1
|
Chen Y, He H, Liu M, Xu H, Zhang H, Zhu X, Yang D. Facile Synthesis of Polypyrrole/MnO 2/Carbon Cloth Composites for Supercapacitor Electrodes. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:641. [PMID: 40358258 PMCID: PMC12073381 DOI: 10.3390/nano15090641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2025] [Revised: 04/17/2025] [Accepted: 04/22/2025] [Indexed: 05/15/2025]
Abstract
In the development of flexible smart electronics, fabricating electrodes with optimized architectures to achieve superior electrochemical performance remains a significant challenge. This study presents a two-step synthesis and characterization of a polypyrrole (PPy)-MnO2/carbon cloth (CC) nanocomposite. The MnO2/CC substrate was first prepared via the hydrothermal method, followed by uniform PPy coating through vapor-phase polymerization in the presence of an oxidizing agent. Electrochemical measurements revealed substantial enhancement in performance, with the specific capacitance increasing from 123.1 mF/cm2 for the MnO2/CC composite to 324.5 mF/cm2 for the PPy/MnO2/CC composite at a current density of 2.5 mA/cm2. This remarkable improvement can be attributed to the synergistic effects between the conductive PPy polymer and MnO2/CC substrate and the formation of additional ion transport channels facilitated by the PPy coating. This work provides valuable insights for designing high-performance electrode materials and advances the development of composite-based energy storage devices.
Collapse
Affiliation(s)
- Yan Chen
- College of Optoelectronic Technology, Chengdu University of Information Technology, Chengdu 610225, China; (H.H.); (M.L.); (H.X.); (H.Z.)
| | - Hanyue He
- College of Optoelectronic Technology, Chengdu University of Information Technology, Chengdu 610225, China; (H.H.); (M.L.); (H.X.); (H.Z.)
| | - Min Liu
- College of Optoelectronic Technology, Chengdu University of Information Technology, Chengdu 610225, China; (H.H.); (M.L.); (H.X.); (H.Z.)
| | - He Xu
- College of Optoelectronic Technology, Chengdu University of Information Technology, Chengdu 610225, China; (H.H.); (M.L.); (H.X.); (H.Z.)
| | - Haibo Zhang
- College of Optoelectronic Technology, Chengdu University of Information Technology, Chengdu 610225, China; (H.H.); (M.L.); (H.X.); (H.Z.)
- Intelligent Manufacturing Industry Technology Research Institute, Sichuan University of Arts and Science, Dazhou 635000, China
| | - Xinghua Zhu
- Dazhou Industrial Technology Research Institute, Dazhou 635000, China;
- School of Materials Science and Engineering, Xihua University, Chengdu 610039, China
| | - Dingyu Yang
- College of Optoelectronic Technology, Chengdu University of Information Technology, Chengdu 610225, China; (H.H.); (M.L.); (H.X.); (H.Z.)
- Intelligent Manufacturing Industry Technology Research Institute, Sichuan University of Arts and Science, Dazhou 635000, China
| |
Collapse
|
2
|
Vanaraj R, Daniel S, Mayakrishnan G, Govindarasu Gunasekaran K, Arumugam B, Babu CM, Kim SC. Melamine-based metal-organic frameworks for high-performance supercapacitor applications. J Colloid Interface Sci 2024; 666:380-392. [PMID: 38603880 DOI: 10.1016/j.jcis.2024.04.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 03/20/2024] [Accepted: 04/01/2024] [Indexed: 04/13/2024]
Abstract
Melamine-based metal-organic frameworks (MOFs) for high-performance supercapacitor applications are described in this paper. Melamine (Me) is employed as an organic linker, and three metal ions cobalt, nickel, and iron (Co, Ni, Fe) are used ascentral metal ions to manufacture the desired MOF materials (Co-Me, Ni-Me, and Fe-Me). While melamine is an inexpensive organic linker for creating MOF materials, homogenous molecular structures can be difficult to produce. The most effective technique for expanding the molecular structures of MOFs through suitable experimental optimization is used in this work. The MOFs materials are characterized using standard techniques. The kinetics of the materials' reactions are investigated using attenuated total reflectance. X-ray photoelectron spectroscopy (XPS), powder X-ray diffraction (P-XRD), Fourier transform infrared (ATR-FT-IR) spectroscopy, and Brunauer-Emmett-Teller (BET) studies verified the development of the MOFs structure. The surface morphology of the produced materials is investigated using field emission scanning electron microscopy (FE-SEM), high-resolution transmission electron microscopy (HR-TEM), and atomic force microscopy (AFM). The elements found in MOFs are studied via XPS analysis, energy dispersive X-ray diffraction (EDX), mapping, and mapping. The materials' absorption characteristics were examined by the use of UV-visible absorption spectroscopy. The thermal stability of the materials is examined by thermogravimetric analysis (TGA); these materials are more stable, according to the findings, even at high temperatures. The electrochemical investigation determines the specific capacitance of the materials. The specific capacitance of Co-Me, Ni-Me, and Fe-Me in 3 M KOH electrolyte is 1267.36, 803.22, and 507.59F/g @ 1 A-1, according to the three-electrode arrangement. The two-electrode device maximizes power and energy density by using an asymmetrical supercapacitor in a 3 M KOH electrolyte. The power and energy densities of Co-Me, Ni-Me, and Fe-Me are 3650.63, 2813.21, and 6210.45 W kg-1, and 68.43, 46.32, and 42.2 Wh kg-1, respectively. According to the materials stability test, the MOFs are highly stable after 10,000 cycles. Preliminary results suggest that the materials are suitable for usage in high-end supercapacitor uses.
Collapse
Affiliation(s)
- Ramkumar Vanaraj
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | | | - Gopiraman Mayakrishnan
- Nano Fusion Technology Research Group, Institute for Fiber Engineering (IFES), Interdisciplinary Cluster for Cutting Edge Research (ICCER), Shinshu University, Tokida 3-15-1, Ueda, Nagano 386-8567, Japan
| | | | - Bharathi Arumugam
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Cadiam Mohan Babu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore
| | - Seong Cheol Kim
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| |
Collapse
|
3
|
Qi L, Wang Z, Chen J, Xie JW. Development and validation of a QuEChERS-HPLC-DAD method using polymer-functionalized melamine sponges for the analysis of antipsychotic drugs in milk. Food Chem 2024; 444:138553. [PMID: 38309075 DOI: 10.1016/j.foodchem.2024.138553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/20/2024] [Accepted: 01/21/2024] [Indexed: 02/05/2024]
Abstract
The prohibition of antipsychotic drugs in animal foodstuffs has raised significant concerns. In this study, a novel matrix purification adsorbent comprising a polymer (polyaniline and polypyrrole)-functionalized melamine sponge (Ms) was employed for the high performance liquid chromatography-diode array detector (HPLC-DAD) detection of three phenothiazines (chlorpromazine, thioridazine, and promethazine), and a tricyclic imipramine in milk. The as-prepared functionalized Ms was characterized using scanning electron microscopy, Fourier transform infrared spectroscopy, and water contact angle measurements. Excellent linearity with a coefficient of determination (R2) of 0.999 was achieved for all drugs within the concentration range of 0.01-47.00 μg mL-1. The recoveries of the four analytes ranged from 92.1 % to 106.9 % at the three spiked levels. These results demonstrate the successful application of the proposed method for the determination of the four drugs. Cost-effective polymer-functionalized Ms is a viable alternative for matrix purification, enabling rapid determination of drug residues in diverse food samples.
Collapse
Affiliation(s)
- Liang Qi
- School of Food Science and Engineering (School of Biomedical and Pharmaceutical Sciences), Shaanxi University of Science & Technology, Xi'an 710021, China.
| | - Zhe Wang
- School of Food Science and Engineering (School of Biomedical and Pharmaceutical Sciences), Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Jian Chen
- School of Food Science and Engineering (School of Biomedical and Pharmaceutical Sciences), Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Jian-Wu Xie
- School of Food Science and Engineering (School of Biomedical and Pharmaceutical Sciences), Shaanxi University of Science & Technology, Xi'an 710021, China
| |
Collapse
|
4
|
Weldemhret TG, Park YT, Song JI. Recent progress in surface engineering methods and advanced applications of flexible polymeric foams. Adv Colloid Interface Sci 2024; 326:103132. [PMID: 38537566 DOI: 10.1016/j.cis.2024.103132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/15/2024] [Accepted: 03/10/2024] [Indexed: 04/13/2024]
Abstract
Polymeric foams, also known as three-dimensional (3D) polymeric sponges, are lightweight, flexible, compressible, and possess a high surface area compared with other bulk polymers. These sponges have traditionally been used for mattresses or seat cushions in homes, offices, aircraft, automobiles, and trains, and to insulate against heat, electricity, and noise. Recently, the demand for modern materials has expanded the application of polymeric foams to various high-value technologies, including in areas that need high flame retardancy, flame sensors, oil/water separation, metal adsorption, solar steam generation, piezoresistivity, electromagnetic interference shielding, thermal energy storage, catalysis, supercapacitors, batteries, and triboelectric energy harvesting. Proper modification of foams is a prerequisite for their use in high-value applications. Several new strategies for the surface coating of 3D porous foams and novel emerging applications have been recently developed. Therefore, in this review, current advances in the field of surface coating and the application of 3D polymeric foams are discussed. A brief background on 3D polymeric foams, including the unique properties and benefits of polymeric sponges and their routes of synthesis, is presented. Different coating strategies for polymeric sponges are discussed, and their advantages and drawbacks are highlighted. Different advanced applications of polymeric sponges, in conjunction with specific and detailed examples of the above-mentioned applications, are also described. Finally, challenges and potential applications related to the coating of polymeric foams are discussed. We envisage that this review will be useful to facilitate further research, promote continued efforts on the advanced applications mentioned above, and provide new stimuli for the design of novel polymeric sponges for future modern applications.
Collapse
Affiliation(s)
- Teklebrahan Gebrekrstos Weldemhret
- Department of Mechanical Engineering, Changwon National University, 20 Changwondaehak-ro, Uichang-gu, Changwon, Gyeongsangnam-do 51140, Republic of Korea; Division of Physics and Semiconductor Science, Dongguk University, Seoul 04620, Republic of Korea
| | - Yong Tae Park
- Department of Mechanical Engineering, Myongji University, 116 Myongji-ro, Cheoin-gu, Yongin, Gyeonggi-do 17058, Republic of Korea.
| | - Jung Il Song
- Department of Mechanical Engineering, Changwon National University, 20 Changwondaehak-ro, Uichang-gu, Changwon, Gyeongsangnam-do 51140, Republic of Korea.
| |
Collapse
|
5
|
Hong J, Dong Z, Chen X, Chen W, Li D, Yu F, Chen Y. α-α Coupling-Dominated PPy Film with a Well-Conjugated Structure for Superlong Cycle Life Supercapacitors. ACS APPLIED MATERIALS & INTERFACES 2024; 16:7806-7818. [PMID: 38315808 DOI: 10.1021/acsami.3c17515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
As the electrode of a supercapacitor, polypyrrole (PPy) inevitably suffers from structural rupture during repeated doping/dedoping processes and releases low practical capacitance due to the large amount of aggregation or cross-linking in PPy chains. The coupling mode (α-α, α-β, or β-β coupling) of pyrroles is critical to the conjugated structure, the conductivity, and cycling stability of PPy. Here, we prepared an α-α coupling-dominated PPy film via simple frozen interfacial polymerization. The PPy film with a nanostructure exposes more electrochemical active sites for the electrode, which can enhance the practical capacitance. The high proportion of the α-α coupling mode results in a high degree of large π-conjugation and a planar structure that can effectively improve the reversible ion transport efficiency and promote uniform stress distribution during the charge and discharge process. The assembled symmetric water-based supercapacitor delivers a high specific capacitance of 267.1 F g-1 at 1 A g-1 and 266.7 F g-1 at 5 A g-1 and exhibits an outstanding cycling performance of above 200 F g-1 even after 60,000 cycles.
Collapse
Affiliation(s)
- Jianhua Hong
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Laboratory of Research on Utilization of Si-Zr-Ti Resources, Hainan University, Haikou 570228, China
| | - Ziyang Dong
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Laboratory of Research on Utilization of Si-Zr-Ti Resources, Hainan University, Haikou 570228, China
| | - Xuezheng Chen
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Laboratory of Research on Utilization of Si-Zr-Ti Resources, Hainan University, Haikou 570228, China
| | - Wen Chen
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Laboratory of Research on Utilization of Si-Zr-Ti Resources, Hainan University, Haikou 570228, China
| | - De Li
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Laboratory of Research on Utilization of Si-Zr-Ti Resources, Hainan University, Haikou 570228, China
| | - Feng Yu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Laboratory of Research on Utilization of Si-Zr-Ti Resources, Hainan University, Haikou 570228, China
- Guangdong Key Laboratory for Hydrogen Energy Technologies; School of Materials Science and Hydrogen Energy, Foshan University, Foshan 528000, China
| | - Yong Chen
- Guangdong Key Laboratory for Hydrogen Energy Technologies; School of Materials Science and Hydrogen Energy, Foshan University, Foshan 528000, China
| |
Collapse
|
6
|
Tumacder DV, Minisy IM, Taboubi O, Bober P. Highly Electroactive Frozen-State Polymerized Polypyrrole Nanostructures for Flexible Supercapacitors. Polymers (Basel) 2023; 15:4140. [PMID: 37896384 PMCID: PMC10610487 DOI: 10.3390/polym15204140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/14/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
The polymerization of pyrrole in the frozen state with the presence of organic dyes (methyl orange (MO) and Acid Blue 25 (AB)) has proven to produce polypyrrole (PPy) nanostructures. Herein, we explore the electrochemical properties of PPy prepared under frozen-state conditions (-24 °C) with and without the presence of organic dyes. The electroactivity of PPy prepared with MO and AB significantly increased in all electrolytic media with a capacitance higher than this of the PPy prepared at room temperature. The highest capacitance (1914 F g-1) was obtained for PPy-MO in 0.2 M HCl solution. The impedance spectra of PPy showed a decrease in charge transfer resistance when the dyes were present. This indicates a conductivity increase of PPy. Improved electrochemical stability was observed for PPy, PPy-MO, and PPy-AB prepared at -24 °C, wherein a steady gain of capacitance was maintained during 5000 potential cycling. In addition, a PPy-based supercapacitor device was fabricated to demonstrate the energy storage characteristics of PPy, where it showed good capacitive behavior and stability. Overall, frozen-state polymerized PPy posed an impressive capacitive performance for flexible supercapacitors.
Collapse
Affiliation(s)
- Doebner Von Tumacder
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, 162 00 Prague, Czech Republic; (D.V.T.); (I.M.M.); (O.T.)
- Faculty of Science, Charles University, 128 43 Prague, Czech Republic
| | - Islam M. Minisy
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, 162 00 Prague, Czech Republic; (D.V.T.); (I.M.M.); (O.T.)
| | - Oumayma Taboubi
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, 162 00 Prague, Czech Republic; (D.V.T.); (I.M.M.); (O.T.)
| | - Patrycja Bober
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, 162 00 Prague, Czech Republic; (D.V.T.); (I.M.M.); (O.T.)
| |
Collapse
|
7
|
Qu Z, Huang L, Guo M, Sun T, Xu X, Gao Z. Application of novel polypyrrole/melamine foam auxiliary electrode in promoting electrokinetic remediation of Cr(VI)-contaminated soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 876:162840. [PMID: 36924972 DOI: 10.1016/j.scitotenv.2023.162840] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/22/2023] [Accepted: 03/09/2023] [Indexed: 06/18/2023]
Affiliation(s)
- Zhengjun Qu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Lihui Huang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China.
| | - Mengmeng Guo
- Jinan Ecological and Environmental Monitoring Center, Jinan 250000, China
| | - Ting Sun
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Xiaoshen Xu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Zhenhui Gao
- Institute of Eco-Environmental Forensics of Shandong University, Qingdao 266237, China
| |
Collapse
|
8
|
Jin L, Pan Q, Li X, Su C, Wang Z, Wang H, Huang L. Preparation of Three-Dimensional MF/Ti 3C 2T x/PmPD by Interfacial Polymerization for Efficient Hexavalent Chromium Removal. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2838. [PMID: 36014701 PMCID: PMC9413116 DOI: 10.3390/nano12162838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
Heavy metal pollution is a serious threat to human health and the ecological environment, but adsorption technology based on nano adsorbents can effectively treat the crisis. However, due to the nanoscale effect, nano adsorbents have some crucial shortcomings, such as recycling difficulty and the loss of nanoparticles, which seriously limit their application. The feasible assembly of nano adsorbents is an accessible technology in urgent need of a breakthrough. In this study, three-dimensional (3D) adsorbent (MF/Ti3C2Tx/PmPD) with excellent performance and favorable recyclability was prepared by interfacial polymerization with melamine foam (MF) as the framework, two-dimensional (2D) titanium carbide (Ti3C2Tx) as the bridge and Poly (m-Phenylenediamine) (PmPD) as the active nano component. The morphology, structure, mechanical property of MF/Ti3C2Tx/PmPD and reference MF/PmPD were investigated through a scanning electron microscope (SEM), Fourier transformed infrared spectra (FT-IR), Raman scattering spectra and a pressure-stress test, respectively. Owning to the regulation of Ti3C2Tx on the morphology and structure of PmPD, MF/Ti3C2Tx/PmPD showed excellent adsorption capacity (352.15 mg/g) and favorable cycling performance. R-P and pseudo-second-order kinetics models could well describe the adsorption phenomenon, indicating that the adsorption process involved a composite process of single-layer and multi-layer adsorption and was dominated by chemical adsorption. In this research, the preparation mechanism of MF/Ti3C2Tx/PmPD and the adsorption process of Cr(VI) were systematically investigated, which provided a feasible approach for the feasible assembly and application of nano adsorbents in the environmental field.
Collapse
Affiliation(s)
- Linfeng Jin
- School of Materials Science and Engineering, Central South University, Changsha 410083, China
- School of Resources and Environment, Hunan University of Technology and Business, Changsha 410205, China
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Qinglin Pan
- School of Materials Science and Engineering, Central South University, Changsha 410083, China
| | - Xiaorui Li
- School of Resources and Environment, Hunan University of Technology and Business, Changsha 410205, China
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Changqing Su
- School of Resources and Environment, Hunan University of Technology and Business, Changsha 410205, China
| | - Zhongyu Wang
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
- Chinese National Engineering Research Center for Control and Treatment of Heavy Metals Pollution, Changsha 410083, China
| | - Haiying Wang
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
- Chinese National Engineering Research Center for Control and Treatment of Heavy Metals Pollution, Changsha 410083, China
| | - Lei Huang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
9
|
Zheng K, Liao L, Zhang Y, Tan H, Liu J, Li C, Jia D. Hierarchical NiCo-LDH core/shell homostructural electrodes with MOF-derived shell for electrochemical energy storage. J Colloid Interface Sci 2022; 619:75-83. [DOI: 10.1016/j.jcis.2022.03.056] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 03/10/2022] [Accepted: 03/13/2022] [Indexed: 12/11/2022]
|
10
|
Zhao Y, Wang A, Shen L, Zhao Z, Xiao L, Hou L. Nitrogen, sulfur co‐doped porous carbon via high internal phase emulsion template and its potential application as the electrode of high‐performance supercapacitor. J Appl Polym Sci 2022. [DOI: 10.1002/app.52417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yulai Zhao
- Department of Materials‐Oriented Chemical Engineering, College of Chemical Engineering Fuzhou University Fuzhou China
- Qingyuan Innovation Laboratory Quanzhou China
| | - Anjun Wang
- Department of Materials‐Oriented Chemical Engineering, College of Chemical Engineering Fuzhou University Fuzhou China
| | - Lianzhi Shen
- Department of Materials‐Oriented Chemical Engineering, College of Chemical Engineering Fuzhou University Fuzhou China
| | - Zhikui Zhao
- Department of Materials‐Oriented Chemical Engineering, College of Chemical Engineering Fuzhou University Fuzhou China
| | - Longqiang Xiao
- Department of Materials‐Oriented Chemical Engineering, College of Chemical Engineering Fuzhou University Fuzhou China
- Qingyuan Innovation Laboratory Quanzhou China
| | - Linxi Hou
- Department of Materials‐Oriented Chemical Engineering, College of Chemical Engineering Fuzhou University Fuzhou China
- Qingyuan Innovation Laboratory Quanzhou China
| |
Collapse
|
11
|
A Review of Supercapacitors: Materials Design, Modification, and Applications. ENERGIES 2021. [DOI: 10.3390/en14227779] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Supercapacitors (SCs) have received much interest due to their enhanced electrochemical performance, superior cycling life, excellent specific power, and fast charging–discharging rate. The energy density of SCs is comparable to batteries; however, their power density and cyclability are higher by several orders of magnitude relative to batteries, making them a flexible and compromising energy storage alternative, provided a proper design and efficient materials are used. This review emphasizes various types of SCs, such as electrochemical double-layer capacitors, hybrid supercapacitors, and pseudo-supercapacitors. Furthermore, various synthesis strategies, including sol-gel, electro-polymerization, hydrothermal, co-precipitation, chemical vapor deposition, direct coating, vacuum filtration, de-alloying, microwave auxiliary, in situ polymerization, electro-spinning, silar, carbonization, dipping, and drying methods, are discussed. Furthermore, various functionalizations of SC electrode materials are summarized. In addition to their potential applications, brief insights into the recent advances and associated problems are provided, along with conclusions. This review is a noteworthy addition because of its simplicity and conciseness with regard to SCs, which can be helpful for researchers who are not directly involved in electrochemical energy storage.
Collapse
|
12
|
Gao K, Su W, Song J. Preparation of Melamine Foam Supported Nanoscale Zero Valent Iron and Its Application for Removal of Cr(VI) from Aqueous Solution and Hydrogenation of p‐Nitrophenol. ChemistrySelect 2021. [DOI: 10.1002/slct.202101608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Kangqi Gao
- Shandong Provincial Key Laboratory of Molecular Engineering School of Chemistry and Chemical Engineering Qilu University of Technology (Shandong Academy of Sciences) Jinan 250353 P. R. China
| | - Wen Su
- Administration of Laboratory and Equipment Management Qilu University of Technology (Shandong Academy of Sciences) Jinan 250353 P. R. China
| | - Jianjun Song
- Shandong Provincial Key Laboratory of Molecular Engineering School of Chemistry and Chemical Engineering Qilu University of Technology (Shandong Academy of Sciences) Jinan 250353 P. R. China
| |
Collapse
|
13
|
Stejskal J, Sapurina I, Vilčáková J, Humpolíček P, Truong TH, Shishov MA, Trchová M, Kopecký D, Kolská Z, Prokeš J, Křivka I. Conducting polypyrrole-coated macroporous melamine sponges: a simple toy or an advanced material? CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-021-01776-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
14
|
Xu S, Hao H, Chen Y, Li W, Shen W, Shearing PR, Brett DJL, He G. Flexible all-solid-state supercapacitors based on PPy/rGO nanocomposite on cotton fabric. NANOTECHNOLOGY 2021; 32:305401. [PMID: 33878745 DOI: 10.1088/1361-6528/abf9c4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 04/20/2021] [Indexed: 06/12/2023]
Abstract
Polypyrrole (PPy) has high electrochemical activity and low cost, so it has great application prospects in wearable supercapacitors. Herein, we have successfully prepared polypyrrole/reduced graphene oxide (PPy/rGO) nanocomposite cotton fabric (NCF) by chemical polymerization, which exhibits splendid electrochemical performance compared with the individual. The addition of rGO can block the deformation of PPy caused by the expansion and contraction. The as-prepared PPy-0.5/rGO NCF electrode exhibits the brilliant specific capacitance (9300 mF cm-2at 1 mA cm-2) and the capacitance retention with 94.47% after 10 000 cycles. At the same time, the superior capacitance stability under different bending conditions and reuse capability have been achieved. All-solid-state supercapacitor has high energy density of 167μWh cm-2with a power density of 1.20 mW cm-2. Therefore, the PPy-0.5/rGO NCF electrode has a broad application prospect in high-performance flexible supercapacitor fabric electrode.
Collapse
Affiliation(s)
- Shuzhen Xu
- College of Material Engineering, Shanghai University of Engineering Science 333 Long Teng Road, Shanghai 201620, People's Republic of China
| | - Huilian Hao
- College of Material Engineering, Shanghai University of Engineering Science 333 Long Teng Road, Shanghai 201620, People's Republic of China
| | - Yinan Chen
- College of Material Engineering, Shanghai University of Engineering Science 333 Long Teng Road, Shanghai 201620, People's Republic of China
| | - Wenyao Li
- College of Material Engineering, Shanghai University of Engineering Science 333 Long Teng Road, Shanghai 201620, People's Republic of China
- Electrochemical Innovation Lab, Department of Chemical Engineering, University College London, London WC1E 7JE, United Kingdom
| | - Wenzhong Shen
- Institute of Solar Energy, and Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Department of Physics and Astronomy, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, People's Republic of China
| | - Paul R Shearing
- Electrochemical Innovation Lab, Department of Chemical Engineering, University College London, London WC1E 7JE, United Kingdom
| | - Dan J L Brett
- Electrochemical Innovation Lab, Department of Chemical Engineering, University College London, London WC1E 7JE, United Kingdom
| | - Guanjie He
- Electrochemical Innovation Lab, Department of Chemical Engineering, University College London, London WC1E 7JE, United Kingdom
- School of Chemistry, University of Lincoln, Joseph Banks Laboratories, Green Lane, Lincoln, LN6 7DL, United Kingdom
| |
Collapse
|
15
|
Li J, Feng Y, Cao M, Yang L, Yao J. Direct Coating Pen Ink Carbon on a Carbonized Melamine Sponge as a Flexible Free-Standing Electrode. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.0c05815] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Jingqiu Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yi Feng
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Mengjue Cao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Lvye Yang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Jianfeng Yao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
- Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, Nanjing 210037, China
| |
Collapse
|
16
|
Chondath SK, Menamparambath MM. Interface-assisted synthesis: a gateway to effective nanostructure tuning of conducting polymers. NANOSCALE ADVANCES 2021; 3:918-941. [PMID: 36133281 PMCID: PMC9419666 DOI: 10.1039/d0na00940g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/08/2021] [Indexed: 06/15/2023]
Abstract
The interface-assisted polymerization technique can be viewed as a powerful emerging tool for the synthesis of conducting polymers (CPs) on a large scale. Contrary to other bulk or single-phase polymerization techniques, interface-assisted synthesis strategies offer effective nanostructure control in a confined two-dimensional (2-D) space. This review focuses on the types of interfaces, mechanism at the interface, advantages and future perspectives of the interfacial polymerization in comparison to conventional polymerization techniques. Hence, the primary focus is on briefing the different types of the chemical methods of polymerization, followed by uniqueness in the reaction dynamics of interface polymerization. The classification of interfaces into four types (liquid/solid, gas/liquid, liquid/liquid, and gas/solid) is based on the versatility and underlying mechanistic pathway of the polymerization of each type. The role of interface in tuning the nanostructure of CPs and the performance evaluation of pristine CPs based on the electrical conductivity are also discussed. Finally, the future outlook of this emerging field is discussed and proposed in detail through some multifunctional applications of synthesized conducting polymers.
Collapse
Affiliation(s)
- Subin Kaladi Chondath
- Department of Chemistry, National Institute of Technology Calicut Calicut 673601 Kerala India
| | - Mini Mol Menamparambath
- Department of Chemistry, National Institute of Technology Calicut Calicut 673601 Kerala India
| |
Collapse
|
17
|
Shang K, Gao J, Yin X, Ding Y, Wen Z. An Overview of Flexible Electrode Materials/Substrates for Flexible Electrochemical Energy Storage/Conversion Devices. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202001024] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Kezheng Shang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures Fujian Provincial Key Laboratory of Nanomaterials Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Jiyuan Gao
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures Fujian Provincial Key Laboratory of Nanomaterials Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Ximeng Yin
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures Fujian Provincial Key Laboratory of Nanomaterials Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002 China
- College of Chemistry Fuzhou University Fuzhou 350002 China
| | - Yichun Ding
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures Fujian Provincial Key Laboratory of Nanomaterials Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002 China
- University of Chinese Academy of Sciences Beijing 100049 China
- College of Chemistry Fuzhou University Fuzhou 350002 China
| | - Zhenhai Wen
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures Fujian Provincial Key Laboratory of Nanomaterials Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002 China
- University of Chinese Academy of Sciences Beijing 100049 China
- College of Chemistry Fuzhou University Fuzhou 350002 China
| |
Collapse
|
18
|
Chen J, Wang Y, Cao J, Liao L, Liu Y, Zhou Y, Ouyang JH, Jia D, Wang M, Li X, Li Z. Pulsed electrochemical fabrication of graphene/polypyrrole composite gel films for high performance and flexible supercapacitors. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.137036] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
19
|
Sun L, Song G, Sun Y, Fu Q, Pan C. MXene/N-Doped Carbon Foam with Three-Dimensional Hollow Neuron-like Architecture for Freestanding, Highly Compressible All Solid-State Supercapacitors. ACS APPLIED MATERIALS & INTERFACES 2020; 12:44777-44788. [PMID: 32930574 DOI: 10.1021/acsami.0c13059] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Currently, the MXene-based flexible supercapacitors have caused much attention due to their excellent mechanical performance and novel electrical property. However, the aggregation and rearrangement of MXene nanosheets in the process of electrode preparation limit their electrochemical performance. Herein, a kind of novel MXene/N-doped carbon foam (MXene/NCF) compressible composite with three-dimensional (3D) hollow interconnected neuron-like architecture is directly prepared by one-step pyrolysis and used for the freestanding, highly compressible supercapacitors. The synergistic effect exists in the MXene/NCF composite when applied to supercapacitors: NCF can provide the additional pseudocapacitance by N atom doping and simultaneously supports the MXene nanosheets to construct the 3D hollow interconnected neuron-like architecture for supplying highly stable, efficient channels for ion diffusion/electron transport and more contact sites, and that the MXene enhances conductivity and hydrophilicity. Therefore, the freestanding MXene/NCF electrode shows a remarkable gravimetric capacitance of 332 F g-1 and volumetric capacitance of 3162 mF cm-3, superior rate performance of 64% (from 0.5 to 100 A g-1), and 99.2% capacity retention after 10,000 cycles. Significantly, the MXene/NCF-based all solid-state supercapacitors still show a high specific capacitance and a large rate performance. In addition, the device can be compressed arbitrarily under 60% strain with almost no change in morphology and electrochemical property. These excellent properties expect that the MXene/NCF composite has broad applications in the field of flexible supercapacitors.
Collapse
Affiliation(s)
- Li Sun
- School of Physics and Technology, and MOE Key Laboratory of Artificial Micro- and Nano-structures, Wuhan University, Wuhan 430072, China
| | - Gongsheng Song
- School of Physics and Technology, and MOE Key Laboratory of Artificial Micro- and Nano-structures, Wuhan University, Wuhan 430072, China
| | - Yafei Sun
- School of Intelligent Manufacturing and Equipment, Shenzhen Institute of Information Technology, Shenzhen 518172, China
| | - Qiang Fu
- Center for Electron Microscopy, Wuhan University, Wuhan 430072, China
| | - Chunxu Pan
- School of Physics and Technology, and MOE Key Laboratory of Artificial Micro- and Nano-structures, Wuhan University, Wuhan 430072, China
- Center for Electron Microscopy, Wuhan University, Wuhan 430072, China
| |
Collapse
|