1
|
Miao H, Wu J, Luo X, Li X, Mo Z, Liu J, Jiang Z, Yi J, Zhu X, Xu H. Mechanism Decoding of an S-Scheme ZnIn 2S 4/H 2WO 4 Heterojunction with Favorable Surface Electronic Potential for Enhanced and Anti-Corrosion Photocatalytic Hydrogen Evolution. Inorg Chem 2025; 64:10290-10301. [PMID: 40358392 DOI: 10.1021/acs.inorgchem.5c01250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
The rational construction of heterojunction interfaces plays a critical role in enhancing the carrier separation efficiency for photocatalytic hydrogen evolution. In this study, a ZnIn2S4/H2WO4 S-scheme heterojunction was successfully synthesized via a self-assembly strategy. Compared with conventional WO3, the H2WO4 component exhibits a lower work function, which significantly promotes surface electron overflow and establishes an optimized S-scheme charge transfer pathway. Structural characterization reveals that the intimate integration of H2WO4 nanosheets within ZnIn2S4 nanoflowers provides enhanced interfacial contact, thereby facilitating efficient charge separation and migration. As a result, the optimized ZnIn2S4/H2WO4 composite demonstrates a hydrogen evolution rate of 138 mmol/g/h, achieving a 4.7-fold enhancement over pristine ZnIn2S4 and a 1.9-fold improvement compared to the ZnIn2S4/WO3. This work highlights the dual requirements for oxidation photocatalysts in S-scheme systems: precise band gap alignment and favorable surface electronic properties, both essential for enabling efficient electron overflow and ensuring effective S-scheme charge migration channels.
Collapse
Affiliation(s)
- Honghai Miao
- Institute for Energy Research, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, P. R. China
| | - Jiangbo Wu
- Institute for Energy Research, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, P. R. China
| | - Xi Luo
- Institute for Energy Research, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, P. R. China
| | - Xin Li
- Engineering Technology Research Center of Henan Province for Solar Catalysis, College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang, Henan 473061, P. R. China
| | - Zhao Mo
- Institute for Energy Research, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, P. R. China
| | - Jinyuan Liu
- Institute for Energy Research, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, P. R. China
| | - Zaiyong Jiang
- School of Chemistry & Chemical Engineering and Environmental Engineering, Weifang University, Weifang 261061, P. R. China
| | - Jianjian Yi
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, P. R. China
| | - Xianglin Zhu
- Institute for Energy Research, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, P. R. China
| | - Hui Xu
- Institute for Energy Research, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, P. R. China
| |
Collapse
|
2
|
Hkiri K, Mohamed HEA, Abodouh MM, Maaza M. Experimental and theoretical insights into the adsorption mechanism of methylene blue on the (002) WO 3 surface. Sci Rep 2024; 14:26991. [PMID: 39506040 PMCID: PMC11541561 DOI: 10.1038/s41598-024-78491-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 10/31/2024] [Indexed: 11/08/2024] Open
Abstract
This work investigates the efficiency of green-synthesized WO3 nanoflakes for the removal of methylene blue dye. The synthesis of WO3 nanoflakes using Hyphaene thebaica fruit extract results in a material with a specific surface area of 13 m2/g and an average pore size of 19.3 nm. A combined theoretical and experimental study exhibits a complete understanding of the MB adsorption mechanism onto WO3 nanoflakes. Adsorption studies revealed a maximum methylene blue adsorption capacity of 78.14 mg/g. The pseudo-second-order model was the best to describe the adsorption kinetics with a correlation coefficient (R2) of 0.99, suggesting chemisorption. The intra-particle diffusion study supported a two-stage process involving surface adsorption and intra-particle diffusion. Molecular dynamic simulations confirmes the electrostatic attraction mechanism between MB and the (002) WO3 surface, with the most favorable adsorption energy calculated as -0.68 eV. The electrokinetic study confirmed that the WO3 nanoflakes have a strongly negative zeta potential of -31.5 mV and a uniform particle size of around 510 nm. The analysis of adsorption isotherms exhibits a complex adsorption mechanism between WO3 and MB, involving both electrostatic attraction and physical adsorption. The WO3 nanoflakes maintained 90% of their adsorption efficiency after five cycles, according to the reusability tests.
Collapse
Affiliation(s)
- Khaoula Hkiri
- UNESCO UNISA Africa Chair in Nanoscience and Nanotechnology, College of Graduate studies, University of South Africa, Pretoria, South Africa
| | - Hamza Elsayed Ahmed Mohamed
- UNESCO UNISA Africa Chair in Nanoscience and Nanotechnology, College of Graduate studies, University of South Africa, Pretoria, South Africa.
| | - Mohamed Mahrous Abodouh
- Energy Materials Laboratory, Physics Department, School of Sciences and Engineering, The American University in Cairo (AUC), New Cairo, 11835, Egypt
- UNESCO UNISA Africa Chair in Nanosciences & nanotechnology, Pretoria, South Africa
| | - Malik Maaza
- UNESCO UNISA Africa Chair in Nanoscience and Nanotechnology, College of Graduate studies, University of South Africa, Pretoria, South Africa
| |
Collapse
|
3
|
Truong HB, Doan TTL, Hoang NT, Van Tam N, Nguyen MK, Trung LG, Gwag JS, Tran NT. Tungsten-based nanocatalysts with different structures for visible light responsive photocatalytic degradation of bisphenol A. J Environ Sci (China) 2024; 139:569-588. [PMID: 38105077 DOI: 10.1016/j.jes.2023.09.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/18/2023] [Accepted: 09/20/2023] [Indexed: 12/19/2023]
Abstract
Environmental pollution, such as water contamination, is a critical issue that must be absolutely addressed. Here, three different morphologies of tungsten-based photocatalysts (WO3 nanorods, WO3/WS2 nanobricks, WO3/WS2 nanorods) are made using a simple hydrothermal method by changing the solvents (H2O, DMF, aqueous HCl solution). The as-prepared nanocatalysts have excellent thermal stability, large porosity, and high hydrophilicity. The results show all materials have good photocatalytic activity in aqueous media, with WO3/WS2 nanorods (NRs) having the best activity in the photodegradation of bisphenol A (BPA) under visible-light irradiation. This may originate from increased migration of charge carriers and effective prevention of electron‒hole recombination in WO3/WS2 NRs, whereby this photocatalyst is able to generate more reactive •OH and •O2- species, leading to greater photocatalytic activity. About 99.6% of BPA is photodegraded within 60 min when using 1.5 g/L WO3/WS2 NRs and 5.0 mg/L BPA at pH 7.0. Additionally, the optimal conditions (pH, catalyst dosage, initial BPA concentration) for WO3/WS2 NRs are also elaborately investigated. These rod-like heterostructures are expressed as potential catalysts with excellent photostability, efficient reusability, and highly active effectivity in different types of water. In particular, the removal efficiency of BPA by WO3/WS2 NRs reduces by only 1.5% after five recycling runs and even reaches 89.1% in contaminated lake water. This study provides promising insights for the nearly complete removal of BPA from wastewater or different water resources, which is advantageous to various applications in environmental remediation.
Collapse
Affiliation(s)
- Hai Bang Truong
- Optical Materials Research Group, Science and Technology Advanced Institute, Van Lang University, Ho Chi Minh City, Viet Nam, E-mail: (Hai Bang Truong); Faculty of Applied Technology, School of Technology, Van Lang University, Ho Chi Minh City, Viet Nam
| | - Thi Thu Loan Doan
- The University of Da Nang, University of Science and Technology, 54 Nguyen Luong Bang, Da Nang, Viet Nam
| | - Nguyen Tien Hoang
- The University of Da Nang, University of Science and Education, 459 Ton Duc Thang St., Lien Chieu, Da Nang 550000, Viet Nam
| | - Nguyen Van Tam
- Institute of Veterinary Science and Technology, 31ha zone, Trau Quy, Gia Lam, Ha Noi 12400, Viet Nam
| | - Minh Kim Nguyen
- Institute of Veterinary Science and Technology, 31ha zone, Trau Quy, Gia Lam, Ha Noi 12400, Viet Nam.
| | - Le Gia Trung
- Department of Physics, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Republic of Korea.
| | - Jin Seog Gwag
- Department of Physics, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Republic of Korea.
| | - Nguyen Tien Tran
- Center for Advanced Chemistry, Institute of Research and Development, Duy Tan University, 03 Quang Trung, Da Nang 550000, Viet Nam; Faculty of Natural Sciences, Duy Tan University, 03 Quang Trung, Da Nang 550000, Viet Nam.
| |
Collapse
|
4
|
Yoo SJ, Kim D, Baek SH. Controlled Growth of WO 3 Photoanode under Various pH Conditions for Efficient Photoelectrochemical Performance. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 14:8. [PMID: 38202463 PMCID: PMC10780304 DOI: 10.3390/nano14010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024]
Abstract
Herein, the effects of the precursor solution's acidity level on the crystal structure, morphology, nucleation, and growth of WO3·nH2O and WO3 nanostructures are reported. Structural investigations on WO3·nH2O using X-ray diffraction and Fourier-transform infrared spectroscopy confirm that the quantity of hydrate groups increases due to the interaction between H+ and water molecules with increasing HCl volume. Surface analysis results support our claim that the evolution of grain size, surface roughness, and growth direction on WO3·nH2O and WO3 nanostructures rely on the precursor solution's pH value. Consequently, the photocurrent density of a WO3 photoanode using a HCl-5 mL sample achieves the best results with 0.9 mA/cm2 at 1.23 V vs. a reversible hydrogen electrode (RHE). We suggest that the improved photocurrent density of the HCl-5 mL sample is due to the efficient light absorption from the densely grown WO3 nanoplates on a substrate and that its excellent charge transport kinetics originate from the large surface area, low charge transfer resistance, and fast ion diffusion through the photoanode/electrolyte interface.
Collapse
Affiliation(s)
| | | | - Seong-Ho Baek
- Department of Energy Engineering, Dankook University, Cheonan 31116, Republic of Korea; (S.-J.Y.); (D.K.)
| |
Collapse
|
5
|
Alonzo SMM, Bentley J, Desai S, Bastakoti BP. Hydrothermal synthesis of hierarchical microstructure tungsten oxide/carbon nanocomposite for supercapacitor application. Sci Rep 2023; 13:21732. [PMID: 38066064 PMCID: PMC10709354 DOI: 10.1038/s41598-023-48958-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 12/01/2023] [Indexed: 04/28/2025] Open
Abstract
A hierarchical nanocomposite of carbon microspheres decorated with tungsten oxide (WO3) nanocrystals resulted from the hydrothermal treatment of a precursor solution containing glucose and tungstic acid. The dehydration of glucose molecules formed oligosaccharides, which consequently carbonized, turning into carbon microspheres. The carbon microspheres then acted as a spherical nucleus onto which WO3 nanocrystals grew via heterogeneous nucleation. The reaction product showed a phase junction of orthorhombic and monoclinic WO3, which transitioned to mix-phase of tetragonal and monoclinic WO3 after a subsequent heat treatment at 600 °C in an inert condition. The electrochemical tests showed that incorporating WO3 onto the carbon (WO3/C) resulted in a three-fold increase in the specific capacitance compared to WO3 alone and a high coulombic and energy efficiencies of 98.2% and 92.8%, respectively. The nanocomposite exhibited supercapacitance with both Faradaic and non-Faradaic charge storage mechanisms. Electrochemical impedance spectroscopy showed a lower charge transfer resistance for the composite at Rct = 11.7Ω.
Collapse
Affiliation(s)
- Shanna Marie M Alonzo
- Department of Chemistry, North Carolina A&T State University, 1601 E. Market St., Greensboro, NC, 27411, USA
| | - John Bentley
- Department of Chemistry, North Carolina A&T State University, 1601 E. Market St., Greensboro, NC, 27411, USA
| | - Salil Desai
- Department of Industrial and System Engineering, North Carolina A&T State University, 1601 E. Market St., Greensboro, NC, 27411, USA
- Center of Excellence in Product Design and Advanced Manufacturing, North Carolina A&T State University, 1601 E. Market St., Greensboro, NC, 27411, USA
| | - Bishnu Prasad Bastakoti
- Department of Chemistry, North Carolina A&T State University, 1601 E. Market St., Greensboro, NC, 27411, USA.
- Center of Excellence in Product Design and Advanced Manufacturing, North Carolina A&T State University, 1601 E. Market St., Greensboro, NC, 27411, USA.
| |
Collapse
|
6
|
Koiki BA, Arotiba OA. Peroxydisulphate activated FTO-WO 3 nanorods based photoelectrocatalytic degradation of tetracycline: Intermediate products, degradation pathway and ecotoxicity studies. Heliyon 2023; 9:e20882. [PMID: 37876427 PMCID: PMC10590805 DOI: 10.1016/j.heliyon.2023.e20882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 09/11/2023] [Accepted: 10/09/2023] [Indexed: 10/26/2023] Open
Abstract
This work reports sulphate radical assisted photoelectrocatalytic (SR-PEC) degradation of tetracycline using a visible light active fluorine-doped tin oxide - tungsten trioxide nanorods (FTO-WO3 NRs) photoanode. The WO3 NRs were synthesised via the hydrothermal method and then conducted on the FTO glass to form a photoanode. When the photoanode was applied without sulphate radicals for PEC degradation, 10 % of the tetracycline was degraded. Conversely, when 3 mM persulphate was added, the extent of tetracycline degraded was 88 % using the UV-vis spectrophotometer and 99 % using the ultra-performance liquid chromatography mass spectrometer (UPLC-MS) within 90 min at 1.5 V. The mechanism of tetracycline degradation was proposed based on the intermediate products identified using UPLC-MS and the extent of toxicity was evaluated using quantitative structure activity relationship (QSAR) analysis. Trapping experiment revealed that the photogenerated holes, sulphate radicals, and hydroxyl radicals were the oxidants that significantly took part in the degradation of tetracycline. Overall, the electrode was stable and reusable, therefore suggesting the suitability of FTO-WO3 NRs photoanode in the presence of sulphate radicals towards the decontamination of water laden with pharmaceutical pollutants.
Collapse
Affiliation(s)
- Babatunde A. Koiki
- Department of Chemical Sciences, University of Johannesburg, South Africa
| | - Omotayo A. Arotiba
- Department of Chemical Sciences, University of Johannesburg, South Africa
- Centre for Nanomaterials Science Research, University of Johannesburg, South Africa
| |
Collapse
|
7
|
Wu YL, Qi MY, Tan CL, Tang ZR, Xu YJ. Photocatalytic selective oxidation of aromatic alcohols coupled with hydrogen evolution over CdS/WO3 composites. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)63989-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
8
|
Tang J, Meng R, Xue Y, Deng X, Li Q. Enhanced photocatalytic degradation of tetracycline hydrochloride by Ag/AgI/WO
3
·H
2
O composites. ASIA-PAC J CHEM ENG 2022. [DOI: 10.1002/apj.2756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Jianke Tang
- School of Chemical Engineering and Technology North University of China Taiyuan China
- Department of Chemistry and Chemical Engineering Taiyuan Institute of Technology Taiyuan China
| | - Rongqian Meng
- School of Chemical Engineering and Technology North University of China Taiyuan China
- Department of Chemistry and Chemical Engineering Taiyuan Institute of Technology Taiyuan China
| | - Yanfeng Xue
- Department of Chemistry and Chemical Engineering Taiyuan Institute of Technology Taiyuan China
| | - Xiaoli Deng
- School of Chemical Engineering and Technology North University of China Taiyuan China
| | - Qiaoling Li
- School of Chemical Engineering and Technology North University of China Taiyuan China
| |
Collapse
|
9
|
Shen Y, Liu Y, Xi X, Nie ZR. Hydrothermal construction of WO3.0.33H2O/g-C3N4 nanocomposites with enhanced adsorption and photocatalytic activity. CrystEngComm 2022. [DOI: 10.1039/d1ce01517f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Tungsten trioxide has attracted extensive attention for photocatalytic applications owing to its unique structure and intrinsic merits; however, small specific surface area and rapid electron-hole recombination still limit its adsorption...
Collapse
|
10
|
Tang J, Meng R, Xue Y, Zhang S, Li Q. Fabrication of a novel Ag3PO4/WO3·H2O composite with enhanced visible light photocatalytic performance for the degradation of methylene blue and oxytetracycline. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108792] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
Channei D, Chansaenpak K, Phanichphant S, Jannoey P, Khanitchaidecha W, Nakaruk A. Synthesis and Characterization of WO 3/CeO 2 Heterostructured Nanoparticles for Photodegradation of Indigo Carmine Dye. ACS OMEGA 2021; 6:19771-19777. [PMID: 34368564 PMCID: PMC8340426 DOI: 10.1021/acsomega.1c02453] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 07/13/2021] [Indexed: 06/01/2023]
Abstract
WO3/CeO2 heterostructured nanocomposites containing different WO3 ratios (0.1, 0.3, 0.5, and 1.0 wt %) were synthesized by a precipitation method. The coupling of CeO2 and WO3 with a high specific surface area noticeably enhanced the photocatalytic activity of indigo carmine (IC) degradation under visible-light irradiation. The degradation rate constants (k) of 0.5 wt % WO3/CeO2 nanocomposites reached 4 and 5 times higher than those of CeO2 and WO3, respectively. Regarding the experimental results, the X-ray diffraction (XRD) patterns of the CeO2 spherical nanoparticles and rod-shaped WO3 were assigned to the cubic fluorite and orthorhombic phase structures, respectively. The increasing photocatalytic activity of nanocomposite samples could be attributed to the heterojunction of the photocatalysts with efficient charge separation and strong oxidative ability, which were confirmed by the photoluminescence spectra and diffuse reflectance spectrometry. The staggered heterojunction of the nanocomposite promoted efficient electron transfer and suppressed the recombination of photogenerated electrons and holes during the process.
Collapse
Affiliation(s)
- Duangdao Channei
- Department
of Chemistry, Faculty of Science, Naresuan
University, Phitsanulok 65000, Thailand
- Centre
of Excellence for Innovation and Technology for Water Treatment, Naresuan University, Phitsanulok 65000, Thailand
| | - Kantapat Chansaenpak
- National
Nanotechnology Center, National Science
and Technology Development Agency, Thailand Science Park, Pathum Thani 12120, Thailand
| | - Sukon Phanichphant
- Materials
Science Research Center, Faculty of Science, Chiang Mai University, Chiang
Mai 50200, Thailand
| | - Panatda Jannoey
- Department
of Biochemistry, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Wilawan Khanitchaidecha
- Centre
of Excellence for Innovation and Technology for Water Treatment, Naresuan University, Phitsanulok 65000, Thailand
- Department
of Civil Engineering, Faculty of Engineering, Naresuan University, Phitsanulok 65000, Thailand
| | - Auppatham Nakaruk
- Centre
of Excellence for Innovation and Technology for Water Treatment, Naresuan University, Phitsanulok 65000, Thailand
- Department
of Industrial Engineering, Faculty of Engineering, Naresuan University, Phitsanulok 65000, Thailand
| |
Collapse
|
12
|
Pt-free and efficient counter electrode with nanostructured CoNi2S4/rGO for dye-sensitized solar cells. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108475] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
13
|
Ke J, He F, Wu H, Lyu S, Liu J, Yang B, Li Z, Zhang Q, Chen J, Lei L, Hou Y, Ostrikov K. Nanocarbon-Enhanced 2D Photoelectrodes: A New Paradigm in Photoelectrochemical Water Splitting. NANO-MICRO LETTERS 2020; 13:24. [PMID: 34138209 PMCID: PMC8187525 DOI: 10.1007/s40820-020-00545-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 09/30/2020] [Indexed: 05/04/2023]
Abstract
Solar-driven photoelectrochemical (PEC) water splitting systems are highly promising for converting solar energy into clean and sustainable chemical energy. In such PEC systems, an integrated photoelectrode incorporates a light harvester for absorbing solar energy, an interlayer for transporting photogenerated charge carriers, and a co-catalyst for triggering redox reactions. Thus, understanding the correlations between the intrinsic structural properties and functions of the photoelectrodes is crucial. Here we critically examine various 2D layered photoanodes/photocathodes, including graphitic carbon nitrides, transition metal dichalcogenides, layered double hydroxides, layered bismuth oxyhalide nanosheets, and MXenes, combined with advanced nanocarbons (carbon dots, carbon nanotubes, graphene, and graphdiyne) as co-catalysts to assemble integrated photoelectrodes for oxygen evolution/hydrogen evolution reactions. The fundamental principles of PEC water splitting and physicochemical properties of photoelectrodes and the associated catalytic reactions are analyzed. Elaborate strategies for the assembly of 2D photoelectrodes with nanocarbons to enhance the PEC performances are introduced. The mechanisms of interplay of 2D photoelectrodes and nanocarbon co-catalysts are further discussed. The challenges and opportunities in the field are identified to guide future research for maximizing the conversion efficiency of PEC water splitting.
Collapse
Affiliation(s)
- Jun Ke
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310012, People's Republic of China
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, 206 Guanggu 1st Road, Wuhan, 430205, People's Republic of China
| | - Fan He
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310012, People's Republic of China
| | - Hui Wu
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, 206 Guanggu 1st Road, Wuhan, 430205, People's Republic of China
| | - Siliu Lyu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310012, People's Republic of China
| | - Jie Liu
- Department of Environmental Science and Engineering, North China Electric Power University, 619 Yonghua N St, Baoding, 071003, People's Republic of China.
| | - Bin Yang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310012, People's Republic of China
| | - Zhongjian Li
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310012, People's Republic of China
| | - Qinghua Zhang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310012, People's Republic of China
| | - Jian Chen
- State Key Laboratory of Industrial Control Technology, College of Control Science and Engineering, Zhejiang University, Hangzhou, 310012, People's Republic of China
| | - Lecheng Lei
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310012, People's Republic of China
- Institute of Zhejiang University - Quzhou, Quzhou, 324000, People's Republic of China
| | - Yang Hou
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310012, People's Republic of China.
- Institute of Zhejiang University - Quzhou, Quzhou, 324000, People's Republic of China.
- Ningbo Research Institute, Zhejiang University, Hangzhou, 315100, People's Republic of China.
| | - Kostya Ostrikov
- School of Chemistry and Physics and Centre for Materials Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| |
Collapse
|
14
|
Elsayed EM, S. Elnouby M, Gouda MH, Elessawy NA, Santos DMF. Effect of the Morphology of Tungsten Oxide Embedded in Sodium Alginate/Polyvinylpyrrolidone Composite Beads on the Photocatalytic Degradation of Methylene Blue Dye Solution. MATERIALS 2020; 13:ma13081905. [PMID: 32316607 PMCID: PMC7216279 DOI: 10.3390/ma13081905] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/11/2020] [Accepted: 04/14/2020] [Indexed: 02/06/2023]
Abstract
Tungsten oxide nanostructures were modified by oxygen vacancies through hydrothermal treatment. Both the crystalline structure and morphological appearance were completely changed. Spherical WO3·H2O was prepared from tungstic acid solution by aging at room temperature, while rod-like WO3·0.33H2O was prepared by hydrothermal treatment of tungstic acid solution at 120 °C. These structures embedded in sodium alginate (SA)/polyvinylpyrrolidone (PVP) were synthesized as novel porous beads by gelation method into calcium chloride solution. The performance of the prepared materials as photocatalysts is examined for methylene blue (MB) degradation in aqueous solutions. Different operation parameters affecting the dye degradation process, such as light intensity, illumination time, and photocatalyst dosage are investigated. Results revealed that the photocatalytic activity of novel nanocomposite changed with the change in WO3 morphology. Namely, the beads with rod nanostructure of WO3 have shown better effectiveness in MB removal than the beads containing WO3 in spherical form. The maximum degradation efficiency was found to be 98% for WO3 nanorods structure embedded beads, while the maximum removal of WO3 nanospheres structure embedded beads was 91%. The cycling-ability and reuse results recommend both prepared structures to be used as effective tools for treating MB dye-contaminated wastewaters. The results show that the novel SA/PVP/WO3 nanocomposite beads are eco-friendly nanocomposite materials that can be applied as photocatalysts for the degradation of cationic dyes in contaminated water.
Collapse
Affiliation(s)
- Eman M. Elsayed
- Fabrication Technology Department, Advanced Technology and New Materials Research Institute, City of Scientific Research and Technological Applications (SRTA-City), 21934 Alexandria, Egypt;
| | - Mohamed S. Elnouby
- Composites and Nanomaterials Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), 21934 Alexandria, Egypt;
| | - M. H. Gouda
- Polymer Materials Research Department, Advanced Technology and New Materials Research Institute, City of Scientific Research and Technological Applications (SRTA-City), 21934 Alexandria, Egypt;
| | - Noha A. Elessawy
- Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), 21934 Alexandria, Egypt
- Correspondence: (N.A.E.); (D.M.F.S.)
| | - D. M. F. Santos
- Center of Physics and Engineering of Advanced Materials (CeFEMA), Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal
- Correspondence: (N.A.E.); (D.M.F.S.)
| |
Collapse
|
15
|
Quan H, Gao Y, Wang W. Tungsten oxide-based visible light-driven photocatalysts: crystal and electronic structures and strategies for photocatalytic efficiency enhancement. Inorg Chem Front 2020. [DOI: 10.1039/c9qi01516g] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Photocatalysis (PC) technology has received global attention due to its high potential of addressing both environmental and energy issues using only solar light as energy input.
Collapse
Affiliation(s)
- Haiqin Quan
- School of Materials Science and Engineering
- Shanghai University
- Shanghai 200444
- People's Republic of China
| | - Yanfeng Gao
- School of Materials Science and Engineering
- Shanghai University
- Shanghai 200444
- People's Republic of China
| | - Wenzhong Wang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure
- Shanghai Institute of Ceramics
- Chinese Academy of Science
- Shanghai 200050
- People's Republic of China
| |
Collapse
|
16
|
Ke J, Zhou H, Liu J, Zhang Z, Duan X, Wang S. Enhanced light-driven water splitting by fast electron transfer in 2D/2D reduced graphene oxide/tungsten trioxide heterojunction with preferential facets. J Colloid Interface Sci 2019; 555:413-422. [DOI: 10.1016/j.jcis.2019.08.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 07/03/2019] [Accepted: 08/02/2019] [Indexed: 01/13/2023]
|
17
|
Liu J, Tao Z, Xie H, Zhang X, Wang H, Xiao H, Wang L. Facial construction of defected NiO/TiO2 with Z-scheme charge transfer for enhanced photocatalytic performance. Catal Today 2019. [DOI: 10.1016/j.cattod.2018.11.055] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
18
|
Liu J, Lu S, Wang L, Qi T, Qi D, Xing X, Zhang Y, Xiao H, Zhang S. Co-site substitution by Mn supported on biomass-derived active carbon for enhancing magnesia desulfurization. JOURNAL OF HAZARDOUS MATERIALS 2019; 365:531-537. [PMID: 30469032 DOI: 10.1016/j.jhazmat.2018.11.040] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 10/28/2018] [Accepted: 11/10/2018] [Indexed: 06/09/2023]
Abstract
Oxidation of magnesium sulfite (MgSO3) is a crucial step for reclaiming the product in wet magnesia desulfurization processes. Here, for enhancing this reaction, a bimetallic catalyst was developed by loading CoOx and MnOx species on a biomass-derived active carbon (AC) support to minimize the costs and potential environmental risks during catalyst application. The substitution effect of Mn to Co sites was investigated, and a comparison of the catalyst with plain cobalt suggested that the ratio of Co/Mn must be greater than 3. A series of catalyst characterizations was performed to reveal the synergistic effect of Co and Mn in the bimetallic catalyst. The introduction of Mn species not only improved the dispersion of CoOx-MnOx mixed oxide but also generated abundant Co3+ species and surface-adsorbed oxygen, both of which acted as the main active sites for sulfite oxidation. Notably, in the bimetallic catalyst, the presence of Mn4+ species assisted regeneration of Co2+ to Co3+ species, further accelerating sulfite oxidation. Besides, the partial substitution of Co sites by Mn also suppressed the losing of Co species during reaction, favoring to decrease the environmental risk, as well as to save the cost of catalyst.
Collapse
Affiliation(s)
- Jie Liu
- MOE Key Lab of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing 102206, China; School of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, China
| | - Su Lu
- MOE Key Lab of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing 102206, China; School of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, China
| | - Lidong Wang
- MOE Key Lab of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing 102206, China; School of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, China.
| | - Tieyue Qi
- MOE Key Lab of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing 102206, China; School of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, China
| | - Dan Qi
- MOE Key Lab of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing 102206, China; School of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, China
| | - Xinyu Xing
- MOE Key Lab of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing 102206, China; School of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, China
| | - Yaoyu Zhang
- MOE Key Lab of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing 102206, China; School of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, China
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, NB, E3B 5A3, Canada
| | - Shihan Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| |
Collapse
|
19
|
Zhuang H, Cai Z, Xu W, Huang M, Liu X. In situ construction of WO3/g-C3N4 composite photocatalyst with 2D–2D heterostructure for enhanced visible light photocatalytic performance. NEW J CHEM 2019. [DOI: 10.1039/c9nj04311j] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A WO3/g-C3N4 composite photocatalyst with 2D–2D heterostructure was designed and constructed by an in situ preparation strategy.
Collapse
Affiliation(s)
- Huaqiang Zhuang
- College of Chemical Engineering and Materials Science
- Quanzhou Normal University
- Quanzhou 362000
- P. R. China
| | - Zhenping Cai
- Department of Chemical Engineering
- Norwegian University of Science and Technology
- Trondheim
- Norway
| | - Wentao Xu
- College of Chemical Engineering and Materials Science
- Quanzhou Normal University
- Quanzhou 362000
- P. R. China
| | - Mianli Huang
- College of Chemical Engineering and Materials Science
- Quanzhou Normal University
- Quanzhou 362000
- P. R. China
| | - Xiaobin Liu
- Environmental Science Research Center
- College of the Environment & Ecology
- Xiamen University
- Xiamen 361005
- P. R. China
| |
Collapse
|
20
|
Ke J, Adnan Younis M, Kong Y, Zhou H, Liu J, Lei L, Hou Y. Nanostructured Ternary Metal Tungstate-Based Photocatalysts for Environmental Purification and Solar Water Splitting: A Review. NANO-MICRO LETTERS 2018; 10:69. [PMID: 30393717 PMCID: PMC6199120 DOI: 10.1007/s40820-018-0222-4] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Accepted: 09/02/2018] [Indexed: 05/02/2023]
Abstract
Visible-light-responsive ternary metal tungstate (MWO4) photocatalysts are being increasingly investigated for energy conversion and environmental purification applications owing to their striking features, including low cost, eco-friendliness, and high stability under acidic and oxidative conditions. However, rapid recombination of photoinduced electron-hole pairs and a narrow light response range to the solar spectrum lead to low photocatalytic activity of MWO4-based materials, thus significantly hampering their wide usage in practice. To enable their widespread practical usage, significant efforts have been devoted, by developing new concepts and innovative strategies. In this review, we aim to provide an integrated overview of the fundamentals and recent progress of MWO4-based photocatalysts. Furthermore, different strategies, including morphological control, surface modification, heteroatom doping, and heterojunction fabrication, which are employed to promote the photocatalytic activities of MWO4-based materials, are systematically summarized and discussed. Finally, existing challenges and a future perspective are also provided to shed light on the development of highly efficient MWO4-based photocatalysts.
Collapse
Affiliation(s)
- Jun Ke
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, 693 Xiongchu Ave, Hongshan District, Wuhan, Hubei, People's Republic of China
| | - M Adnan Younis
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, Zhejiang, People's Republic of China
| | - Yan Kong
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, Zhejiang, People's Republic of China
| | - Hongru Zhou
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, 693 Xiongchu Ave, Hongshan District, Wuhan, Hubei, People's Republic of China
| | - Jie Liu
- Department of Environmental Science and Engineering, North China Electric Power University, 619 Yonghua N St, Baoding, Hebei, People's Republic of China.
| | - Lecheng Lei
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, Zhejiang, People's Republic of China
| | - Yang Hou
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, Zhejiang, People's Republic of China.
| |
Collapse
|