykovich MP. Enhanced Optical Sensitivity in Thermoresponsive Photonic Crystal Hydrogels by Operating Near the Phase Transition. ACS APPLIED MATERIALS & INTERFACES 2017; 9:27927-27935. [PMID: 28758737 DOI: 10.1021/acsami.7b07179] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Photonic crystal hydrogels composed of analyte-responsive hydrogels and crystalline colloidal arrays have immense potential as reagentless chemical and biological sensors. In this work, we investigated a general mechanism to rationally tune the sensitivity of photonic crystal hydrogels consisting of stimuli-responsive polymers to small molecule analytes. This mechanism was based on modulating the demixing temperature of such hydrogels relative to the characterization temperature to in effect maximize the extent of phase separation behavior; thus, the volume changes in response to the target analytes. Using ethanol as a model analyte, we demonstrated that this mechanism led to a dramatic increase in the sensitivity of optically diffracting poly(N-isopropylacrylamide) (pNIPAM) hydrogel films that exhibit a lower critical solution temperature (LCST) behavior. The demixing temperature of the pNIPAM films was modulated by copolymerization of the films with relatively hydrophobic and hydrophilic comonomers, as well as by varying the ionic strength of the characterization solution. Our results showed that copolymerization of the films with 2.5 mol % of N-tert-butylacrylamide, which is hydrophobic relative to pNIPAM, enabled the detection limit of the pNIPAM films to ethanol to be lowered ∼2-fold at 30 °C. Additionally, increasing the ionic strength of the characterization solution above 200 mM resulted in a dramatic increase in the extent of contraction of the films in the presence of ethanol. Ultimately, it was demonstrated that as little as 16 g/L or 2 vol % of ethanol in water could reliably be detected, and that the sensitivity of the films to ethanol was predictably greatest when operating near the phase transition, such that even small additions of the analyte induced the start of demixing and the collapse of the hydrogel. Such a mechanism may be extended to photonic crystal hydrogel sensors prepared from other stimuli-responsive polymers and more broadly exploited to enhance the utility of these sensors for a broad range of analytes.
Collapse
Affiliation(s)
- Sukwon Jung
- Department of Chemical and Biological Engineering, University of Colorado , Boulder, Colorado 80303, United States
| | - Kelsey I MacConaghy
- Department of Chemical and Biological Engineering, University of Colorado , Boulder, Colorado 80303, United States
| | - Joel L Kaar
- Department of Chemical and Biological Engineering, University of Colorado , Boulder, Colorado 80303, United States
| | - Mark P Stoykovich
- Institute for Molecular Engineering, University of Chicago , Chicago, Illinois 60637, United States
| |
Collapse
|
6
|
Process optimization and optical properties of colloidal self-assembly via refrigerated centrifugation. Colloid Polym Sci 2017. [DOI: 10.1007/s00396-017-4121-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
7
|
Pham AT, Seto R, Schönke J, Joh DY, Chilkoti A, Fried E, Yellen BB. Crystallization kinetics of binary colloidal monolayers. SOFT MATTER 2016; 12:7735-7746. [PMID: 27477956 DOI: 10.1039/c6sm01072e] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Experiments and simulations are used to study the kinetics of crystal growth in a mixture of magnetic and nonmagnetic particles suspended in ferrofluid. The growth process is quantified using both a bond order parameter and a mean domain size parameter. The largest single crystals obtained in experiments consist of approximately 1000 particles and form if the area fraction is held between 65-70% and the field strength is kept in the range of 8.5-10.5 Oe. Simulations indicate that much larger single crystals containing as many as 5000 particles can be obtained under impurity-free conditions within a few hours. If our simulations are modified to include impurity concentrations as small as 1-2%, then the results agree quantitatively with the experiments. These findings provide an important step toward developing strategies for growing single crystals that are large enough to enable follow-on investigations across many subdisciplines in condensed matter physics.
Collapse
Affiliation(s)
- An T Pham
- Department of Mechanical Engineering and Materials Science, Duke University, Box 90300 Hudson Hall, Durham, NC 27708, USA.
| | | | | | | | | | | | | |
Collapse
|
8
|
Palberg T. Crystallization kinetics of colloidal model suspensions: recent achievements and new perspectives. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2014; 26:333101. [PMID: 25035303 DOI: 10.1088/0953-8984/26/33/333101] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Colloidal model systems allow studying crystallization kinetics under fairly ideal conditions, with rather well-characterized pair interactions and minimized external influences. In complementary approaches experiment, analytic theory and simulation have been employed to study colloidal solidification in great detail. These studies were based on advanced optical methods, careful system characterization and sophisticated numerical methods. Over the last decade, both the effects of the type, strength and range of the pair-interaction between the colloidal particles and those of the colloid-specific polydispersity have been addressed in a quantitative way. Key parameters of crystallization have been derived and compared to those of metal systems. These systematic investigations significantly contributed to an enhanced understanding of the crystallization processes in general. Further, new fundamental questions have arisen and (partially) been solved over the last decade: including, for example, a two-step nucleation mechanism in homogeneous nucleation, choice of the crystallization pathway, or the subtle interplay of boundary conditions in heterogeneous nucleation. On the other hand, via the application of both gradients and external fields the competition between different nucleation and growth modes can be controlled and the resulting microstructure be influenced. The present review attempts to cover the interesting developments that have occurred since the turn of the millennium and to identify important novel trends, with particular focus on experimental aspects.
Collapse
Affiliation(s)
- Thomas Palberg
- Institut für Physik, Johannes Gutenberg Universität Mainz, 55099 Mainz, Germany
| |
Collapse
|
9
|
Nakajima T, Shinoda K, Tsuchiya T. UV-assisted nucleation and growth of oxide films from chemical solutions. Chem Soc Rev 2014; 43:2027-41. [DOI: 10.1039/c3cs60222b] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
10
|
Laghaei R, Asher SA, Coalson RD. Langevin Dynamics Simulation of 3D Colloidal Crystal Vacancies and Phase Transitions. J Phys Chem B 2013; 117:5271-9. [DOI: 10.1021/jp309363h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Rozita Laghaei
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Sanford A. Asher
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Rob D. Coalson
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
11
|
Nakajima T, Shinoda K, Tsuchiya T. A universal value of effective annealing time for rapid oxide nucleation and growth under pulsed ultraviolet laser irradiation. Phys Chem Chem Phys 2013; 15:14384-9. [DOI: 10.1039/c3cp52224e] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
12
|
Okubo T, Suzuki D, Shibata K, Tsuchida A. Kinetic studies of colloidal crystallization of thermo-sensitive gel spheres of poly(N-isopropylacrylamide). Colloid Polym Sci 2012. [DOI: 10.1007/s00396-012-2666-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
13
|
Yang L, Wang J, Zhang Y, Luo Y, Li D, Meng Q. In situ optical microspectroscopy monitoring of binary colloidal crystal growth dynamics via evaporation-induced cooperative self-assembly. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:4160-4167. [PMID: 22320329 DOI: 10.1021/la205111v] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Real-time monitoring of the binary colloidal crystal (bCC) growth via evaporation-induced cooperative self-assembly (EICSA) was studied by an in situ optical microspectroscopy technique. Evolution of the recorded reflectance spectra reveals that the whole growth process of bCCs via EICSA could be separated into three different stages corresponding to that of unary colloidal crystals because of the same evaporation model. We show the detailed cooperative self-assembly information, including the evolution of the number of layers and filling factors of different components of the growing bCCs using the scalar wave approximation method. Furthermore, when the size ratio and number ratio of the two colloids were varied, the real-time optical properties of the bCCs with various stoichiometric configurations were investigated systematically. This study would be valuable in furthering the current understanding of the bCC growth dynamics via EICSA and tailoring optical properties of hierarchical materials for applications in many fields.
Collapse
Affiliation(s)
- Lei Yang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, People's Republic of China
| | | | | | | | | | | |
Collapse
|
14
|
Yang L, Zhang Y, Luo J, Luo Y, Gao K, Li D, Meng Q. Real-time studies of evaporation-induced colloidal self-assembly by optical microspectroscopy. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2011; 84:031605. [PMID: 22060383 DOI: 10.1103/physreve.84.031605] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Revised: 07/20/2011] [Indexed: 05/31/2023]
Abstract
Real-time monitoring of the whole growth process of evaporation-induced colloidal self-assembly has been conducted using an optical microspectroscopy setup. Our observations suggest that the assembly process can be divided into three different growth stages as evidenced by the variations detected in the reflectance spectra. The thickness variation of the growing colloidal crystal was monitored by examining the Fabry-Perot fringes in the reflectance spectra. Furthermore, the scalar wave approximation was utilized to analyze the evolution of optical properties with growth. More detailed information, including the time dependence of number of layers and volume fraction of water, has been revealed by comparing the experimental and calculated reflectance spectra. The present work demonstrates that in situ real-time microspectroscopy is a promising technique for monitoring and investigating the dynamic process of colloidal self-assembly.
Collapse
Affiliation(s)
- Lei Yang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, P. O. Box, 603, Beijing 100190, China
| | | | | | | | | | | | | |
Collapse
|