1
|
Zhu C, Zhang L, Cui L, Zhang Z, Li R, Wang Y, Wang Y, Fan C, Yu Z, Liu J. Fe-Bi dual sites regulation of Bi 2O 2.33 nanosheets to promote photocatalytic nitrogen fixation activity. J Colloid Interface Sci 2024; 661:46-58. [PMID: 38295702 DOI: 10.1016/j.jcis.2024.01.082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/04/2024] [Accepted: 01/12/2024] [Indexed: 02/27/2024]
Abstract
In the process of photocatalytic ammonia synthesis, efficient activation of nitrogen molecules constitutes a fundamental challenge. During the N2 activation, the close interdependence between the acceptance and donation of electron results in their mutual limitation, leading to high energy barrier for N2 activation and unsatisfactory photocatalytic performance. This work decoupled the electron acceptance and donation processes by constructing Fe-Bi dual active sites, resulting in enhancing N2 activation through the high electron trapping ability of Fe3+ and strong electron donating ability of Bi2+. The photocatalytic nitrogen reduction efficiency of 3%Fe/Bi2O2.33 (118.71 μmol gcat-1h-1) is 5.3 times that of Bi2O2.33 (22.41 μmol gcat-1h-1). In-situ Fourier transform infrared (In situ FTIR) spectroscopy and density functional theory (DFT) calculations manifest that Fe3+-Bi2+ dual active sites work together to promote nitrogen adsorption and activation, and the reaction path is more inclined toward alternate hydrogenation path. N2 adsorption and activation properties are optimized by heteronuclear bimetallic active sites, which offers a new way for the rational design of nitrogen-fixing photocatalysts.
Collapse
Affiliation(s)
- Chuanyu Zhu
- College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Lulu Zhang
- College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Luyao Cui
- College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Ziqiang Zhang
- College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Rui Li
- College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan 030024, PR China; College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Yunfang Wang
- College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Yawen Wang
- College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Caimei Fan
- College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Zhuobin Yu
- College of Chemistry, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Jianxin Liu
- College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan 030024, PR China
| |
Collapse
|
2
|
Ma S, Kong J, Luo X, Xie J, Zhou Z, Bai X. Recent progress on bismuth-based light-triggered antibacterial nanocomposites: Synthesis, characterization, optical properties and bactericidal applications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:170125. [PMID: 38242469 DOI: 10.1016/j.scitotenv.2024.170125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/21/2024]
Abstract
Bacterial infections pose a seriously threat to the safety of the environment and human health. In particular, the emergence of drug-resistant pathogens as a result of antibiotic abuse and high trauma risk has rendered conventional therapeutic techniques insufficient for treating infections by these so-called "superbugs". Therefore, there is an urgent need to develop highly efficient and environmentally-friendly antimicrobial agents. Bismuth-based nanomaterials with unique structures and physicochemical characteristics have attracted considerable attention as promising antimicrobial candidates, with many demonstratingoutstanding antibacterial effects upon being triggered by broad-spectrum light. These nanomaterials have also exhibited satisfactory energy band gaps and electronic density distribution with improved photonic properties for extensive and comprehensive applications after being modified through various engineering methods. This review summarizes the latest research progress made on bismuth-based nanomaterials with different morphologies, structures and compositions as well as the different methods used for their synthesis to meet their rapidly increasing demand, especially for antibacterial applications. Moreover, the future prospects and challenges regarding the application of these nanomaterials are discussed. The aim of this review is to stimulate interest in the development and experimental transformation of novel bismuth-based nanomaterials to expand the arsenal of effective antimicrobials.
Collapse
Affiliation(s)
- Sihan Ma
- College of Big Data and Information Engineering, Guizhou University, Guiyang 550025, China.
| | - Jianglong Kong
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Xian Luo
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361002, China
| | - Jun Xie
- Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322000, China
| | - Zonglang Zhou
- Department of Nephrology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322000, China
| | - Xue Bai
- School of Biomedical Engineering, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
3
|
Dhull P, Sudhaik A, Sharma V, Raizada P, Hasija V, Gupta N, Ahamad T, Nguyen VH, Kim A, Shokouhimehr M, Kim SY, Le QV, Singh P. An overview on InVO4-based photocatalysts: Electronic properties, synthesis, enhancement strategies, and photocatalytic applications. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2023.113013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
4
|
Novel Indium Vanadium Oxide Nanosheet-Supported Nickel Iron Oxide Nanoplate Heterostructure for Synergistically Enhanced Photocatalytic Degradation of Tetracycline. Catalysts 2022. [DOI: 10.3390/catal12111471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Semiconductor-based heterogeneous photocatalytic oxidation processes have received considerable attention for the remediation of toxic pollutants. Herein, InVO4/NiFe2O4 nanocomposites were synthesized using a facile hydrothermal technique. Furthermore, various characterization results revealed the successful loading of NiFe2O4 nanoplates over InVO4 nanosheets, thereby signifying the formation of a heterostructure. The performance of the synthesized photocatalyst was tested for tetracycline (TC) antibiotic removal. The optimized InVO4/NiFe2O4 nanocomposite exhibits maximum photodegradation of TC molecules (96.68%) in 96 min; this is approximately 6.47 and 4.93 times higher than that observed when using NiFe2O4 and InVO4, respectively. The strong interaction between the InVO4 nanosheets and NiFe2O4 nanoplates can improve the visible-light absorption and hinder the recombination of charge carriers, further enhancing the photocatalytic performance. Moreover, hydroxyl radicals play a crucial role in the photodegradation of TC antibiotics.
Collapse
|
5
|
Lu Q, Wang Y, Zhang D, Cong H. Solar light-driven photocatalytic production of hypochlorous acid over Pt/WO3 in seawater for marine antifouling. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-021-04638-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
6
|
Ch-Th T, Manisekaran R, Santoyo-Salazar J, Schoefs B, Velumani S, Castaneda H, Jantrania A. Graphene oxide decorated TiO2 and BiVO4 nanocatalysts for enhanced visible-light-driven photocatalytic bacterial inactivation. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2021.113374] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
7
|
Tian Y, Cai R, Yue T, Gao Z, Yuan Y, Wang Z. Application of nanostructures as antimicrobials in the control of foodborne pathogen. Crit Rev Food Sci Nutr 2021; 62:3951-3968. [PMID: 33427486 DOI: 10.1080/10408398.2021.1871586] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Foodborne pathogens are the main cause of human foodborne diseases and pose a serious threat to food safety. The control of them has always been a significant issue in food industry. With good biocompatibility and stability, nanomaterials display excellent bactericidal properties against many kinds of bacteria. In this review, the generation and application of nanostructures as antibacterial in the control of foodborne pathogens was summarized. The antibacterial effects of photocatalytic and contact bacteriostatic nanomaterials agents were mainly introduced. The influence factors and mechanisms of nanomaterials on the inactivation of foodborne pathogens were displayed. The photocatalytic nanostructured bacteriostatic agents can produce reactive oxygen species (ROS) and lead to charge transfer, which result in damaging of cell wall and leakage of small molecules under light irradiation. In addition, metals and metal oxide nanoparticles can kill bacterial cells by releasing metal ions, forming ROS and electrostatic interaction with cell membrane. Besides, the synergistic action of nanoparticles with natural antibacterial agents can improve the stability of these agents and their bactericidal performance. These current researches provided a broader idea for the control of microorganisms in food.
Collapse
Affiliation(s)
- Yu Tian
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China.,Ministry of Agriculture, Laboratory of Quality & Safety Risk Assessment for Agro-products (YangLing), Yangling, Shaanxi, China.,National Engineering Research Center of Agriculture Integration Test (Yangling), Yangling, Shaanxi, China
| | - Rui Cai
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China.,Ministry of Agriculture, Laboratory of Quality & Safety Risk Assessment for Agro-products (YangLing), Yangling, Shaanxi, China.,National Engineering Research Center of Agriculture Integration Test (Yangling), Yangling, Shaanxi, China
| | - Tianli Yue
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China.,Ministry of Agriculture, Laboratory of Quality & Safety Risk Assessment for Agro-products (YangLing), Yangling, Shaanxi, China.,National Engineering Research Center of Agriculture Integration Test (Yangling), Yangling, Shaanxi, China
| | - Zhenpeng Gao
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China.,Ministry of Agriculture, Laboratory of Quality & Safety Risk Assessment for Agro-products (YangLing), Yangling, Shaanxi, China.,National Engineering Research Center of Agriculture Integration Test (Yangling), Yangling, Shaanxi, China
| | - Yahong Yuan
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China.,Ministry of Agriculture, Laboratory of Quality & Safety Risk Assessment for Agro-products (YangLing), Yangling, Shaanxi, China.,National Engineering Research Center of Agriculture Integration Test (Yangling), Yangling, Shaanxi, China
| | - Zhouli Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China.,Ministry of Agriculture, Laboratory of Quality & Safety Risk Assessment for Agro-products (YangLing), Yangling, Shaanxi, China.,National Engineering Research Center of Agriculture Integration Test (Yangling), Yangling, Shaanxi, China
| |
Collapse
|
8
|
Liu M, Li S, Wang H, Jiang R, Zhou X. Research progress of environmentally friendly marine antifouling coatings. Polym Chem 2021. [DOI: 10.1039/d1py00512j] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The antifouling mechanisms and research progress in the past three years of environmentally friendly marine antifouling coatings are introduced in this work.
Collapse
Affiliation(s)
- Mengyue Liu
- School of Chemistry and Life Sciences
- Suzhou University of Science andTechnology
- Suzhou 215009
- China
| | - Shaonan Li
- School of Chemistry and Life Sciences
- Suzhou University of Science andTechnology
- Suzhou 215009
- China
| | - Hao Wang
- School of Chemistry and Life Sciences
- Suzhou University of Science andTechnology
- Suzhou 215009
- China
| | - Rijia Jiang
- School of Chemistry and Life Sciences
- Suzhou University of Science andTechnology
- Suzhou 215009
- China
| | - Xing Zhou
- School of Chemistry and Life Sciences
- Suzhou University of Science andTechnology
- Suzhou 215009
- China
| |
Collapse
|
9
|
Microwave-Assisted Synthesis and Characterization of Solar-Light-Active Copper–Vanadium Oxide: Evaluation of Antialgal and Dye Degradation Activity. Catalysts 2020. [DOI: 10.3390/catal11010036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
In this work, solar-light-active copper–vanadium oxide (Cu-VO) was synthesized by a simple microwave method and characterized by FESEM, EDS, XRD, XPS, UV–Vis/near-infrared (NIR), and FT-IR spectroscopy. Antialgal and dye degradation activities of Cu-VO were investigated against Microcystis aeruginosa and methylene blue dye (MB), respectively. The mechanism of action of Cu-VO was examined regarding the production of hydroxyl radical (·OH) in the medium and intracellular reactive oxygen species (ROS) in M. aeruginosa. FESEM and XRD analyses of Cu-VO disclosed the formation of monoclinic crystals with an average diameter of 132 nm. EDX and XPS analyses showed the presence of Cu, V, and O atoms on the surface of Cu-VO. Furthermore, FT-IR analysis of Cu-VO exposed the presence of tetrahedral VO4 and octahedral CuO6. Cu-VO effectively reduced the algal growth and degraded methylene blue under solar light. A total of 4 mg/L of Cu-VO was found to be effective for antialgal activity. Cu-VO degraded 93% of MB. The investigation of the mechanism of action of Cu-VO showed that ·OH mediated antialgal and dye degradation of M. aeruginosa and MB. Cu-VO also triggered the production of intracellular ROS in M. aeruginosa, leading to cell death. Thus, Cu-VO could be an effective catalyst for wastewater treatment.
Collapse
|
10
|
Zhang D, Ren B, Zhang Y, Liu Y, Chen H, Xiao S, Chang Y, Yang J, Zheng J. Micro- and macroscopically structured zwitterionic polymers with ultralow fouling property. J Colloid Interface Sci 2020; 578:242-253. [DOI: 10.1016/j.jcis.2020.05.122] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/29/2020] [Accepted: 05/31/2020] [Indexed: 12/25/2022]
|
11
|
Novel Z‐scheme In2S3/BiVO4 composites with improved visible-light photocatalytic performance and stability for glyphosate degradation. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.117039] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Zhang J, Wang J, Zhu Q, Zhang B, Xu H, Duan J, Hou B. Fabrication of a Novel AgBr/Ag 2MoO 4@InVO 4 Composite with Excellent Visible Light Photocatalytic Property for Antibacterial Use. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1541. [PMID: 32781592 PMCID: PMC7466578 DOI: 10.3390/nano10081541] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/26/2020] [Accepted: 07/30/2020] [Indexed: 01/10/2023]
Abstract
A novel AgBr/Ag2MoO4@InVO4 composite photocatalyst with different heterojunction structures was successfully constructed by compounding InVO4 with Ag2MoO4 and AgBr. According to the degradation, antibacterial and free radical trapping data, the photocatalytic antibacterial and antifouling activities of AgBr/Ag2MoO4@InVO4 composite were evaluated, and the corresponding photocatalytic reaction mechanism was proposed. Adding AgBr/Ag2MoO4@InVO4 composite, the degradation rate of ciprofloxacin (CIP) achieved 95.5% within 120 min. At the same time, the antibacterial rates of Escherichia coli (E. coli), Staphylococcus aureus (S. aureus) and Pseudomonas aeruginosa (P. aeruginosa) achieved 99.99%. The AgBr/Ag2MoO4@InVO4 composite photocatalyst showed promising usage in photocatalytic antibacterial and purification areas.
Collapse
Affiliation(s)
- Jie Zhang
- CAS Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (J.W.); (Q.Z.); (H.X.); (J.D.); (B.H.)
- Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
| | - Jia Wang
- CAS Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (J.W.); (Q.Z.); (H.X.); (J.D.); (B.H.)
- Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
| | - Qingjun Zhu
- CAS Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (J.W.); (Q.Z.); (H.X.); (J.D.); (B.H.)
- Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
| | - Binbin Zhang
- CAS Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (J.W.); (Q.Z.); (H.X.); (J.D.); (B.H.)
- Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
| | - Huihui Xu
- CAS Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (J.W.); (Q.Z.); (H.X.); (J.D.); (B.H.)
- Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
| | - Jizhou Duan
- CAS Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (J.W.); (Q.Z.); (H.X.); (J.D.); (B.H.)
- Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
| | - Baorong Hou
- CAS Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (J.W.); (Q.Z.); (H.X.); (J.D.); (B.H.)
- Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
| |
Collapse
|
13
|
Alkali-treatment synthesis of bismuth vanadium oxide photocatalysts with different morphologies. J SOLID STATE CHEM 2020. [DOI: 10.1016/j.jssc.2020.121296] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
14
|
In situ fabrication of CdMoO4/g-C3N4 composites with improved charge separation and photocatalytic activity under visible light irradiation. CHINESE JOURNAL OF CATALYSIS 2020. [DOI: 10.1016/s1872-2067(19)63383-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
15
|
Mohamed HEA, Afridi S, Khalil AT, Zohra T, Alam MM, Ikram A, Shinwari ZK, Maaza M. Phytosynthesis of BiVO 4 nanorods using Hyphaene thebaica for diverse biomedical applications. AMB Express 2019; 9:200. [PMID: 31832797 PMCID: PMC6908540 DOI: 10.1186/s13568-019-0923-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 12/02/2019] [Indexed: 11/26/2022] Open
Abstract
Biosynthesis of bismuth vanadate (BiVO4) nanorods was performed using dried fruit extracts of Hyphaene thebaica as a cost effective reducing and stabilizing agent. XRD, DRS, FTIR, zeta potential, Raman, HR-SEM, HR-TEM, EDS and SAED were used to study the main physical properties while the biological properties were established by performing diverse assays. The zeta potential is reported as − 5.21 mV. FTIR indicated Bi–O and V–O vibrations at 640 cm−1 and 700 cm−1/1120 cm−1. Characteristic Raman modes were observed at 166 cm−1, 325 cm−1 and 787 cm−1. High resolution scanning and transmission electron micrographs revealed a rod like morphology of the BiVO4. Bacillus subtilis, Klebsiella pneumonia, Fusarium solani indicated highest susceptibility to the different doses of BiVO4 nanorods. Significant protein kinase inhibition is reported for BiVO4 nanorods which suggests their potential anticancer properties. The nanorods revealed good DPPH free radical scavenging potential (48%) at 400 µg/mL while total antioxidant capacity of 59.8 µg AAE/mg was revealed at 400 µg/mL. No antiviral activity is reported on sabin like polio virus. Overall excellent biological properties are reported. We have shown that green synthesis can replace well established processes for synthesizing BiVO4 nanorods.
Collapse
|
16
|
Zhang J, Wang J, Xu H, Lv X, Zeng Y, Duan J, Hou B. The effective photocatalysis and antibacterial properties of AgBr/AgVO 3 composites under visible-light. RSC Adv 2019; 9:37109-37118. [PMID: 35539079 PMCID: PMC9075520 DOI: 10.1039/c9ra06810d] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 11/05/2019] [Indexed: 11/25/2022] Open
Abstract
With the discharge of large amount of organic pollutants and antibiotics into the water environment, the water cycle has been seriously polluted, and at the same time, various drug-resistant bacteria have emerged in succession, which poses a serious threat to human health. In recent years, photocatalytic nanomaterials have become a research hotspot in the antimicrobial area. In this study, AgBr/AgVO3 photocatalysts were prepared by a hydrothermal process and an in situ growth method. The composites were tightly connected by the (501) plane of AgVO3 and the (200) lattice plane of AgBr. The photocatalytic activity was tested by degrading Rhodamine B (RhB) solution under visible-light, and the result indicated that the photodegradation rate for RhB solution was 92.3% by the photocatalysis with 0.5AgBr/AgVO3 and the photocatalytic performance of 0.5AgBr/AgVO3 was improved compared to pure AgVO3 and AgBr. In addition, more than 99.997% of E. coli, S. aureus, and P. aeruginosa cells were killed by the photocatalysis with 0.5AgBr/AgVO3 within 30 min. These results demonstrated that the 0.5AgBr/AgVO3 heterojunction photocatalyst could be widely used in the treatment of environmental pollution and in the antibacterial field.
Collapse
Affiliation(s)
- Jie Zhang
- Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences 7 Nanhai Road Qingdao 266071 China +86-532-82880498 +86-532-82898851
- Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology Qingdao 266237 China
- Center for Ocean Mega-Science, Chinese Academy of Sciences Qingdao 266071 China
| | - Jia Wang
- Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences 7 Nanhai Road Qingdao 266071 China +86-532-82880498 +86-532-82898851
- Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology Qingdao 266237 China
- University of Chinese Academy of Sciences Beijing 100049 China
- Center for Ocean Mega-Science, Chinese Academy of Sciences Qingdao 266071 China
| | - Huihui Xu
- Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences 7 Nanhai Road Qingdao 266071 China +86-532-82880498 +86-532-82898851
- Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology Qingdao 266237 China
- University of Chinese Academy of Sciences Beijing 100049 China
- Center for Ocean Mega-Science, Chinese Academy of Sciences Qingdao 266071 China
| | - Xianzi Lv
- Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences 7 Nanhai Road Qingdao 266071 China +86-532-82880498 +86-532-82898851
- Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology Qingdao 266237 China
- Center for Ocean Mega-Science, Chinese Academy of Sciences Qingdao 266071 China
| | - YuXiang Zeng
- Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences 7 Nanhai Road Qingdao 266071 China +86-532-82880498 +86-532-82898851
| | - Jizhou Duan
- Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences 7 Nanhai Road Qingdao 266071 China +86-532-82880498 +86-532-82898851
- Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology Qingdao 266237 China
- Center for Ocean Mega-Science, Chinese Academy of Sciences Qingdao 266071 China
| | - Baorong Hou
- Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences 7 Nanhai Road Qingdao 266071 China +86-532-82880498 +86-532-82898851
- Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology Qingdao 266237 China
- Center for Ocean Mega-Science, Chinese Academy of Sciences Qingdao 266071 China
| |
Collapse
|
17
|
Qiao J, Lv M, Qu Z, Zhang M, Cui X, Wang D, Piao C, Liu Z, Wang J, Song Y. Preparation of a novel Z-scheme KTaO 3/FeVO 4/Bi 2O 3 nanocomposite for efficient sonocatalytic degradation of ceftriaxone sodium. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 689:178-192. [PMID: 31279185 DOI: 10.1016/j.scitotenv.2019.06.416] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 06/25/2019] [Accepted: 06/25/2019] [Indexed: 06/09/2023]
Abstract
In this work, a novel Z-scheme sonocatalyst, KTaO3/FeVO4/Bi2O3, is prepared via ultrasonic-assisted isoelectric point method. The prepared samples are characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray photoelectron spectroscopy (XPS) and photoluminescence (PL) spectroscopy. The catalytic activity of Z-scheme KTaO3/FeVO4/Bi2O3 sonocatalyst is studied in degradation of ceftriaxone sodium under ultrasonic irradiation. In addition, the influences of ultrasonic irradiation time, scavengers and sonocatalyst used times on sonocatalytic degradation of ceftriaxone sodium are examined. Under the experimental conditions of 150 min ultrasonic irradiation time, 1.00 g/L KTaO3/FeVO4/Bi2O3 addition amount and 10.00 mg/L ceftriaxone sodium concentration, the sonocatalytic degradation ratio of ceftriaxone sodium achieves 81.30%. Finally, the possible sonocatalytic degradation mechanism of ceftriaxone sodium caused by Z-scheme KTaO3/FeVO4/Bi2O3 sonocatalyst is proposed. The enhanced sonocatalytic activity may be attributed to the fact that the FeVO4 as a special conductive channel provides a strong driving force to transfer electrons through valence state changes of iron and vanadium, which accelerates electron transfer from conduction band (CB) of Bi2O3 to valence band (VB) of KTaO3. Perhaps, the KTaO3/FeVO4/Bi2O3 composite is an excellent Z-scheme sonocatalyst which can be used to effectively degrade the organic pollutants in wastewater under ultrasonic irradiation.
Collapse
Affiliation(s)
- Jing Qiao
- College of Chemistry, Liaoning University, Shenyang 110036, People's Republic of China
| | - Mengyao Lv
- College of Chemistry, Liaoning University, Shenyang 110036, People's Republic of China
| | - Zhihui Qu
- College of Environment, Liaoning University, Shenyang 110036, People's Republic of China
| | - Meng Zhang
- College of Chemistry, Liaoning University, Shenyang 110036, People's Republic of China
| | - Xin Cui
- College of Environment, Liaoning University, Shenyang 110036, People's Republic of China
| | - Di Wang
- College of Environment, Liaoning University, Shenyang 110036, People's Republic of China
| | - Congcong Piao
- College of Chemistry, Liaoning University, Shenyang 110036, People's Republic of China
| | - Zhiyu Liu
- College of Chemistry, Liaoning University, Shenyang 110036, People's Republic of China
| | - Jun Wang
- College of Chemistry, Liaoning University, Shenyang 110036, People's Republic of China.
| | - Youtao Song
- College of Environment, Liaoning University, Shenyang 110036, People's Republic of China.
| |
Collapse
|
18
|
She H, Jiang M, Yue P, Huang J, Wang L, Li J, Zhu G, Wang Q. Metal (Ni2+/Co2+) sulfides modified BiVO4 for effective improvement in photoelectrochemical water splitting. J Colloid Interface Sci 2019; 549:80-88. [DOI: 10.1016/j.jcis.2019.04.038] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 03/23/2019] [Accepted: 04/13/2019] [Indexed: 12/30/2022]
|
19
|
Xu H, Zhang J, Lv X, Niu T, Zeng Y, Duan J, Hou B. The effective photocatalysis and antibacterial properties of AgBr/Ag 2MoO 4@ZnO composites under visible light irradiation. BIOFOULING 2019; 35:719-731. [PMID: 31505979 DOI: 10.1080/08927014.2019.1653453] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 08/02/2019] [Accepted: 08/02/2019] [Indexed: 06/10/2023]
Abstract
A novel Z-scheme AgBr/Ag2MoO4@ZnO photocatalyst was fabricated via a hydrothermal process and in situ growth method. X-ray powder diffraction, scanning electron microscopy and transmission electron microscopy were used to determine the structure of the photocatalyst. The results showed that the composites were tightly connected by the (101) lattice plane of ZnO, the (222) plane of Ag2MoO4 and the (200) lattice plane of AgBr. Because of the strong redox activity and good separability of photoelectrons and holes induced by the Z-scheme structure, the photodegradation rate for ciprofloxacin (CIP) solution was 80.5% by the photocatalysis of 0.5 AgBr/Ag2MoO4@ZnO. In addition, more than 99.999% of Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa cells were killed within 60 min. These results demonstrate that AgBr/Ag2MoO4@ZnO is a promising photocatalyst, which can be used in organic pollutant degradation and the photocatalytic antibacterial area.
Collapse
Affiliation(s)
- Huihui Xu
- Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences , Qingdao , PR China
- Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology , Qingdao, PR China
- University of Chinese Academy of Sciences , Beijing , PR China
- Center for Ocean Mega-Science, Chinese Academy of Sciences , Qingdao , PR China
| | - Jie Zhang
- Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences , Qingdao , PR China
- Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology , Qingdao, PR China
- Center for Ocean Mega-Science, Chinese Academy of Sciences , Qingdao , PR China
| | - Xianzi Lv
- Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences , Qingdao , PR China
- Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology , Qingdao, PR China
| | - Tianjie Niu
- Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences , Qingdao , PR China
| | - Yuxiang Zeng
- Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences , Qingdao , PR China
| | - Jizhou Duan
- Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences , Qingdao , PR China
- Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology , Qingdao, PR China
- Center for Ocean Mega-Science, Chinese Academy of Sciences , Qingdao , PR China
| | - Baorong Hou
- Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences , Qingdao , PR China
- Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology , Qingdao, PR China
- Center for Ocean Mega-Science, Chinese Academy of Sciences , Qingdao , PR China
| |
Collapse
|
20
|
Botella P, Errandonea D, Garg AB, Rodriguez-Hernandez P, Muñoz A, Achary SN, Vomiero A. High-pressure characterization of the optical and electronic properties of InVO4, InNbO4, and InTaO4. SN APPLIED SCIENCES 2019. [DOI: 10.1007/s42452-019-0406-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
|
21
|
Synthesis of 42-faceted bismuth vanadate microcrystals for enhanced photocatalytic activity. J Colloid Interface Sci 2019; 542:207-212. [DOI: 10.1016/j.jcis.2019.02.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 01/29/2019] [Accepted: 02/02/2019] [Indexed: 11/22/2022]
|