1
|
Hassanzadeh N, Dekamin MG, Valiey E. A supramolecular magnetic and multifunctional Titriplex V-grafted chitosan organocatalyst for the synthesis of acridine-1,8-diones and 2-amino-3-cyano-4 H-pyran derivatives. NANOSCALE ADVANCES 2024:d4na00264d. [PMID: 39502107 PMCID: PMC11533062 DOI: 10.1039/d4na00264d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 10/01/2024] [Indexed: 11/08/2024]
Abstract
In this research, a new supramolecular magnetic modified chitosan, namely, Fe3O4@CS-TDI-Titriplex V, was designed and prepared conveniently by grafting diethylenetriaminepentaacetic acid (Titriplex V) onto a biopolymeric chitosan backbone having urethane, urea, ester and amide functional groups. The obtained magnetic biopolymeric nanomaterial was properly characterized by different spectroscopic, microscopic or analytical methods including FTIR spectroscopy, EDX spectroscopy, XRD, FESEM, TG-DTA and VSM. The application of the supramolecular Fe3O4@CS-TDI-Titriplex V nanocomposite as a heterogeneous solid acidic organocatalyst was investigated to promote the three-component synthesis of both acridinediones and 2-amino-3-cyano-4H-pyran derivatives as important pharmaceutical scaffolds under green conditions. The obtained nanomaterial exhibited proper catalytic activity in the above mentioned transformations through multicomponent reaction (MCR) strategies. The reactions proceeded very well in the presence of the Fe3O4@CS-TDI-Titriplex V solid acid nanomaterial in EtOH to afford the corresponding acridinediones and 2-amino-3-cyano-4H-pyran derivatives in high to excellent yields. The key advantages of the present protocol include the use of a renewable, biopolymeric and biodegradable solid acid as well as a simple procedure for the preparation of the hybrid material. Furthermore, the Fe3O4@CS-TDI-Titriplex V nanomaterial was used four times with a slight decrease in its catalytic activity.
Collapse
Affiliation(s)
- Najmeh Hassanzadeh
- Pharmaceutical and Heterocyclic Compounds Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 1684613314 Iran
| | - Mohammad G Dekamin
- Pharmaceutical and Heterocyclic Compounds Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 1684613314 Iran
| | - Ehsan Valiey
- Pharmaceutical and Heterocyclic Compounds Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 1684613314 Iran
| |
Collapse
|
2
|
Hanifi S, Dekamin MG, Eslami M. Magnetic BiFeO 3 nanoparticles: a robust and efficient nanocatalyst for the green one-pot three-component synthesis of highly substituted 3,4-dihydropyrimidine-2(1H)-one/thione derivatives. Sci Rep 2024; 14:22201. [PMID: 39333595 PMCID: PMC11436662 DOI: 10.1038/s41598-024-72407-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 09/06/2024] [Indexed: 09/29/2024] Open
Abstract
In this research, magnetic bismuth ferrite nanoparticles (BFO MNPs) were prepared through a convenient method and characterized. The structure and morphological characteristics of the prepared nanomaterial were confirmed through analyses using Fourier-transform infrared (FTIR) spectroscopy, field emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDS), elemental mapping, powder X-ray diffraction (XRD), N2 adsorption-desorption isotherms and vibrating sample magnetometry (VSM) techniques. The obtained magnetic BFO nanomaterial was investigated, as a heterogeneous Lewis acid, in three component synthesis of 3,4-dihydropyrimidin-2 (1H)-ones/thiones (DHPMs/DHPMTs). It was found that the BFO MNPs exhibit remarkable efficacy in the synthesis of various DHPMs as well as their thione analogues. It is noteworthy that this research features low catalyst loading, good to excellent yields, environmentally friendly conditions, short reaction time, simple and straightforward work-up, and the reusability of the catalyst, distinguishing it from other recently reported protocols. Additionally, the structure of the DHPMs/DHPMTs was confirmed through 1H NMR, FTIR, and melting point analyses. This environmentally-benign methodology demonstrates the potential of the catalyst for more sustainable and efficient practices in green chemistry.
Collapse
Affiliation(s)
- Safa Hanifi
- Pharmaceutical and Heterocyclic Compounds Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Mohammad G Dekamin
- Pharmaceutical and Heterocyclic Compounds Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran.
| | - Mohammad Eslami
- Department of Chemistry, Behbahan Khatam Alanbia University of Technology, Behbahan, 63616-63973, Iran
| |
Collapse
|
3
|
Gharghish S, Dekamin MG, Banakar SH. Functionalized graphene oxide by 4-amino-3-hydroxy-1-naphthalenesulfonic acid as a heterogeneous nanocatalyst for the one-pot synthesis of tetraketone and tetrahydrobenzo[ b]pyran derivatives under green conditions. NANOSCALE ADVANCES 2024; 6:3911-3922. [PMID: 39050950 PMCID: PMC11265595 DOI: 10.1039/d4na00223g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 05/23/2024] [Indexed: 07/27/2024]
Abstract
4-Amino-3-hydroxy-1-naphthalenesulfonic acid-functionalized graphene oxide (GO-ANSA) was prepared and characterized using different spectroscopic, microscopic and analytical methods including energy-dispersive X-ray spectroscopy (EDS), EDS elemental mapping, Fourier-transform infrared (FT-IR) spectroscopy, field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), and thermogravimetry/differential thermogravimetry analysis (TGA/DTA). The obtained nanomaterial was used as a novel, highly efficient, and reusable solid acid carbocatalyst for the one-pot three-component synthesis of tetraketone, as well as tetrahydrobenzo[b]pyran derivatives via tandem Knoevenagel-Michael reactions under green conditions. All of the derivatives were prepared in EtOH, as a green solvent, under reflux conditions in high to excellent yields and very short reaction times. The nanocatalyst was recovered and reused at least five times without significant reduction in its activity. In addition, the absence of toxic transition metals, high to excellent yields, mild reaction conditions, simple procedure for the separation and purification of products, stability, and recycling of the catalyst are the most important advantages of this green procedure.
Collapse
Affiliation(s)
- Sara Gharghish
- Pharmaceutical and Heterocyclic Compounds Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran
| | - Mohammad G Dekamin
- Pharmaceutical and Heterocyclic Compounds Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran
| | - Sepideh Hasanzadeh Banakar
- Pharmaceutical and Heterocyclic Compounds Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran
| |
Collapse
|
4
|
Shakib P, Dekamin MG, Valiey E, Karami S, Dohendou M. Ultrasound-Promoted preparation and application of novel bifunctional core/shell Fe 3O 4@SiO 2@PTS-APG as a robust catalyst in the expeditious synthesis of Hantzsch esters. Sci Rep 2023; 13:8016. [PMID: 37198267 DOI: 10.1038/s41598-023-33990-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 04/21/2023] [Indexed: 05/19/2023] Open
Abstract
In this work, D-(-)-α-phenylglycine (APG)-functionalized magnetic nanocatalyst (Fe3O4@SiO2@PTS-APG) was designed and successfully prepared in order to implement the principles of green chemistry for the synthesis of polyhydroquinoline (PHQ) and 1,4-dihydropyridine (1,4-DHP) derivatives under ultrasonic irradiation in EtOH. After preparing of the nanocatalyst, its structure was confirmed by different spectroscopic methods or techniques including Fourier transform infrared (FTIR) spectroscopy, energy-dispersive X-ray spectroscopy (EDS), field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), vibrating sample magnetometer (VSM) and thermal gravimetric analysis (TGA). The performance of Fe3O4@SiO2@PTS-APG nanomaterial, as a heterogeneous catalyst for the Hantzsch condensation, was examined under ultrasonic irradiation and various conditions. The yield of products was controlled under various conditions to reach more than 84% in just 10 min, which indicates the high performance of the nanocatalyst along with the synergistic effect of ultrasonic irradiation. The structure of the products was identified by melting point as well as FTIR and 1H NMR spectroscopic methods. The Fe3O4@SiO2@PTS-APG nanocatalyst is easily prepared from commercially available, lower toxic and thermally stable precursors through a cost-effective, highly efficient and environmentally friendly procedure. The advantages of this method include simplicity of the operation, reaction under mild conditions, the use of an environmentally benign irradiation source, obtaining pure products with high efficiency in short reaction times without using a tedious path, which all of them address important green chemistry principles. Finally, a reasonable mechanism is proposed for the preparation of polyhydroquinoline (PHQ) and 1,4-dihydropyridine (1,4-DHP) derivatives in the presence of Fe3O4@SiO2@PTS-APG bifunctional magnetic nanocatalyst.
Collapse
Affiliation(s)
- Peyman Shakib
- Pharmaceutical and Heterocyclic Compounds Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 1684613114, Iran
| | - Mohammad G Dekamin
- Pharmaceutical and Heterocyclic Compounds Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 1684613114, Iran.
| | - Ehsan Valiey
- Pharmaceutical and Heterocyclic Compounds Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 1684613114, Iran
| | - Shahriar Karami
- Pharmaceutical and Heterocyclic Compounds Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 1684613114, Iran
| | - Mohammad Dohendou
- Pharmaceutical and Heterocyclic Compounds Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 1684613114, Iran
| |
Collapse
|
5
|
Dharmendra D, Chundawat P, Vyas Y, Chaubisa P, Ameta C. Greener design and characterization of biochar/Fe 3O 4@SiO 2-Ag magnetic nanocomposite as efficient catalyst for synthesis of bioactive benzylpyrazolyl coumarin derivatives. RSC Adv 2023; 13:14594-14613. [PMID: 37188256 PMCID: PMC10177991 DOI: 10.1039/d3ra00869j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 05/01/2023] [Indexed: 05/17/2023] Open
Abstract
The study aimed to develop an efficient catalyst, biochar/Fe3O4@SiO2-Ag magnetic nanocomposite, to synthesize bioactive benzylpyrazolyl coumarin derivatives through a one-pot multicomponent reaction. The catalyst was prepared using Ag nanoparticles synthesized with Lawsonia inermis leaf extract and carbon-based biochar obtained through pyrolysis of Eucalyptus globulus bark. The nanocomposite contained a silica-based interlayer, highly dispersed Ag nanoparticles, and a central magnetite core, which responded well to external fields. The biochar/Fe3O4@SiO2-Ag nanocomposite showed excellent catalytic activity and could be easily recovered using an external magnet and reused five times without significant loss of performance. The resulting products were tested for antimicrobial activity and showed significant activity against various microorganisms.
Collapse
Affiliation(s)
| | - Priyanka Chundawat
- Department of Chemistry, Mohanlal Sukhadia University Udaipur Rajasthan India
| | - Yogeshwari Vyas
- Department of Chemistry, Mohanlal Sukhadia University Udaipur Rajasthan India
| | - Purnima Chaubisa
- Department of Chemistry, Mohanlal Sukhadia University Udaipur Rajasthan India
| | - Chetna Ameta
- Department of Chemistry, Mohanlal Sukhadia University Udaipur Rajasthan India
| |
Collapse
|
6
|
Fattahi B, Dekamin MG. Fe 3O 4/SiO 2 decorated trimesic acid-melamine nanocomposite: a reusable supramolecular organocatalyst for efficient multicomponent synthesis of imidazole derivatives. Sci Rep 2023; 13:401. [PMID: 36624142 PMCID: PMC9829914 DOI: 10.1038/s41598-023-27408-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 01/02/2023] [Indexed: 01/11/2023] Open
Abstract
This article describes supramolecular Fe3O4/SiO2 decorated trimesic acid-melamine (Fe3O4/SiO2-TMA-Me) nanocomposite that can be prepared with features that combine properties of different materials to fabricate a structurally unique hybrid material. In particular, we have focused on design, synthesis and evaluation a heterogeneous magnetic organocatalyst containing acidic functional-groups for the synthesis of biologically important imidazole derivatives in good to excellent yields. The introduced Fe3O4/SiO2-TMA-Me nanomaterial was characterized by different techniques such as FTIR, XRD, EDX, FESEM, TEM, TGA and DTA. As a noteworthy point, the magnetic catalytic system can be recycled and reused for more than seven consecutive runs while its high catalytic activity remains under the optimized conditions.
Collapse
Affiliation(s)
- Babak Fattahi
- Pharmaceutical and Heterocyclic Compounds Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Mohammad G Dekamin
- Pharmaceutical and Heterocyclic Compounds Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran.
| |
Collapse
|
7
|
Rostami N, Dekamin MG, Valiey E, FaniMoghadam H. l-Asparagine-EDTA-amide silica-coated MNPs: a highly efficient and nano-ordered multifunctional core-shell organocatalyst for green synthesis of 3,4-dihydropyrimidin-2(1 H)-one compounds. RSC Adv 2022; 12:21742-21759. [PMID: 36091190 PMCID: PMC9386691 DOI: 10.1039/d2ra02935a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/03/2022] [Indexed: 02/02/2023] Open
Abstract
In this study, new l-asparagine grafted on 3-aminopropyl-modified Fe3O4@SiO2 core-shell magnetic nanoparticles using the EDTA linker (Fe3O4@SiO2-APTS-EDTA-asparagine) was prepared and its structures properly confirmed using different spectroscopic, microscopic and magnetic methods or techniques including FT-IR, EDX, XRD, FESEM, TEM, TGA and VSM. The Fe3O4@SiO2-APTS-EDTA-asparagine core-shell nanomaterial was found, as a highly efficient multifunctional and recoverable organocatalyst, to promote the efficient synthesis of a wide range of biologically-active 3,4-dihydropyrimidin-2(1H)-one derivatives under solvent-free conditions. It was proved that Fe3O4@SiO2-APTS-EDTA-asparagine MNPs, as a catalyst having excellent thermal and magnetic stability, specific morphology and acidic sites with appropriate geometry, can activate the Biginelli reaction components. Moreover, the environmental-friendliness and nontoxic nature of the catalyst, cost effectiveness, low catalyst loading, easy separation of the catalyst from the reaction mixture and short reaction time are some of the remarkable advantages of this green protocol.
Collapse
Affiliation(s)
- Negin Rostami
- Pharmaceutical and Biologically-Active Compounds Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98-21-7730 21584 +98-21-77 240 284
| | - Mohammad G Dekamin
- Pharmaceutical and Biologically-Active Compounds Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98-21-7730 21584 +98-21-77 240 284
| | - Ehsan Valiey
- Pharmaceutical and Biologically-Active Compounds Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98-21-7730 21584 +98-21-77 240 284
| | - Hamidreza FaniMoghadam
- Pharmaceutical and Biologically-Active Compounds Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98-21-7730 21584 +98-21-77 240 284
| |
Collapse
|
8
|
Valiey E, Dekamin MG. Pyromellitic diamide-diacid bridged mesoporous organosilica nanospheres with controllable morphologies: a novel PMO for the facile and expeditious synthesis of imidazole derivatives. NANOSCALE ADVANCES 2021; 4:294-308. [PMID: 36132961 PMCID: PMC9418939 DOI: 10.1039/d1na00738f] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 11/01/2021] [Indexed: 05/08/2023]
Abstract
In this work, novel pyromellitic diamide-diacid bridged mesoporous organosilica (PMAMOS) nanospheres with controllable morphologies and Brønsted acid catalytic centers were designed and prepared through a convenient method by altering the addition sequence of precursors, solvent, and aging time. The obtained PMAMOSs demonstrate high surface areas and uniform pore sizes. FESEM, HRTEM, BET, EDX, XRD, FTIR and TGA analyses were performed to characterize and examine the effective factors for the preparation of PMAMOS nanospheres. Due to the appropriate physicochemical properties including Brønsted acid centers, suitable surface area and thermal stability of the PMAMOS nanosphere material, it was explored in the three-component reaction of benzyl or benzoin, ammonium acetate, and different aldehyde derivatives as a case study of multicomponent reactions. Corresponding imidazole derivatives were obtained in EtOH under reflux conditions in high to quantitative yields and short reaction times. It was also shown that the heterogeneous solid acid can be reused at least five times with negligible loss of its catalytic activity, indicating the appropriate stability and high activity of the newly introduced mesoporous organosilica.
Collapse
Affiliation(s)
- Ehsan Valiey
- Pharmaceutical and Heterocyclic Compounds Research Laboratory, Department of Chemistry, Iran University of Science and Technology Iran
| | - Mohammad G Dekamin
- Pharmaceutical and Heterocyclic Compounds Research Laboratory, Department of Chemistry, Iran University of Science and Technology Iran
| |
Collapse
|
9
|
Valiey E, Dekamin MG. Supported copper on a diamide-diacid-bridged PMO: an efficient hybrid catalyst for the cascade oxidation of benzyl alcohols/Knoevenagel condensation. RSC Adv 2021; 12:437-450. [PMID: 35424510 PMCID: PMC8978704 DOI: 10.1039/d1ra06509b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 12/07/2021] [Indexed: 12/25/2022] Open
Abstract
In this study, a novel periodic mesoporous organosilica (PMO) containing diamide-diacid bridges was conveniently prepared using ethylenediaminetetraacetic dianhydride to support Cu(ii) species and affording supramolecular Cu@EDTAD-PMO nanoparticles efficiently. Fourier transform infrared (FT-IR) and energy dispersive X-ray (EDX) spectroscopy, thermogravimetric analysis (TGA), X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), Brunauer-Emmett-Teller (BET) analysis, and high-resolution transmission electron microscopy (HRTEM) results confirmed the successful synthesis of Cu@EDTAD-PMO. The stabilized Cu(ii) nanoparticles inside the mesochannels of the new PMO provided appropriate sites for selective oxidation of different benzyl alcohol derivatives to their corresponding benzaldehydes and subsequent Knoevenagel condensation with malononitrile. Therefore, Cu@EDTAD-PMO can be considered as a multifunctional heterogeneous catalyst, which is prepared easily through a green procedure and demonstrates appropriate stability with almost no leaching of the Cu(ii) nanoparticles into the reaction medium, and easy recovery through simple filtration. The recycled Cu@EDTAD-PMO was reused up to five times without significant loss of its catalytic activity. The stability, recoverability, and reusability of the designed heterogeneous catalyst were also studied under various reaction conditions.
Collapse
Affiliation(s)
- Ehsan Valiey
- Pharmaceutical and Heterocyclic Compounds Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran
| | - Mohammad G Dekamin
- Pharmaceutical and Heterocyclic Compounds Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran
| |
Collapse
|
10
|
Sam M, Dekamin MG, Alirezvani Z. Dendrons containing boric acid and 1,3,5-tris(2-hydroxyethyl)isocyanurate covalently attached to silica-coated magnetite for the expeditious synthesis of Hantzsch esters. Sci Rep 2021; 11:2399. [PMID: 33504833 PMCID: PMC7840758 DOI: 10.1038/s41598-020-80884-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 12/30/2020] [Indexed: 01/30/2023] Open
Abstract
A new multifunctional dendritic nanocatalyst containing boric acid and 1,3,5-tris(2-hydroxyethyl)isocyanurate covalently attached to core-shell silica-coated magnetite (Fe3O4@SiO2@PTS-THEIC-(CH2)3OB(OH)2) was designed and properly characterized by different spectroscopic or microscopic methods as well as analytical techniques used for mesoporous materials. It was found that the combination of both aromatic π-π stacking and boron-oxygen ligand interactions affords supramolecular arrays of dendrons. Furthermore, the use of boric acid makes this dendritic catalyst a good choice, from corrosion, recyclability and cost points of view. The catalytic activity of Fe3O4@SiO2@PTS-THEIC-(CH2)3OB(OH)2, as an efficient magnetically recoverable catalyst, was investigated for the synthesis of polyhydroacridines (PHAs) as well as polyhydroquinolines (PHQs) via one-pot multicomponent reactions of dimedone and/or ethyl acetoacetate, different aldehydes and ammonium acetate in EtOH under reflux conditions. Very low loading of the catalyst, high to quantitative yields of the desired PHAs or PHQs products, short reaction times, wide scope of the substrates, eliminating any toxic heavy metals or corrosive reagents for the modification of the catalyst, and simple work-up procedure are remarkable advantages of this green protocol. An additional advantage of this magnetic nanoparticles catalyst is its ability to be separated and recycled easily from the reaction mixture with minimal efforts in six subsequent runs without significant loss of its catalytic activity. This magnetic and dendritic catalyst can be extended to new two- and three-dimensional covalent organic frameworks with different applications.
Collapse
Affiliation(s)
- Mahsa Sam
- Pharmaceutical and Heterocyclic Compounds Research Laboratory, Department of Chemistry, Iran University of Science and Technology, 1684613114, Tehran, Iran
| | - Mohammad G Dekamin
- Pharmaceutical and Heterocyclic Compounds Research Laboratory, Department of Chemistry, Iran University of Science and Technology, 1684613114, Tehran, Iran.
| | - Zahra Alirezvani
- Pharmaceutical and Heterocyclic Compounds Research Laboratory, Department of Chemistry, Iran University of Science and Technology, 1684613114, Tehran, Iran
| |
Collapse
|
11
|
Sheikh S, Nasseri MA, Chahkandi M, Allahresani A, Reiser O. Functionalized magnetic PAMAM dendrimer as an efficient nanocatalyst for a new synthetic strategy of xanthene pigments. JOURNAL OF HAZARDOUS MATERIALS 2020; 400:122985. [PMID: 32580092 DOI: 10.1016/j.jhazmat.2020.122985] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 05/15/2020] [Accepted: 05/15/2020] [Indexed: 06/11/2023]
Abstract
A green protocol has been developed for preparation of the wide variety of colored xanthene derivatives using a new efficient magnetic solid acid catalyst bearing polyamidoamine dendrimer moiety as a nanoscopic compound. Dendrimers, highly symmetric molecules around a core and 3D spherical morphology, show interesting traits based on their functionalized groups on the branched surface. They can be designed to provide water soluble structures or pseudo-active sites of biomolecules. The catalyst was assembled via a polyamidoamine dendrimer immobilized on the surface of γ-Fe2O3 followed by the sulfonylation of the amine groups by chlorosulfonic acid resulting in γ-Fe2O3@PAMAM-SO3H. Herein, PAMAM dendrimer with repeating amine/amide branches as catchable sites of sulfonic acid groups was introduced as transformer of homogeneous to heterogeneous acidic catalysts. The physicochemical properties of synthesized catalyst were studied using by FT-IR, FE-SEM, XRD, VSM, EDS, TGA/DTG, and TEM. Finally, the catalytic activity of γ-Fe2O3@PAMAM-SO3H was evaluated for the preparation of xanthene derivatives via a one-pot, three components reaction of aromatic aldehydes with i) β-naphthol, ii) cyclic 1,3-dicarbonyl, iii) β-naphthol and cyclic 1,3-dicarbonyl compounds, iv) 2-hydroxy-1,4-naphthoquinone, leading to the eco-riendly preparation of the target compounds in good to excellent yields. The catalyst could be easily recycled for at least five consecutive runs without significant loss in its catalytic activity.
Collapse
Affiliation(s)
- Safoora Sheikh
- Department of Chemistry, Faculty of Basic Sciences, University of Birjand, P. O. Box 97175-615, Birjand, Iran
| | - Mohammad Ali Nasseri
- Department of Chemistry, Faculty of Basic Sciences, University of Birjand, P. O. Box 97175-615, Birjand, Iran.
| | - Mohammad Chahkandi
- Department of Chemistry, Faculty of Basic Sciences, Hakim Sabzevari University, P. O. Box 96179-76487, Sabzevar, Iran.
| | - Ali Allahresani
- Department of Chemistry, Faculty of Basic Sciences, University of Birjand, P. O. Box 97175-615, Birjand, Iran
| | - Oliver Reiser
- Institut fȕr Organische Chemie, Universitat Regensburg, Universitatsstr. 31, 93053 Regensburg, Germany
| |
Collapse
|
12
|
Akbari A, Dekamin MG, Yaghoubi A, Naimi-Jamal MR. Novel magnetic propylsulfonic acid-anchored isocyanurate-based periodic mesoporous organosilica (Iron oxide@PMO-ICS-PrSO 3H) as a highly efficient and reusable nanoreactor for the sustainable synthesis of imidazopyrimidine derivatives. Sci Rep 2020; 10:10646. [PMID: 32606381 PMCID: PMC7327082 DOI: 10.1038/s41598-020-67592-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 06/11/2020] [Indexed: 11/30/2022] Open
Abstract
In this study, preparation and characterization of a new magnetic propylsulfonic acid-anchored isocyanurate bridging periodic mesoporous organosilica (Iron oxide@PMO-ICS-PrSO3H) is described. The iron oxide@PMO-ICS-PrSO3H nanomaterials were characterized by Fourier transform infrared spectroscopy, energy-dispersive X-ray spectroscopy and field emission scanning electron microscopy as well as thermogravimetric analysis, N2 adsorption-desorption isotherms and vibrating sample magnetometer techniques. Indeed, the new obtained materials are the first example of the magnetic thermally stable isocyanurate-based mesoporous organosilica solid acid. Furthermore, the catalytic activity of the Iron oxide@PMO-ICS-PrSO3H nanomaterials, as a novel and highly efficient recoverable nanoreactor, was investigated for the sustainable heteroannulation synthesis of imidazopyrimidine derivatives through the Traube-Schwarz multicomponent reaction of 2-aminobenzoimidazole, C‒H acids and diverse aromatic aldehydes. The advantages of this green protocol are low catalyst loading, high to quantitative yields, short reaction times and the catalyst recyclability for at least four consecutive runs.
Collapse
Affiliation(s)
- Arezoo Akbari
- Pharmaceutical and Heterocyclic Compounds Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 1684613114, Iran
| | - Mohammad G Dekamin
- Pharmaceutical and Heterocyclic Compounds Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 1684613114, Iran.
| | - Amene Yaghoubi
- Pharmaceutical and Heterocyclic Compounds Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 1684613114, Iran
| | - Mohammad Reza Naimi-Jamal
- Pharmaceutical and Heterocyclic Compounds Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 1684613114, Iran
| |
Collapse
|
13
|
Bertran A, Sandoval S, Oró-Solé J, Sánchez À, Tobias G. Particle size determination from magnetization curves in reduced graphene oxide decorated with monodispersed superparamagnetic iron oxide nanoparticles. J Colloid Interface Sci 2020; 566:107-119. [DOI: 10.1016/j.jcis.2020.01.072] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 01/14/2020] [Accepted: 01/19/2020] [Indexed: 12/15/2022]
|
14
|
Karami S, Dekamin MG, Valiey E, Shakib P. DABA MNPs: a new and efficient magnetic bifunctional nanocatalyst for the green synthesis of biologically active pyrano[2,3- c]pyrazole and benzylpyrazolyl coumarin derivatives. NEW J CHEM 2020. [DOI: 10.1039/d0nj02666b] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A new core–shell magnetic silica functionalized with 3,4-diaminobenzoic acid nanocatalyst (Fe3O4@SiO2@PTS-DABA) was prepared and characterized. The Fe3O4@SiO2@PTS-DABA catalyst was applied for the synthesis of dihydropyranopyrazole and benzylpyrazolyl coumarin derivatives.
Collapse
Affiliation(s)
- Shahriar Karami
- Pharmaceutical and Heterocyclic Compounds Research Laboratory
- Department of Chemistry
- Iran University of Science and Technology
- Tehran
- Iran
| | - Mohammad G. Dekamin
- Pharmaceutical and Heterocyclic Compounds Research Laboratory
- Department of Chemistry
- Iran University of Science and Technology
- Tehran
- Iran
| | - Ehsan Valiey
- Pharmaceutical and Heterocyclic Compounds Research Laboratory
- Department of Chemistry
- Iran University of Science and Technology
- Tehran
- Iran
| | - Peyman Shakib
- Pharmaceutical and Heterocyclic Compounds Research Laboratory
- Department of Chemistry
- Iran University of Science and Technology
- Tehran
- Iran
| |
Collapse
|
15
|
Alirezvani Z, Dekamin MG, Valiey E. New Hydrogen-Bond-Enriched 1,3,5-Tris(2-hydroxyethyl) Isocyanurate Covalently Functionalized MCM-41: An Efficient and Recoverable Hybrid Catalyst for Convenient Synthesis of Acridinedione Derivatives. ACS OMEGA 2019; 4:20618-20633. [PMID: 31858048 PMCID: PMC6906789 DOI: 10.1021/acsomega.9b02755] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 10/28/2019] [Indexed: 05/03/2023]
Abstract
A new nano-ordered 1,3,5-tris(2-hydroxyethyl) isocyanurate-1,3-propylene covalently functionalized MCM-41 (MCM-41-Pr-THEIC) was designed and prepared at room temperature through a simple procedure. According to various microscopic, spectroscopic, or thermal methods and techniques, the correlation of the catalytic performance of the hybrid mesoporous MCM-41-Pr-THEIC to its structural characteristics was fully confirmed. The new MCM-41-Pr-THEIC organosilica nanomaterials were successfully investigated as a solid mild nanocatalyst through hydrogen-bonding activation provided by its organic moiety, for the pseudo-four-component condensation of dimedone, aldehydes, and ammonium acetate or p-toluidine to afford the corresponding acridinedione derivatives under green conditions. Furthermore, the introduced nanocatalyst could be reused at least four times with negligible loss of its activity, indicating the good stability and high activity of the new hybrid organosilica.
Collapse
Affiliation(s)
- Zahra Alirezvani
- Pharmaceutical and Heterocyclic
Compounds Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Mohammad G. Dekamin
- Pharmaceutical and Heterocyclic
Compounds Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Ehsan Valiey
- Pharmaceutical and Heterocyclic
Compounds Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| |
Collapse
|
16
|
Cu(II) and magnetite nanoparticles decorated melamine-functionalized chitosan: A synergistic multifunctional catalyst for sustainable cascade oxidation of benzyl alcohols/Knoevenagel condensation. Sci Rep 2019; 9:17758. [PMID: 31780721 PMCID: PMC6883033 DOI: 10.1038/s41598-019-53765-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 11/04/2019] [Indexed: 01/07/2023] Open
Abstract
The uniform decoration of Cu(II) species and magnetic nanoparticles on the melamine-functionalized chitosan afforded a new supramolecular biopolymeric nanocomposite (Cs-Pr-Me-Cu(II)-Fe3O4). The morphology, structure, and catalytic activity of the Cs-Pr-Me-Cu(II)-Fe3O4 nanocomposite have been systematically investigated. It was found that Cs-Pr-Me-Cu(II)-Fe3O4 nanocomposite can smoothly promote environmentally benign oxidation of different benzyl alcohol derivatives by tert-butyl hydroperoxide (TBHP) to their corresponding benzaldehydes and subsequent Knoevenagel condensation with malononitrile, as a multifunctional catalyst. Interestingly, Fe3O4 nanoparticles enhance the catalytic activity of Cu(II) species. The corresponding benzylidenemalononitriles were formed in high to excellent yields at ambient pressure and temperature. The heterogeneous Cs-Pr-Me-Cu(II)-Fe3O4 catalyst was also very stable with almost no leaching of the Cu(II) species into the reaction medium and could be easily recovered by an external magnet. The recycled Cs-Pr-Me-Cu(II)-Fe3O4 was reused at least four times with slight loss of its activity. This is a successful example of the combination of chemo- and bio-drived materials catalysis for mimicing biocatalysis as well as sustainable and one pot multistep synthesis.
Collapse
|
17
|
Rajendran A, Rajendiran M, Yang ZF, Fan HX, Cui TY, Zhang YG, Li WY. Functionalized Silicas for Metal-Free and Metal-Based Catalytic Applications: A Review in Perspective of Green Chemistry. CHEM REC 2019; 20:513-540. [PMID: 31631504 DOI: 10.1002/tcr.201900056] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/23/2019] [Indexed: 12/20/2022]
Abstract
Heterogeneous catalysis plays a key role in promoting green chemistry through many routes. The functionalizable reactive silanols highlight silica as a beguiling support for the preparation of heterogeneous catalysts. Metal active sites anchored on functionalized silica (FS) usually demonstrate the better dispersion and stability due to their firm chemical interaction with FSs. Having certain functional groups in structure, FSs can act as the useful catalysts for few organic reactions even without the need of metal active sites which are termed as the covetous reusable organocatalysts. Magnetic FSs have laid the platform where the effortless recovery of catalysts is realized just using an external magnet, resulting in the simplified reaction procedure. Using FSs of multiple functional groups, we can envisage the shortened reaction pathway and, reduced chemical uses and chemical wastes. Unstable bio-molecules like enzymes have been stabilized when they get chemically anchored on FSs. The resultant solid bio-catalysts exhibited very good reusability in many catalytic reactions. Getting provoked from the green chemistry aspects and benefits of FS-based catalysts, we confer the recent literature and progress focusing on the significance of FSs in heterogeneous catalysis. This review covers the preparative methods, types and catalytic applications of FSs. A special emphasis is given to the metal-free FS catalysts, multiple FS-based catalysts and magnetic FSs. Through this review, we presume that the contribution of FSs to green chemistry can be well understood. The future perspective of FSs and the improvements still required for implementing FS-based catalysts in practical applications have been narrated at the end of this review.
Collapse
Affiliation(s)
- Antony Rajendran
- Training Base of State Key Laboratory of Coal Science and Technology Jointly Constructed by Shanxi Province and Ministry of Science and Technology, Taiyuan University of Technology, Taiyuan, 030024, P.R. China
| | - Marimuthu Rajendiran
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, 400076, Maharashtra, India
| | - Zhi-Fen Yang
- Training Base of State Key Laboratory of Coal Science and Technology Jointly Constructed by Shanxi Province and Ministry of Science and Technology, Taiyuan University of Technology, Taiyuan, 030024, P.R. China
| | - Hong-Xia Fan
- Training Base of State Key Laboratory of Coal Science and Technology Jointly Constructed by Shanxi Province and Ministry of Science and Technology, Taiyuan University of Technology, Taiyuan, 030024, P.R. China
| | - Tian-You Cui
- Training Base of State Key Laboratory of Coal Science and Technology Jointly Constructed by Shanxi Province and Ministry of Science and Technology, Taiyuan University of Technology, Taiyuan, 030024, P.R. China
| | - Ya-Gang Zhang
- Department of Chemistry and Chemical Engineering, Xi'an University of Technology, Xi'an, 710054, PR China
| | - Wen-Ying Li
- Training Base of State Key Laboratory of Coal Science and Technology Jointly Constructed by Shanxi Province and Ministry of Science and Technology, Taiyuan University of Technology, Taiyuan, 030024, P.R. China.,Department of Chemistry and Chemical Engineering, Xi'an University of Technology, Xi'an, 710054, PR China
| |
Collapse
|
18
|
Davoodi F, Dekamin MG, Alirezvani Z. A practical and highly efficient synthesis of densely functionalized nicotinonitrile derivatives catalyzed by zinc oxide-decorated superparamagnetic silica attached to graphene oxide nanocomposite. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.4735] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Farahnaz Davoodi
- Pharmaceutical and Heterocyclic Compounds Research Laboratory, Department of Chemistry; Iran University of Science and Technology; Tehran 16846-13114 Iran
| | - Mohammad G. Dekamin
- Pharmaceutical and Heterocyclic Compounds Research Laboratory, Department of Chemistry; Iran University of Science and Technology; Tehran 16846-13114 Iran
| | - Zahra Alirezvani
- Pharmaceutical and Heterocyclic Compounds Research Laboratory, Department of Chemistry; Iran University of Science and Technology; Tehran 16846-13114 Iran
| |
Collapse
|
19
|
Rangraz Y, Nemati F, Elhampour A. Organoselenium–palladium(ii) complex immobilized on functionalized magnetic nanoparticles as a promising retrievable nanocatalyst for the “phosphine-free” Heck–Mizoroki coupling reaction. NEW J CHEM 2018. [DOI: 10.1039/c8nj02433b] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An air- and moisture-stable organoselenium–palladium complex immobilized on silica-coated magnetic nanoparticles is designed, synthesized and applied as a practical and retrievable catalyst in the Heck–Mizoroki cross-coupling reaction.
Collapse
|
20
|
Hasanzadeh Banakar S, Dekamin MG, Yaghoubi A. Selective and highly efficient synthesis of xanthenedione or tetraketone derivatives catalyzed by ZnO nanorod-decorated graphene oxide. NEW J CHEM 2018. [DOI: 10.1039/c8nj01053f] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A new and efficient method for the pseudo three-component synthesis of diverse tetraketone or xanthenedione derivatives has been described in the presence of ZnO nanorods decorated graphene oxide.
Collapse
Affiliation(s)
- Sepideh Hasanzadeh Banakar
- Pharmaceutical and Heterocyclic Compounds Research Laboratory
- Department of Chemistry
- Iran University of Science and Technology
- Tehran
- Iran
| | - Mohammad G. Dekamin
- Pharmaceutical and Heterocyclic Compounds Research Laboratory
- Department of Chemistry
- Iran University of Science and Technology
- Tehran
- Iran
| | - Amene Yaghoubi
- Pharmaceutical and Heterocyclic Compounds Research Laboratory
- Department of Chemistry
- Iran University of Science and Technology
- Tehran
- Iran
| |
Collapse
|