1
|
Nazarova D, Nedelchev L, Berberova-Buhova N, Mateev G. Nanocomposite Photoanisotropic Materials for Applications in Polarization Holography and Photonics. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2946. [PMID: 37999300 PMCID: PMC10674406 DOI: 10.3390/nano13222946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/27/2023] [Accepted: 11/03/2023] [Indexed: 11/25/2023]
Abstract
Photoanisotropic materials, in particular azodyes and azopolymers, have attracted significant research interest in the last decades. This is due to their applications in polarization holography and 4G optics, enabling polarization-selective diffractive optical elements with unique properties, including circular polarization beam-splitters, polarization-selective bifocal lenses, and many others. Numerous methods have been applied to increase the photoinduced birefringence of these materials, and as a result, to obtain polarization holographic elements with a high diffraction efficiency. Recently, a new approach has emerged that has been extensively studied by many research groups, namely doping azobenzene-containing materials with nanoparticles with various compositions, sizes, and morphologies. The resulting nanocomposites have shown significant enhancement in their photoanisotropic response, including increased photoinduced birefringence, leading to a higher diffraction efficiency and a larger surface relief modulation in the case of polarization holographic recordings. This review aims to cover the most important achievements in this new but fast-growing field of research and to present an extensive comparative analysis of the result, reported by many research groups during the last two decades. Different hypotheses to explain the mechanism of photoanisotropy enhancement in these nanocomposites are also discussed. Finally, we present our vision for the future development of this scientific field and outline its potential applications in advanced photonics technologies.
Collapse
Affiliation(s)
- Dimana Nazarova
- Institute of Optical Materials and Technologies, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (D.N.); (N.B.-B.); (G.M.)
- Department of Physics, University of Chemical Technology and Metallurgy, 1756 Sofia, Bulgaria
| | - Lian Nedelchev
- Institute of Optical Materials and Technologies, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (D.N.); (N.B.-B.); (G.M.)
- Department of Physics, University of Chemical Technology and Metallurgy, 1756 Sofia, Bulgaria
| | - Nataliya Berberova-Buhova
- Institute of Optical Materials and Technologies, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (D.N.); (N.B.-B.); (G.M.)
- Department of Physics, University of Chemical Technology and Metallurgy, 1756 Sofia, Bulgaria
| | - Georgi Mateev
- Institute of Optical Materials and Technologies, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (D.N.); (N.B.-B.); (G.M.)
- Department of Physics, University of Chemical Technology and Metallurgy, 1756 Sofia, Bulgaria
| |
Collapse
|
2
|
Sagnelli D, D’Avino A, Rippa M, Vestri A, Marchesano V, Nenna G, Villani F, Ardila G, Centi S, Ratto F, Petti L. Photomobile Polymer-Piezoelectric Composite for Enhanced Actuation and Energy Generation. ACS APPLIED OPTICAL MATERIALS 2023; 1:1651-1660. [PMID: 37915969 PMCID: PMC10616835 DOI: 10.1021/acsaom.3c00227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/18/2023] [Accepted: 09/18/2023] [Indexed: 11/03/2023]
Abstract
In this study, we present an innovative approach to increase the quantum yield and wavelength sensitivity of photomobile polymer (PMP) films based on azobenzene by doping the polymer matrix with noble metal nanoparticles. These doped PMP films showed faster and more significant bending under both UV as well as visible and near-infrared light regardless of whether it was coherent, incoherent, polarized, or unpolarized irradiation, expanding the potential of PMP-based actuators. To illustrate their practical implications, we created a proof-of-concept model of power generation by coupling it to flexible piezoelectric materials under simulated sunlight. This model has been tested under real operating conditions, thus demonstrating the possibility of generating electricity with variable light exposure. Additionally, our synthetic protocol is solvent-free, which is another benefit of environmental relevance. Our research lays the groundwork for the development of sunlight-sensitive devices, such as photomechanical actuators and advanced photovoltaic modules, which may break ground in the thriving field of smart materials. We are confident that the presented findings will contribute to the ongoing discourse in the field and inspire additional advances in renewable energy applications.
Collapse
Affiliation(s)
- Domenico Sagnelli
- Institute
of Applied Sciences and Intelligent Systems of CNR, Pozzuoli 80072, Italy
| | - Amalia D’Avino
- Institute
of Applied Sciences and Intelligent Systems of CNR, Pozzuoli 80072, Italy
| | - Massimo Rippa
- Institute
of Applied Sciences and Intelligent Systems of CNR, Pozzuoli 80072, Italy
| | - Ambra Vestri
- Institute
of Applied Sciences and Intelligent Systems of CNR, Pozzuoli 80072, Italy
| | - Valentina Marchesano
- Institute
of Applied Sciences and Intelligent Systems of CNR, Pozzuoli 80072, Italy
| | - Giuseppe Nenna
- Energy
and Sustainable Economic Development, ENEA,
Italian National Agency for New Technologies, Portici Research Centre, Portici, Naples 80055, Italy
| | - Fulvia Villani
- Energy
and Sustainable Economic Development, ENEA,
Italian National Agency for New Technologies, Portici Research Centre, Portici, Naples 80055, Italy
| | - Gustavo Ardila
- CNRS,
Grenoble INP, IMEP-LaHC, Univ. Grenoble
Alpes, Univ. Savoie Mont Blanc, Grenoble F-38000, France
| | - Sonia Centi
- Nello
Carrara Institute of Applied Physics of CNR, Sesto Fiorentino 50019, Italy
| | - Fulvio Ratto
- Nello
Carrara Institute of Applied Physics of CNR, Sesto Fiorentino 50019, Italy
| | - Lucia Petti
- Institute
of Applied Sciences and Intelligent Systems of CNR, Pozzuoli 80072, Italy
| |
Collapse
|
3
|
Sagnelli D, Calabrese M, Kaczmarczyk O, Rippa M, Vestri A, Marchesano V, Kortsen K, Cuzzucoli Crucitti V, Villani F, Loffredo F, Borriello C, Nenna G, Cocca M, Ambrogi V, Matczyszyn K, Simoni F, Petti L. Photo-Responsivity Improvement of Photo-Mobile Polymers Actuators Based on a Novel LCs/Azobenzene Copolymer and ZnO Nanoparticles Network. NANOMATERIALS 2021; 11:nano11123320. [PMID: 34947671 PMCID: PMC8705796 DOI: 10.3390/nano11123320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 11/28/2021] [Accepted: 12/01/2021] [Indexed: 11/25/2022]
Abstract
The efficiency of photomobile polymers (PMP) in the conversion of light into mechanical work plays a fundamental role in achieving cutting-edge innovation in the development of novel applications ranging from energy harvesting to sensor approaches. Because of their photochromic properties, azobenzene monomers have been shown to be an efficient material for the preparation of PMPs with appropriate photoresponsivity. Upon integration of the azobenzene molecules as moieties into a polymer, they act as an engine, allowing fast movements of up to 50 Hz. In this work we show a promising approach for integrating ZnO nanoparticles into a liquid crystalline polymer network. The addition of such nanoparticles allows the trapping of incoming light, which acts as diffusive points in the polymer matrix. We characterized the achieved nanocomposite material in terms of thermomechanical and optical properties and finally demonstrated that the doped PMP was better performing that the undoped PMP film.
Collapse
Affiliation(s)
- Domenico Sagnelli
- Institute of Applied Sciences and Intelligent Systems of CNR, 80072 Pozzuoli, Italy; (M.C.); (O.K.); (M.R.); (A.V.); (V.M.); (F.S.)
- Correspondence: (D.S.); (G.N.); (L.P.)
| | - Marcella Calabrese
- Institute of Applied Sciences and Intelligent Systems of CNR, 80072 Pozzuoli, Italy; (M.C.); (O.K.); (M.R.); (A.V.); (V.M.); (F.S.)
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, 80125 Naples, Italy;
| | - Olga Kaczmarczyk
- Institute of Applied Sciences and Intelligent Systems of CNR, 80072 Pozzuoli, Italy; (M.C.); (O.K.); (M.R.); (A.V.); (V.M.); (F.S.)
- Advanced Materials Engineering and Modelling Group, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland;
| | - Massimo Rippa
- Institute of Applied Sciences and Intelligent Systems of CNR, 80072 Pozzuoli, Italy; (M.C.); (O.K.); (M.R.); (A.V.); (V.M.); (F.S.)
| | - Ambra Vestri
- Institute of Applied Sciences and Intelligent Systems of CNR, 80072 Pozzuoli, Italy; (M.C.); (O.K.); (M.R.); (A.V.); (V.M.); (F.S.)
| | - Valentina Marchesano
- Institute of Applied Sciences and Intelligent Systems of CNR, 80072 Pozzuoli, Italy; (M.C.); (O.K.); (M.R.); (A.V.); (V.M.); (F.S.)
| | - Kristoffer Kortsen
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, UK;
| | - Valentina Cuzzucoli Crucitti
- Department of Chemical and Environmental Engineering, University of Nottingham, University Park, Nottingham NG7 2RD, UK;
| | - Fulvia Villani
- ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Portici Research Centre, Portici, 80055 Naples, Italy; (F.V.); (F.L.); (C.B.)
| | - Fausta Loffredo
- ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Portici Research Centre, Portici, 80055 Naples, Italy; (F.V.); (F.L.); (C.B.)
| | - Carmela Borriello
- ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Portici Research Centre, Portici, 80055 Naples, Italy; (F.V.); (F.L.); (C.B.)
| | - Giuseppe Nenna
- ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Portici Research Centre, Portici, 80055 Naples, Italy; (F.V.); (F.L.); (C.B.)
- Correspondence: (D.S.); (G.N.); (L.P.)
| | - Mariacristina Cocca
- Institute for Polymers, Composites and Biomaterials of CNR, 80072 Pozzuoli, Italy;
| | - Veronica Ambrogi
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, 80125 Naples, Italy;
| | - Katarzyna Matczyszyn
- Advanced Materials Engineering and Modelling Group, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland;
| | - Francesco Simoni
- Institute of Applied Sciences and Intelligent Systems of CNR, 80072 Pozzuoli, Italy; (M.C.); (O.K.); (M.R.); (A.V.); (V.M.); (F.S.)
| | - Lucia Petti
- Institute of Applied Sciences and Intelligent Systems of CNR, 80072 Pozzuoli, Italy; (M.C.); (O.K.); (M.R.); (A.V.); (V.M.); (F.S.)
- Correspondence: (D.S.); (G.N.); (L.P.)
| |
Collapse
|
4
|
Khayyami A, Karppinen M. Reversible Photoswitching Function in Atomic/Molecular-Layer-Deposited ZnO:Azobenzene Superlattice Thin Films. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2018; 30:5904-5911. [PMID: 30319176 PMCID: PMC6179458 DOI: 10.1021/acs.chemmater.8b01833] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 08/15/2018] [Indexed: 05/02/2023]
Abstract
We report new types of reversibly photoresponsive ZnO:azobenzene superlattice thin films fabricated through atomic/molecular-layer deposition (ALD/MLD) from diethylzinc, water, and 4,4'-azobenzene dicarboxylic acid precursors. In these ultrathin films, crystalline ZnO layers are interspersed with monomolecular photoactive azobenzene dicarboxylate layers. The thickness of the individual ZnO layers is precisely controlled by the number (m) of ALD cycles applied between two subsequent MLD cycles for the azobenzene layers; in our {[(Zn-O) m +(Zn-O2-C-C6H4-N=N-C6H4-C-O2)] n +(Zn-O) m } samples, m ranges from 0 to 240. The photoresponsive behavior of the films is demonstrated with ultraviolet-visible spectroscopy; all the films are found to be photoreactive upon 360 nm irradiation, the kinetics of the resultant trans-cis photoisomerization somewhat depending on the superlattice structure. The reversibility of the photoisomerization reaction is then confirmed with a subsequent thermal treatment. Our work thus provides proof-of-concept evidence of the suitability of the ALD/MLD technology for the implementation of photoactive moieties such as azobenzene within an inorganic matrix as an attractive new methodology for creating novel light-switchable functional materials.
Collapse
|
5
|
Ghavidast A, Mahmoodi NO. A comparative study of the photochromic compounds incorporated on the surface of nanoparticles. J Mol Liq 2016. [DOI: 10.1016/j.molliq.2015.12.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
6
|
Javed H, Fatima K, Akhter Z, Nadeem MA, Siddiq M, Iqbal A. Fluorescence modulation of cadmium sulfide quantum dots by azobenzene photochromic switches. Proc Math Phys Eng Sci 2016; 472:20150692. [PMID: 27118894 DOI: 10.1098/rspa.2015.0692] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
We have investigated the attachment of azobenzene photochromic switches on the modified surface of cadmium sulfide (CdS) quantum dots (QDs). The modification of CdS QDs is done by varying the concentration of the capping agent (mercaptoacetic acid) and NH3 in order to control the size of the QDs. The X-ray diffraction studies revealed that the crystallite size of CdS QDs ranged from 6 to 10 nm. The azobenzene photochromic derivatives bis(4-hydroxybenzene-1-azo)4,4'(1,1' diphenylmethane) (I) and 4,4'-diazenyldibenzoic acid (II) were synthesized and attached with surface-modified CdS QDs to make fluorophore-photochrome CdS-(I) and CdS-(II) dyad assemblies. Upon UV irradiation, the photochromic compounds (I) and (II) undergo a reversible trans-cis isomerization. The photo-induced trans-cis transformation helps to transfer photo-excited electrons from the conduction band of the CdS QDs to the lowest unoccupied molecular orbital of cis isomer of photochromic compounds (I) and (II). As a result, the fluorescence of CdS-(I) and CdS-(II) dyads is suppressed approximately five times compared to bare CdS QDs. The fluorescence modulation in such systems could help to design luminescent probes for bioimaging applications.
Collapse
Affiliation(s)
- Hina Javed
- Department of Chemistry , Quaid-i-Azam University , Islamabad 45320, Pakistan
| | - Kalsoom Fatima
- Department of Chemistry , Quaid-i-Azam University , Islamabad 45320, Pakistan
| | - Zareen Akhter
- Department of Chemistry , Quaid-i-Azam University , Islamabad 45320, Pakistan
| | | | - Muhammad Siddiq
- Department of Chemistry , Quaid-i-Azam University , Islamabad 45320, Pakistan
| | - Azhar Iqbal
- Department of Chemistry , Quaid-i-Azam University , Islamabad 45320, Pakistan
| |
Collapse
|
7
|
Nedelchev L, Nazarova D, Dragostinova V. Photosensitive organic/inorganic azopolymer based nanocomposite materials with enhanced photoinduced birefringence. J Photochem Photobiol A Chem 2013. [DOI: 10.1016/j.jphotochem.2013.04.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
8
|
First principles study of periodic size dependent band gap variation of Cu doped ZnO single-wall nanotube. J Mol Model 2012; 18:5035-40. [DOI: 10.1007/s00894-012-1510-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Accepted: 06/14/2012] [Indexed: 10/28/2022]
|
9
|
Nedelchev L, Nazarova D, Dragostinova V, Karashanova D. Increase of photoinduced birefringence in a new type of anisotropic nanocomposite: azopolymer doped with ZnO nanoparticles. OPTICS LETTERS 2012; 37:2676-2678. [PMID: 22743492 DOI: 10.1364/ol.37.002676] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
We report a significant increase of about 50% of the photoinduced birefringence in nanocomposite films of azopolymers doped with ZnO nanoparticles compared with samples made from nondoped azopolymers. This increase is most pronounced at small concentrations of the nanoparticles of 0.5% and for the amorphous polymers used in our study. We observe also an improvement of the response time of more than 25% in some of the polymers, which allows for faster and more effective polarization optical recording.
Collapse
Affiliation(s)
- Lian Nedelchev
- Institute of Optical Materials and Technology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. bl. 109, P.O Box 95, 1113 Sofia, Bulgaria
| | | | | | | |
Collapse
|