1
|
Makarova AL, Kwiatkowski AL, Kuklin AI, Chesnokov YM, Philippova OE, Shibaev AV. Dual Semi-Interpenetrating Networks of Water-Soluble Macromolecules and Supramolecular Polymer-like Chains: The Role of Component Interactions. Polymers (Basel) 2024; 16:1430. [PMID: 38794623 PMCID: PMC11125886 DOI: 10.3390/polym16101430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/06/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024] Open
Abstract
Dual networks formed by entangled polymer chains and wormlike surfactant micelles have attracted increasing interest in their application as thickeners in various fields since they combine the advantages of both polymer- and surfactant-based fluids. In particular, such polymer-surfactant mixtures are of great interest as novel hydraulic fracturing fluids with enhanced properties. In this study, we demonstrated the effect of the chemical composition of an uncharged polymer poly(vinyl alcohol) (PVA) and pH on the rheological properties and structure of its mixtures with a cationic surfactant erucyl bis(hydroxyethyl)methylammonium chloride already exploited in fracturing operations. Using a combination of several complementary techniques (rheometry, cryo-transmission electron microscopy, small-angle neutron scattering, and nuclear magnetic resonance spectroscopy), we showed that a small number of residual acetate groups (2-12.7 mol%) in PVA could significantly reduce the viscosity of the mixed system. This result was attributed to the incorporation of acetate groups in the corona of the micellar aggregates, decreasing the molecular packing parameter and thereby inducing the shortening of worm-like micelles. When these groups are removed by hydrolysis at a pH higher than 7, viscosity increases by five orders of magnitude due to the growth of worm-like micelles in length. The findings of this study create pathways for the development of dual semi-interpenetrating polymer-micellar networks, which are highly desired by the petroleum industry.
Collapse
Affiliation(s)
- Anna L. Makarova
- Faculty of Physics, Lomonosov Moscow State University, 119991 Moscow, Russia; (A.L.M.); (O.E.P.)
| | - Alexander L. Kwiatkowski
- Faculty of Physics, Lomonosov Moscow State University, 119991 Moscow, Russia; (A.L.M.); (O.E.P.)
| | | | - Yuri M. Chesnokov
- National Research Center, Kurchatov Institute, 123182 Moscow, Russia;
| | - Olga E. Philippova
- Faculty of Physics, Lomonosov Moscow State University, 119991 Moscow, Russia; (A.L.M.); (O.E.P.)
| | - Andrey V. Shibaev
- Faculty of Physics, Lomonosov Moscow State University, 119991 Moscow, Russia; (A.L.M.); (O.E.P.)
- Chemistry Department, Karaganda E.A. Buketov University, University Street 28, Karaganda 100028, Kazakhstan
| |
Collapse
|
2
|
Min F, Dreiss CA, Chu Z. Dynamic covalent surfactants and their uses in the development of smart materials. Adv Colloid Interface Sci 2024; 327:103159. [PMID: 38640843 DOI: 10.1016/j.cis.2024.103159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 03/08/2024] [Accepted: 04/14/2024] [Indexed: 04/21/2024]
Abstract
Dynamic covalent chemistry, which leverages the dynamic nature of reversible covalent bonds controlled by the conditions of reaction equilibrium, has demonstrated great potential in diverse applications related to both the stability of covalent bonds and the possibility of exchanging building blocks, imparting to the systems the possibility of "error checking" and "proof-reading". By incorporating dynamic covalent bonds into surfactant molecular architectures, combinatorial libraries of surfactants with bespoke functionalities can be readily fabricated through a facile strategy, with minimum effort in organic synthesis. Consequently, a multidisciplinary field of research involving the creation and application of dynamic covalent surfactants has recently emerged, which has aroused great attention in surfactant and colloid science, supramolecular chemistry, self-assembly, smart materials, drug delivery, and nanotechnology. This review reports results in this field published over recent years, discusses the possibilities presented by dynamic covalent surfactants and their applications in developing smart self-assembled materials, and outlines some future perspectives.
Collapse
Affiliation(s)
- Fan Min
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China; Greater Bay Area Institute for Innovation, Hunan University, Guangzhou 511300, China
| | - Cécile A Dreiss
- Institute of Pharmaceutical Science, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK.
| | - Zonglin Chu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China; Greater Bay Area Institute for Innovation, Hunan University, Guangzhou 511300, China.
| |
Collapse
|
3
|
Weiand E, Koenig PH, Rodriguez-Ropero F, Roiter Y, Angioletti-Uberti S, Dini D, Ewen JP. Boundary Lubrication Performance of Polyelectrolyte-Surfactant Complexes on Biomimetic Surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:7933-7946. [PMID: 38573738 PMCID: PMC11025133 DOI: 10.1021/acs.langmuir.3c03737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 03/20/2024] [Accepted: 03/20/2024] [Indexed: 04/05/2024]
Abstract
Aqueous mixtures of oppositely charged polyelectrolytes and surfactants are useful in many industrial applications, such as shampoos and hair conditioners. In this work, we investigate the friction between biomimetic hair surfaces in the presence of adsorbed complexes formed from cationic polyelectrolytes and anionic surfactants in an aqueous solution. We apply nonequilibrium molecular dynamics (NEMD) simulations using the coarse-grained MARTINI model. We first developed new MARTINI parameters for cationic guar gum (CGG), a functionalized, plant-derived polysaccharide. The complexation of CGG and the anionic surfactant sodium dodecyl sulfate (SDS) on virgin and chemically damaged biomimetic hair surfaces was studied using a sequential adsorption approach. We then carried out squeeze-out and sliding NEMD simulations to assess the boundary lubrication performance of the CGG-SDS complex compressed between two hair surfaces. At low pressure, we observe a synergistic friction behavior for the CGG-SDS complex, which gives lower shear stress than either pure CGG or SDS. Here, friction is dominated by viscous dissipation in an interfacial layer comprising SDS and water. At higher pressures, which are probably beyond those usually experienced during hair manipulation, SDS and water are squeezed out, and friction increases due to interdigitation. The outcomes of this work are expected to be beneficial to fine-tune and screen sustainable hair care formulations to provide low friction and therefore a smooth feel and reduced entanglement.
Collapse
Affiliation(s)
- Erik Weiand
- Department
of Mechanical Engineering, Imperial College
London, South Kensington Campus, London SW7 2AZ, U.K.
- Institute
of Molecular Science and Engineering, Imperial
College London, South
Kensington Campus, London SW7 2AZ, U.K.
- Thomas
Young Centre for the Theory and Simulation of Materials, Imperial College London, South Kensington Campus, London SW7 2AZ, U.K.
| | - Peter H. Koenig
- Corporate
Functions Analytical and Data & Modeling Sciences, Mason Business
Center, The Procter and Gamble Company, Mason, Ohio 45040, United States
| | - Francisco Rodriguez-Ropero
- Corporate
Functions Analytical and Data & Modeling Sciences, Mason Business
Center, The Procter and Gamble Company, Mason, Ohio 45040, United States
| | - Yuri Roiter
- Corporate
Functions Analytical and Data & Modeling Sciences, Mason Business
Center, The Procter and Gamble Company, Mason, Ohio 45040, United States
| | - Stefano Angioletti-Uberti
- Institute
of Molecular Science and Engineering, Imperial
College London, South
Kensington Campus, London SW7 2AZ, U.K.
- Thomas
Young Centre for the Theory and Simulation of Materials, Imperial College London, South Kensington Campus, London SW7 2AZ, U.K.
- Department
of Materials, Imperial College London, South Kensington Campus, London SW7 2AZ, U.K.
| | - Daniele Dini
- Department
of Mechanical Engineering, Imperial College
London, South Kensington Campus, London SW7 2AZ, U.K.
- Institute
of Molecular Science and Engineering, Imperial
College London, South
Kensington Campus, London SW7 2AZ, U.K.
- Thomas
Young Centre for the Theory and Simulation of Materials, Imperial College London, South Kensington Campus, London SW7 2AZ, U.K.
| | - James P. Ewen
- Department
of Mechanical Engineering, Imperial College
London, South Kensington Campus, London SW7 2AZ, U.K.
- Institute
of Molecular Science and Engineering, Imperial
College London, South
Kensington Campus, London SW7 2AZ, U.K.
- Thomas
Young Centre for the Theory and Simulation of Materials, Imperial College London, South Kensington Campus, London SW7 2AZ, U.K.
| |
Collapse
|
4
|
Costa C, Viana A, Oliveira IS, Marques EF. Interactions between Ionic Cellulose Derivatives Recycled from Textile Wastes and Surfactants: Interfacial, Aggregation and Wettability Studies. Molecules 2023; 28:molecules28083454. [PMID: 37110688 PMCID: PMC10144465 DOI: 10.3390/molecules28083454] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/05/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
Interactions between polymers (P) and surfactants (S) in aqueous solution lead to interfacial and aggregation phenomena that are not only of great interest in physical chemistry but also important for many industrial applications, such as the development of detergents and fabric softeners. Here, we synthesized two ionic derivatives-sodium carboxymethylcellulose (NaCMC) and quaternized cellulose (QC)-from cellulose recycled from textile wastes and then explored the interactions of these polymers with assorted surfactants-cationic (CTAB, gemini), anionic (SDS, SDBS) and nonionic (TX-100)-commonly used in the textile industry. We obtained surface tension curves of the P/S mixtures by fixing the polymer concentration and then increasing the surfactant concentration. In mixtures where polymer and surfactant are oppositely charged (P-/S+ and P+/S-), a strong association is observed, and from the surface tension curves, we determined the critical aggregation concentration (cac) and critical micelle concentration in the presence of polymer (cmcp). For mixtures of similar charge (P+/S+ and P-/S-), virtually no interactions are observed, with the notable exception of the QC/CTAB system, which is much more surface active than the neat CTAB. We further investigated the effect of oppositely charged P/S mixtures on hydrophilicity by measuring the contact angles of aqueous droplets on a hydrophobic textile substrate. Significantly, both P-/S+ and P+/S- systems greatly enhance the hydrophilicity of the substrate at much lower surfactant concentrations than the surfactant alone (in particular in the QC/SDBS and QC/SDS systems).
Collapse
Affiliation(s)
- Catarina Costa
- CIQUP, IMS (Institute for Molecular Sciences), Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
- CeNTI-Centre for Nanotechnology and Smart Materials, Rua Fernando Mesquita, 4760-034 Vila Nova de Famalicão, Portugal
| | - André Viana
- CIQUP, IMS (Institute for Molecular Sciences), Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
- CeNTI-Centre for Nanotechnology and Smart Materials, Rua Fernando Mesquita, 4760-034 Vila Nova de Famalicão, Portugal
| | - Isabel S Oliveira
- CIQUP, IMS (Institute for Molecular Sciences), Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Eduardo F Marques
- CIQUP, IMS (Institute for Molecular Sciences), Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| |
Collapse
|
5
|
Compatibility and Washing Performance of Compound Protease Detergent. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app12010150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Protease is the main enzyme of detergent. Through the combination of different proteases and the combination of protease and detergent additives, it can adapt to different washing conditions to improve the washing effect. In this experiment, whiteness determination, microscope scanning, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy were used to detect the whiteness values of the cloth pieces before and after washing, as well as the stain residue between the fibers on the surface of the cloth pieces. The protease detergent formula with better decontamination and anti-deposition effects was selected. The combination of alkaline protease, keratinase, and trypsin was cost-effective in removing stains. Polyacrylamide gel electrophoresis showed that the molecular weight of the protein significantly changed after adding the enzyme preparation during washing, and the molecular weight of the protein was directly proportional to protein redeposition. The composite protease had a better comprehensive decontamination effect, and when compatible with suitable surfactants, anti-redeposition agents, and water-softening agents, the compound protease detergent exhibited a stronger decontamination ability than commercial detergents.
Collapse
|
6
|
Li Y, Ma S, Fang X, Wu C, Chen H, Zhang W, Cao M, Liu J. Water hardness effect on the association and adsorption of cationic cellulose derivative/anionic surfactant mixtures for fabric softener application. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
7
|
Oikonomou EK, Berret JF. Advanced Eco-Friendly Formulations of Guar Biopolymer-Based Textile Conditioners. MATERIALS (BASEL, SWITZERLAND) 2021; 14:5749. [PMID: 34640145 PMCID: PMC8510192 DOI: 10.3390/ma14195749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/23/2021] [Accepted: 09/27/2021] [Indexed: 11/16/2022]
Abstract
Fabric conditioners are household products used to impart softness and fragrance to textiles. They are colloidal dispersions of cationic double chain surfactants that self-assemble in vesicles. These surfactants are primarily derived from palm oil chemical modification. Reducing the content of these surfactants allows to obtain products with lower environmental impact. Such a reduction, without adverse effects on the characteristics of the softener and its performance, can be achieved by adding hydrophilic biopolymers. Here, we review the role of guar biopolymers modified with cationic or hydroxyl-propyl groups, on the physicochemical properties of the formulation. Electronic and optical microscopy, dynamic light scattering, X-ray scattering and rheology of vesicles dispersion in the absence and presence of guar biopolymers are analyzed. Finally, the deposition of the new formulation on cotton fabrics is examined through scanning electron microscopy and a new protocol based on fluorescent microscopy. With this methodology, it is possible to quantify the deposition of surfactants on cotton fibers. The results show that the approach followed here can facilitate the design of sustainable home-care products.
Collapse
Affiliation(s)
- Evdokia K. Oikonomou
- Université de Paris, Centre National de la Recherche Scientifique (CNRS), Matière et Systèmes Complexes, 75013 Paris, France;
| | | |
Collapse
|
8
|
Seweryn A, Wasilewski T, Bocho-Janiszewska A. Correlations between the Type of Aggregates in the Bulk Phase and the Functionality and Safety of All-Purpose Cleaners. Int J Mol Sci 2021; 22:ijms22126592. [PMID: 34205441 PMCID: PMC8234690 DOI: 10.3390/ijms22126592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/11/2021] [Accepted: 06/16/2021] [Indexed: 11/16/2022] Open
Abstract
The article shows that the type and concentration of inorganic salt can be translated into the structure of the bulk phase and the performance properties of ecological all-purpose cleaners (APC). A base APC formulation was developed. Thereafter, two types of salt (sodium chloride and magnesium chloride) were added at various concentrations to obtain different structures in the bulk phase. The salt addition resulted in the formation of spherical micelles and-upon addition of more electrolyte-of aggregates having a lamellar structure. The formulations had constant viscosities (ab. 500 mPa·s), comparable to those of commercial products. Essential physical-chemical and performance properties of the four formulations varying in salt types and concentrations were evaluated. It was found that the addition of magnesium salt resulted in more favorable characteristics due to the surface activity of the formulations, which translated into adequately high wettability of the investigated hydrophobic surfaces, and their ability to emulsify fat. A decreasing relationship was observed in foaming properties: higher salt concentrations lead to worse foaming properties and foam stability of the solutions. For the magnesium chloride composition, the effect was significantly more pronounced, as compared to the sodium chloride-based formulations. As far as safety of use is concerned, the formulations in which magnesium salt was used caused a much lesser irritation compared with the other investigated formulations. The zein value was observed to decrease with increasing concentrations of the given type of salt in the composition.
Collapse
|
9
|
Silicone incorporation into an esterquat based fabric softener in presence of guar polymers. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126175] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
10
|
Porpora G, Rusciano F, Guida V, Greco F, Pastore R. Understanding charged vesicle suspensions as Wigner glasses: dynamical aspects. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:104001. [PMID: 33246318 DOI: 10.1088/1361-648x/abce6f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Suspensions of charged vesicles in water with added salt are widespread in nature and industrial production. Here we investigate, via Brownian dynamics simulations, a model that grasps the key features of these systems, with bidisperse colloidal beads interacting via a hard-core and an electrostatic double layer potential. Our goal is to focus on a set of interaction parameters that is not generic but measured in recent experiments, and relevant for a class of consumer products, such as liquid fabric softeners. On increasing the volume fraction in a range relevant to real formulation, we show that the dynamics become progressively slower and heterogeneous, displaying the typical signatures of an approaching glass transition. On lowering the salt concentration, which corresponds to increasing the strength and range of the electrostatic repulsion, the emergence of glassy dynamics becomes significantly steeper, and, remarkably, occurs at volume fractions well below the hard-sphere glass transition. The volume fraction dependence of the structural relaxation time at different salt concentration is well described through a functional law inspired by a recently proposed model (Krausser et al 2015 Proc. Natl Acad. Sci. USA 112 13762). According to our results, the investigated system may be thought of as a Wigner glass, i.e. a low-density glassy state stabilized by long-range repulsive interactions. Overall, our study suggests that glassy dynamics plays an important role in controlling the stability of these suspensions.
Collapse
Affiliation(s)
- G Porpora
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, P.le Tecchio 80, Naples 80125, Italy
| | - F Rusciano
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, P.le Tecchio 80, Naples 80125, Italy
| | - V Guida
- The Procter and Gamble Company, Brussels Innovation Center, 1853 Strombeek Bever Temselaan 100, 1853 Grimbergen, Belgium
| | - F Greco
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, P.le Tecchio 80, Naples 80125, Italy
| | - R Pastore
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, P.le Tecchio 80, Naples 80125, Italy
| |
Collapse
|
11
|
Ogorzałek M, Wasilewski T, Klimaszewska E, Zięba M. Effect of Hydrophobic Plant Extract on the Physicochemical Properties of a Transparent Fabric Softener. J SURFACTANTS DETERG 2019. [DOI: 10.1002/jsde.12370] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Marta Ogorzałek
- Department of Chemistry, Faculty of Materials Science and DesignKazimierz Pulaski University of Technology and Humanities Radom Poland
| | - Tomasz Wasilewski
- Department of Chemistry, Faculty of Materials Science and DesignKazimierz Pulaski University of Technology and Humanities Radom Poland
| | - Emilia Klimaszewska
- Department of Chemistry, Faculty of Materials Science and DesignKazimierz Pulaski University of Technology and Humanities Radom Poland
| | - Małgorzata Zięba
- Department of Chemistry, Faculty of Materials Science and DesignKazimierz Pulaski University of Technology and Humanities Radom Poland
| |
Collapse
|
12
|
Mousseau F, Berret JF, Oikonomou EK. Design and Applications of a Fluorescent Labeling Technique for Lipid and Surfactant Preformed Vesicles. ACS OMEGA 2019; 4:10485-10493. [PMID: 31460145 PMCID: PMC6648494 DOI: 10.1021/acsomega.9b01094] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 06/05/2019] [Indexed: 05/27/2023]
Abstract
Amphiphilic molecules such as surfactants, lipids, and block copolymers can be assembled into bilayers and form vesicles. Fluorescent membrane labeling methods require the use of dye molecules that can be inserted into the bilayers at different stages of synthesis. To our knowledge, there is no generalized method for labeling preformed vesicles. Herein, we develop a versatile protocol that is suitable to both surfactant and lipid preformed vesicles and requires no separation or purification steps. On the basis of the lipophilic carbocyanine green dye PKH67, the methodology is assessed on zwitterionic phosphatidylcholine vesicles. To demonstrate its versatility, it is applied to dispersions of anionic or cationic vesicles, such as a drug administrated to premature infants with respiratory distress syndrome, or a vesicle formulation used as a fabric softener for home care applications. By means of fluorescence microscopy, we then visualize the interaction mechanisms of nanoparticles crossing live cell membranes and of surfactants adsorbed on a cotton fabric. These results highlight the advantages of a membrane labeling technique that is simple and applicable to a large number of soft matter systems.
Collapse
Affiliation(s)
- Fanny Mousseau
- Laboratoire Matière et Systèmes
Complexes, UMR 7057 CNRS Université Denis Diderot Paris-VII,
Bâtiment Condorcet, 10 rue Alice Domon et Léonie Duquet, 75205 Paris, France
| | - Jean-François Berret
- Laboratoire Matière et Systèmes
Complexes, UMR 7057 CNRS Université Denis Diderot Paris-VII,
Bâtiment Condorcet, 10 rue Alice Domon et Léonie Duquet, 75205 Paris, France
| | - Evdokia K. Oikonomou
- Laboratoire Matière et Systèmes
Complexes, UMR 7057 CNRS Université Denis Diderot Paris-VII,
Bâtiment Condorcet, 10 rue Alice Domon et Léonie Duquet, 75205 Paris, France
| |
Collapse
|
13
|
Affiliation(s)
- Jie Gao
- School of Chemical, Biological and Materials Engineering, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Brian P. Grady
- School of Chemical, Biological and Materials Engineering, University of Oklahoma, Norman, Oklahoma 73019, United States
| |
Collapse
|
14
|
Seweryn A, Wasilewski T. Detergents in the coacervate form with plant extracts obtained under supercritical carbon dioxide conditions as examples of sustainable products. J DISPER SCI TECHNOL 2019. [DOI: 10.1080/01932691.2019.1611446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Artur Seweryn
- Faculty of Material Science, Technology and Design, Department of Chemistry, Kazimierz Pulaski University of Technology and Humanities, Radom, Poland
| | - Tomasz Wasilewski
- Faculty of Material Science, Technology and Design, Department of Chemistry, Kazimierz Pulaski University of Technology and Humanities, Radom, Poland
| |
Collapse
|
15
|
Lu Y, Zhao X, Fang S. Characterization, Antimicrobial Properties and Coatings Application of Gellan Gum Oxidized with Hydrogen Peroxide. Foods 2019; 8:E31. [PMID: 30658407 PMCID: PMC6352162 DOI: 10.3390/foods8010031] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 01/14/2019] [Accepted: 01/14/2019] [Indexed: 12/14/2022] Open
Abstract
The effect of hydrogen peroxide (H₂O₂) oxidation on the physicochemical, gelation and antimicrobial properties of gellan gum was studied. The oxidized gellan gum (OGG) was characterized by measuring the carboxyl/carbonyl group contents, Fourier transform infrared spectroscopy (FTIR) and proton nuclear magnetic resonance (¹H-NMR) spectroscopy. The H₂O₂ oxidation resulted in a large increase in the carboxyl groups in gellan gum. The OGG lost gelation ability by oxidation even in the presence of metal ions. The antimicrobial activities of the OGG against Gram-positive bacteria (Staphylococcus aureus), Gram-negative bacteria (Escherichia coli), and fungal (Aspergillus niger) were tested. The OGG could inhibit the growth of both bacteria and fungal, and the activity was improved with an increase in the oxidation level. Finally, the application of the OGG as an active coatings material to extend the storage of apples was tested.
Collapse
Affiliation(s)
- Yushuang Lu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Xuezheng Street No. 18, Hangzhou 310018, China.
| | - Xiaojian Zhao
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Xuezheng Street No. 18, Hangzhou 310018, China.
| | - Sheng Fang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Xuezheng Street No. 18, Hangzhou 310018, China.
| |
Collapse
|
16
|
Kumar A, Trambitas A, Peggau J, Dahl V, Venzmer J, Gambaryan-Roisman T, Kleinen J. Charge and size matters—How to formulate organomodified silicones for textile applications. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2018.09.080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|