1
|
Mazinani A, Zare K, Moradi O, Attar H. Sulfonated calixarene modified Poly(methyl methacrylate) nanoparticles:A promising adsorbent for Removal of Vanadium Ions from aqueous media. CHEMOSPHERE 2022; 299:134459. [PMID: 35367226 DOI: 10.1016/j.chemosphere.2022.134459] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/21/2022] [Accepted: 03/25/2022] [Indexed: 06/14/2023]
Abstract
The poly (methyl methacrylate) (PMMA)-based nanoparticle was synthesized by surfactant-free emulsion polymerization method and then post modified with Calixarene using (3-Aminopropyl)triethoxysilane organo-silane as a linker after OH-treatment. The prepared structure was applied for efficient adsorption of Vanadium ions in the aqueous solution after characterization by FT-IR, SEM, TEM, DLS, and EDX. Additional investigations discovered that the prepared adsorbent has a good capacity to adsorb vanadium ions. The effect of key experimental factors was studied to find the optimal point of adsorbent efficiency including the initial concentration of analyte, sorbent dosage, pH of the solution, contact time, and type/quantity of the eluents. It was specified, the maximum adsorption capacity for the synthesized nanoparticles was obtained about 322 mg g-1. The adsorption mechanism was revealed that the model of Langmuir isotherm well-matched compared to the others due to the calculated equilibrium data. Besides, the kinetics of the adsorption process was fitted with pseudo-second-order. Eventually, the prepared adsorbent was successfully applied in vanadium adsorption from real water media.
Collapse
Affiliation(s)
- Ali Mazinani
- Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Karim Zare
- Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Omid Moradi
- Department of Chemistry, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran.
| | - Hossein Attar
- Chemical Engineering Department, Engineering and Technology Faculty, Sciences and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
2
|
Varela-Fernández R, García-Otero X, Díaz-Tomé V, Regueiro U, López-López M, González-Barcia M, Isabel Lema M, Otero-Espinar FJ. Mucoadhesive PLGA Nanospheres and Nanocapsules for Lactoferrin Controlled Ocular Delivery. Pharmaceutics 2022; 14:pharmaceutics14040799. [PMID: 35456633 PMCID: PMC9029159 DOI: 10.3390/pharmaceutics14040799] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/25/2022] [Accepted: 04/01/2022] [Indexed: 12/13/2022] Open
Abstract
Background: the present work describes the preparation, characterization and optimization of eight types of PLGA-based nanosystems (nanospheres and nanocapsules) as innovative mucoadhesive drug delivery systems of lactoferrin, in order to achieve a preclinical consistent base as an alternative pharmacological treatment to different ocular syndromes and diseases. Methods: All different nanoparticles were prepared via two modified nanoprecipitation techniques, using a three-component mixture of drug/polymer/surfactant (Lf/PLGA/Poloxamer), as a way to overcome the inherent limitations of conventional PLGA NPs. These modified polymeric nanocarriers, intended for topical ophthalmic administration, were subjected to in vitro characterization, surface modification and in vitro and in vivo assessments. Results: An appropriate size range, uniform size distribution and negative ζ potential values were obtained for all types of formulations. Lactoferrin could be effectively included into all types of nanoparticles with appropriate encapsulation efficiency and loading capacity values. A greater, extended, and controlled delivery of Lf from the polymeric matrix was observed through the in vitro release studies. No instability or cytotoxicity was proved for all the formulations by means of organotypic models. Additionally, mucoadhesive in vitro and in vivo experiments show a significant increase in the residence time of the nanoparticles in the eye surface. Conclusions: all types of prepared PLGA nanoparticles might be a potential alternative for the topical ophthalmic administration of lactoferrin.
Collapse
Affiliation(s)
- Rubén Varela-Fernández
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, University of Santiago de Compostela (USC), Campus Vida, 15782 Santiago de Compostela, Spain; (R.V.-F.); (X.G.-O.); (V.D.-T.)
- Clinical Neurosciences Group, University Clinical Hospital, Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; (U.R.); (M.L.-L.)
| | - Xurxo García-Otero
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, University of Santiago de Compostela (USC), Campus Vida, 15782 Santiago de Compostela, Spain; (R.V.-F.); (X.G.-O.); (V.D.-T.)
- Molecular Imaging Group, University Clinical Hospital, Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
| | - Victoria Díaz-Tomé
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, University of Santiago de Compostela (USC), Campus Vida, 15782 Santiago de Compostela, Spain; (R.V.-F.); (X.G.-O.); (V.D.-T.)
| | - Uxía Regueiro
- Clinical Neurosciences Group, University Clinical Hospital, Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; (U.R.); (M.L.-L.)
| | - Maite López-López
- Clinical Neurosciences Group, University Clinical Hospital, Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; (U.R.); (M.L.-L.)
| | - Miguel González-Barcia
- Clinical Pharmacology Group, University Clinical Hospital, Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain;
| | - María Isabel Lema
- Department of Surgery and Medical-Surgical Specialties, Ophthalmology Area, University of Santiago de Compostela (USC), Campus Vida, 15706 Santiago de Compostela, Spain
- Correspondence: (M.I.L.); (F.J.O.-E.)
| | - Francisco Javier Otero-Espinar
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, University of Santiago de Compostela (USC), Campus Vida, 15782 Santiago de Compostela, Spain; (R.V.-F.); (X.G.-O.); (V.D.-T.)
- Institute of Materials Imatus, University of Santiago de Compostela (USC), Campus Vida, 15782 Santiago de Compostela, Spain
- Paraquasil Group, University Clinical Hospital, Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
- Correspondence: (M.I.L.); (F.J.O.-E.)
| |
Collapse
|
3
|
Abdelghafour MM, Orbán Á, Deák Á, Lamch Ł, Frank É, Nagy R, Ziegenheim S, Sipos P, Farkas E, Bari F, Janovák L. Biocompatible poly(ethylene succinate) polyester with molecular weight dependent drug release properties. Int J Pharm 2022; 618:121653. [PMID: 35278604 DOI: 10.1016/j.ijpharm.2022.121653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/04/2022] [Accepted: 03/07/2022] [Indexed: 01/05/2023]
Abstract
In the present study, we demonstrate that well-known molecular weight-dependent solubility properties of a polymer can also be used in the field of controlled drug delivery. To prove this, poly(ethylene succinate) (PES) polyesters with polycondensation time regulated molecular weights were synthesized via catalyst-free direct polymerization in an equimolar ratio of ethylene glycol and succinic acid monomers at 185 °C. DSC and contact angle measurements revealed that increasing the molecular weight (Mw, 4.3-5.05 kDa) through the polymerization time (40-80 min) increased the thermal stability (Tm= ∼61-80 °C) and slightly the hydrophobicity (Θw= ∼27-41°) of the obtained aliphatic polyester. Next, this biodegradable polymer was used for the encapsulation of Ca2+ channel blocker Nimodipine (NIMO) to overcome the poor water solubility and enhance the bioavailability of the drug. The drug/ polymer compatibility was proved by the means of solubility (δ) and Flory-Huggins interaction (miscibility) parameters (χ). The nanoprecipitation encapsulation of NIMO into PES with increasing Mw resulted in the formation of spherical 270 ± 103 nm NIMO-loaded PES nanoparticles (NPs). Furthermore, based on the XRD measurements, the encapsulated form of NIMO-loaded PES NPs showed lower drug crystallinity, which enhanced not only the water solubility but even the water stability of the NIMO in an aqueous medium. The in-vitro drug release experiments demonstrated that the release of NIMO drug could be accelerated or even prolonged by the molecular weights of PES as well. Due to the low crystallinity of PES polyester and low particle size of the encapsulated NIMO drug led to enhance solubility and releasing process of NIMO from PES with lower Mw (4.3 kDa and 4.5 kDa) compared to pure crystalline NIMO. However, further increasing the molecular weight (5.05 kDa) was already reduced the amount of drug release that provides the prolonged therapeutic effect and enhances the bioavailability of the NIMO drug.
Collapse
Affiliation(s)
- Mohamed M Abdelghafour
- Department of Physical Chemistry and Materials Science, University of Szeged, H-6720, Rerrich Béla tér 1, Szeged, Hungary; Department of Chemistry, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
| | - Ágoston Orbán
- Department of Physical Chemistry and Materials Science, University of Szeged, H-6720, Rerrich Béla tér 1, Szeged, Hungary
| | - Ágota Deák
- Department of Physical Chemistry and Materials Science, University of Szeged, H-6720, Rerrich Béla tér 1, Szeged, Hungary
| | - Łukasz Lamch
- Department of Organic and Pharmaceutical Technology, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Éva Frank
- Department of Organic Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary
| | - Roland Nagy
- Department of MOL Department of Hydrocarbon and Coal Processing, Faculty of Engineering, University of Pannonia, Egyetem Str. 10, H-8200 Veszprém, Hungary
| | - Szilveszter Ziegenheim
- Department of Inorganic and Analytical Chemistry, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary
| | - Pál Sipos
- Department of Inorganic and Analytical Chemistry, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary
| | - Eszter Farkas
- Department of Medical Physics and Informatics, Faculty of Medicine & Faculty of Science and Informatics, University of Szeged, Korányi Fasor 9, H-6720 Szeged, Hungary; HCEMM-USZ Cerebral Blood Flow and Metabolism Research Group, University of Szeged, Dugonics Square 13, H-6720 Szeged, Hungary; Department of Cell Biology and Molecular Medicine, Faculty of Science and Informatics & Faculty of Medicine, University of Szeged, Somogyi Str. 4, H-6720 Szeged, Hungary
| | - Ferenc Bari
- Department of Medical Physics and Informatics, Faculty of Medicine & Faculty of Science and Informatics, University of Szeged, Korányi Fasor 9, H-6720 Szeged, Hungary
| | - László Janovák
- Department of Physical Chemistry and Materials Science, University of Szeged, H-6720, Rerrich Béla tér 1, Szeged, Hungary.
| |
Collapse
|
4
|
Zhu P, Zhang H, Lu H. Preparation of Polyetherimide Nanoparticles by a Droplet Evaporation-Assisted Thermally Induced Phase-Separation Method. Polymers (Basel) 2021; 13:polym13101548. [PMID: 34065994 PMCID: PMC8150268 DOI: 10.3390/polym13101548] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/07/2021] [Accepted: 05/08/2021] [Indexed: 11/23/2022] Open
Abstract
The droplet evaporation effect on the preparation of polyetherimide (PEI) nanoparticles by thermally induced phase separation (TIPS) was studied. PEI nanoparticles were prepared in two routes. In route I, the droplet evaporation process was carried out after TIPS. In route II, the droplet evaporation and TIPS processes were carried out simultaneously. The surface tension and shape parameters of samples were measured via a drop shape analyzer. The Z-average particle diameter of PEI nanoparticles in the PEI/dimethyl sulfoxide solution (DMSO) suspension at different time points was tested by dynamic light scattering, the data from which was used to determine the TIPS time of the PEI/DMSO solution. The natural properties of the products from both routes were studied by optical microscope, scanning electron microscope and transmission electron microscope. The results show that PEI nanoparticles prepared from route II are much smaller and more uniform than that prepared from route I. Circulation flows in the droplet evaporation were indirectly proved to suppress the growth of particles. At 30 °C, PEI solid nanoparticles with 193 nm average particle size, good uniformity, good separation and good roundness were obtained. Route I is less sensitive to temperature than route II. Samples in route I were still the accumulations of micro and nanoparticles until 40 °C instead of 30 °C in route II, although the particle size distribution was not uniform. In addition, a film structure would appear instead of particles when the evaporation temperature exceeds a certain value in both routes. This work will contribute to the preparation of polymer nanoparticles with small and uniform particle size by TIPS process from preformed polymers.
Collapse
|
5
|
Zhu P, Zhang H. Polyetherimide nanoparticle preparation from a polyetherimide/dimethyl sulfoxide solution by a simplified cooling-down method. POLYM-PLAST TECH MAT 2020. [DOI: 10.1080/25740881.2020.1826518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Peng Zhu
- College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| | - Huapeng Zhang
- College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| |
Collapse
|
6
|
Jara MO, Catalan-Figueroa J, Landin M, Morales JO. Finding key nanoprecipitation variables for achieving uniform polymeric nanoparticles using neurofuzzy logic technology. Drug Deliv Transl Res 2019; 8:1797-1806. [PMID: 29288356 DOI: 10.1007/s13346-017-0446-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Nanoprecipitation is a simple and fast method to produce polymeric nanoparticles (Np); however, most applications require filtration or another separation technique to isolate the nanosuspension from aggregates or polydisperse particle production. In order to avoid variability introduced by these additional steps, we report here a systematic study of the process to yield monomodal and uniform Np production with the nanoprecipitation method. To further identify key variables and their interactions, we used artificial neural networks (ANN) to investigate the multiple variables which influence the process. In this work, a polymethacrylate derivative was used for Np (NpERS) and a database with several formulations and conditions was developed for the ANN model. The resulting ANN model had a high predictability (> 70%) for NpERS characteristics measured (mean size, PDI, zeta potential, and number of particle populations). Moreover, the model identified production variables leading to polymer supersaturation, such as mixing time and turbulence, as key in achieving monomodal and uniform NpERS in one production step. Polymer concentration and type of solvent, modifiers of polymer diffusion and supersaturation, were also shown to control NpERS characteristics. The ANN study allowed the identification of key variables and their interactions and resulted in a predictive model to study the NpERS production by nanoprecipitation. In turn, we have achieved an optimized method to yield uniform NpERS which could pave way for polymeric nanoparticle production methods with potential in biological and drug delivery applications.
Collapse
Affiliation(s)
- Miguel O Jara
- Department of Pharmaceutical Science and Technology, School of Chemical and Pharmaceutical Sciences, University of Chile, Santos Dumont 964, 4to piso, Of. 09, Independencia, 8380494, Santiago, Chile
| | - Johanna Catalan-Figueroa
- Department of Pharmaceutical Science and Technology, School of Chemical and Pharmaceutical Sciences, University of Chile, Santos Dumont 964, 4to piso, Of. 09, Independencia, 8380494, Santiago, Chile
| | - Mariana Landin
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, University of Santiago, 15782, Santiago de Compostela, Spain
| | - Javier O Morales
- Department of Pharmaceutical Science and Technology, School of Chemical and Pharmaceutical Sciences, University of Chile, Santos Dumont 964, 4to piso, Of. 09, Independencia, 8380494, Santiago, Chile. .,Advanced Center for Chronic Diseases (ACCDiS), 8380494, Santiago, Chile. .,Pharmaceutical Biomaterial Research Group, Department of Health Sciences, Luleå University of Technology, 97187, Luleå, Sweden.
| |
Collapse
|