1
|
Pourbakhsh M, Jabraili M, Akbari M, Jaymand M, Jahanban Esfahlan R. Poloxamer-based drug delivery systems: Frontiers for treatment of solid tumors. Mater Today Bio 2025; 32:101727. [PMID: 40275957 PMCID: PMC12018049 DOI: 10.1016/j.mtbio.2025.101727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 03/29/2025] [Accepted: 04/01/2025] [Indexed: 04/26/2025] Open
Abstract
Pluronics or poloxamers are a type of triblock copolymer. These non-ionic molecules consist of a hydrophobic block embedded in two hydrophilic parts. Pluronics have become favorite materials for use in the field of biomedical research due to having favorable physicochemical and biological properties such as amphiphilicity, solubility in ionic and non-ionic solutions, biocompatibility, biodegradability, self-assembly and low toxicity. The scope of these applications can vary from tissue engineering to drug delivery. One of the important uses of pluronics is to deliver drugs to various cancer cells. Herein we first provide an overview on variety of ploronic biomaterials. And then intensively evaluate their potential as drug delivery systems (DDSs) for treatment of solid tumors with special focus on breast cancers. After explaining the pros and cons of pluronics, the current status in clinical settings and future prospects are highlighted.
Collapse
Affiliation(s)
- Mehdi Pourbakhsh
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Masoud Jabraili
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Morteza Akbari
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Jaymand
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Rana Jahanban Esfahlan
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
2
|
Ghazizadeh Y, Sharifi-Ardani SE, Tajik N, Mirzaei R, Pourahmad J. Exploring the Potential of Mitochondria-Targeted Drug Delivery for Enhanced Breast Cancer Therapy. Int J Breast Cancer 2025; 2025:3013009. [PMID: 40224721 PMCID: PMC11991819 DOI: 10.1155/ijbc/3013009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 02/11/2025] [Indexed: 04/15/2025] Open
Abstract
Breast cancer stands as the utmost prevalent malignancy in women, impacting the epithelial tissue of the breast and often displaying resistance to effective treatment due to its diverse molecular and histological features. Current treatment modalities may exhibit decreasing efficacy over time and can lead to disease progression. The mitochondria, a crucial organelle responsible for cellular metabolism and energy supply, stand highly sensitive to both heat and reactive oxygen species, presenting an assuring target for photodynamic and photothermal therapies (PTTs) in cancer cure. The employment of nanodrug carriers for combination deliveries holds promise in addressing challenges related to drug degradation and off-target toxicity. By circumventing the reticuloendothelial system, nanocarriers bolster the drug's bioavailability at the intended site and ensure controlled codelivery of multiple drugs, thereby maintaining the normal pharmacokinetic features and the regular pharmacodynamic characteristics of different therapeutic mechanisms. The precision and efficacy of this innovative technology have revolutionized drug delivery, substantially enhancing treatment effectiveness. In the pursuit of targeting mitochondrial modifications in cancer cells, various combination therapies such as photodynamic therapy (PDT), PTT, and chemodynamic therapy (CDT) have been explored. These therapies have improved the efficiency of mitochondria-targeted cancer treatment due to their advantageous properties of minimal toxicity, noninvasiveness, reduced drug resistance, and a safer profile. Our review article provides an exhaustive overview of alterations in the mitochondrial environment in BC, their impact on BC development, potential mitochondrial targets for BC treatment, nanotherapeutic approaches for targeting mitochondria, and the limitations of these approaches.
Collapse
Affiliation(s)
- Yalda Ghazizadeh
- Student Research Committee, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Negin Tajik
- Student Research Committee, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Roya Mirzaei
- Pharmaceutical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Jalal Pourahmad
- Department of Toxicology and Pharmacology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Hu K, Li X, Tan Z, Shi Y. Simple ROS-responsive micelles loaded Shikonin for efficient ovarian cancer targeting therapy by disrupting intracellular redox homeostasis. Eur J Pharm Biopharm 2024; 204:114525. [PMID: 39370057 DOI: 10.1016/j.ejpb.2024.114525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/16/2024] [Accepted: 10/04/2024] [Indexed: 10/08/2024]
Abstract
Ovarian cancer is the most common malignant tumor in women. Shikonin (SHK), an herbal extract from Chinese medicine, shows promise in treating ovarian cancer by inducing reactive oxygen species (ROS). However, its clinical use is limited by poor tumor targeting and low bioavailability, and its therapeutic potential is further compromised by the elevated levels of antioxidants such as glutathione (GSH) within tumor cells. In this study, a novel formulation of ROS-responsive micelles loaded with SHK was developed using hyaluronic acid-phenylboronic acid pinacol ester conjugation (HA-PBAP) for targeted therapy of ovarian cancer through disruption of intracellular redox homeostasis. The SHK@HA-PBAP exhibits targeted delivery to ovarian cancer cells through the interaction between HA and CD44 receptors. Upon internalization by cancer cells, the high levels of intracellular ROS triggered the degradation of SHK@HA-PBAP and simultaneously released SHK and generated GSH scavenger quinone methide (QM). The SHK and QM released from the SHK@HA-PBAP effectively induce the production of ROS and deplete intracellular GSH, leading to the disruption of intracellular redox homeostasis and subsequent induction of cell death. These characteristics collectively inhibit the growth of ovarian cancer. In vitro and in vivo studies have demonstrated that SHK@HA-PBAP micelles exhibit superior antitumor efficacy compared to free SHK in both A2780 cells and A2780 tumor-bearing mice. The ROS-responsive SHK@HA-PBA presents a promising therapeutic approach for the treatment of ovarian cancer.
Collapse
Affiliation(s)
- Kangyuan Hu
- GCP Office, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200123, PR China
| | - Xiuhua Li
- GCP Office, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200123, PR China; Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200123, PR China
| | - Zhaodan Tan
- GCP Office, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200123, PR China
| | - Yan Shi
- GCP Office, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200123, PR China.
| |
Collapse
|
4
|
Liu G, Jiao H, Wang K, Chang P, Jiao Y. Synthesis and evaluation of folate-mediated targeting and poly (β-amino ester)-mediated pH-responsive delivery system of riccardin D based on the O-carboxymethylated chitosan micelles. Int J Biol Macromol 2023; 247:125742. [PMID: 37437681 DOI: 10.1016/j.ijbiomac.2023.125742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 06/16/2023] [Accepted: 07/06/2023] [Indexed: 07/14/2023]
Abstract
This study aimed to combine the active targeting function of folate (FA) receptor-mediated endocytosis with the pH-responsive drug delivery of poly (ethylene glycol)-grafted-poly (-amino ester) copolymers (PEG-PAE) in cancer targeting therapy. Herein, O-carboxymethylated chitosan (OCMC) was grafted with hydrophobic deoxycholic acid (DOCA). Further, PEG-PAE and FA-conjugated DOCA modified OCMC were synthesized to develop the potential cancer-targeted carrier (PEG-PAE-DOMC-FA), for which the structure was investigated by 1H NMR and FTIR. Then riccardin D (RD) was successfully loaded for tumor-targeted drug delivery. The particle size, zeta potential, encapsulating efficiencies, and loading content profiles of PEG-PAE-DOMC-FA/RD showed a strong dependence on the environmental pH values. The cumulative release of PEG-PAE-DOMC-FA/RD at pH 5.0 (90.63 %) was higher than pH 7.4 (51.12 %), which also indicated the pH sensitivity. Moreover, a lower IC50 and higher coumarin-6 uptake were found because of the folate-receptor-mediated endocytosis. In pharmacokinetic study, PEG-PAE-DOMC-FA/RD significantly improved the mean retention time (MRT) and AUC(0-∞) from 7.89 h and 36.1 mg/L·h of control group to 10.03 h and 123.8 mg/L·h. In the xenograft mice model, stronger antitumor efficacy and lower toxicity were confirmed. In conclusion, the multi-functional micelles could be considered as a promising vehicle for delivering hydrophobic drugs to tumors.
Collapse
Affiliation(s)
- Guangpu Liu
- Department of Pharmacy, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Hui Jiao
- National Institute of Metrology, Beijing 100029, China
| | - Kaiming Wang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Ping Chang
- Department of Pharmacy, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China.
| | - Yang Jiao
- Shandong Institute for Food and Drug Control, Jinan 250012, China.
| |
Collapse
|
5
|
Khaliq NU, Lee J, Kim S, Sung D, Kim H. Pluronic F-68 and F-127 Based Nanomedicines for Advancing Combination Cancer Therapy. Pharmaceutics 2023; 15:2102. [PMID: 37631316 PMCID: PMC10458801 DOI: 10.3390/pharmaceutics15082102] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/20/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
Pluronics are amphiphilic triblock copolymers composed of two hydrophilic poly (ethylene oxide) (PEO) chains linked via a central hydrophobic polypropylene oxide (PPO). Owing to their low molecular weight polymer and greater number of PEO segments, Pluronics induce micelle formation and gelation at critical micelle concentrations and temperatures. Pluronics F-68 and F-127 are the only United States (U.S.) FDA-approved classes of Pluronics and have been extensively used as materials for living bodies. Owing to the fascinating characteristics of Pluronics, many studies have suggested their role in biomedical applications, such as drug delivery systems, tissue regeneration scaffolders, and biosurfactants. As a result, various studies have been performed using Pluronics as a tool in nanomedicine and targeted delivery systems. This review sought to describe the delivery of therapeutic cargos using Pluronic F-68 and F-127-based cancer nanomedicines and their composites for combination therapy.
Collapse
Affiliation(s)
- Nisar Ul Khaliq
- Department of Chemistry and Bioscience, Kumoh National Institute of Technology, 61 Daehak-ro, Gumi 39177, Republic of Korea
| | - Juyeon Lee
- Department of Chemistry and Bioscience, Kumoh National Institute of Technology, 61 Daehak-ro, Gumi 39177, Republic of Korea
| | - Sangwoo Kim
- Center for Bio-Healthcare Materials, Bio-Convergence Materials R&D Division, Korea Institute of Ceramic Engineering and Technology, 202 Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju 28160, Republic of Korea
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Daekyung Sung
- Center for Bio-Healthcare Materials, Bio-Convergence Materials R&D Division, Korea Institute of Ceramic Engineering and Technology, 202 Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju 28160, Republic of Korea
| | - Hyungjun Kim
- Department of Chemistry and Bioscience, Kumoh National Institute of Technology, 61 Daehak-ro, Gumi 39177, Republic of Korea
| |
Collapse
|
6
|
Luo H, Wang Z, Mo Q, Yang J, Yang F, Tang Y, Liu J, Li X. Framework Nucleic Acid-Based Multifunctional Tumor Theranostic Nanosystem for miRNA Fluorescence Imaging and Chemo/Gene Therapy. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37421332 DOI: 10.1021/acsami.3c01611] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2023]
Abstract
Intelligent stimulus-responsive theranostic systems capable of specifically sensing low-abundance tumor-related biomarkers and efficiently killing tumors remain a pressing endeavor. Here, we report a multifunctional framework nucleic acid (FNA) nanosystem for simultaneous imaging of microRNA-21 (miR-21) and combined chemo/gene therapy. To achieve this, two FNA nanoarchitectures labeled with Cy5/BHQ2 signal tags were designed, each of which contained an AS1411 aptamer, two pairs of DNA/RNA hybrids, a pH-sensitive DNA catcher, and doxorubicin (DOX) intercalating between cytosine and guanine in the tetrahedral DNA nanostructure (TDN). In the acidic tumor microenvironment, the DNA catchers spontaneously triggered to form an i-motif and create an FNA dimer (dFNA) while releasing DOX molecules to exert a cytotoxic effect. In addition, the overexpressed miR-21 in tumor cells dismantled the DNA/RNA hybrids to produce vascular endothelial growth factor-associated siRNA via a toehold-mediated strand displacement reaction, thus enabling a potent RNA interfering. Also importantly, the liberated miR-21 could initiate cascade-reaction amplification to efficiently activate the Cy5 signal reporters, thereby realizing on-site fluorescence imaging of miR-21 in living cells. The exquisitely designed FNA-based nanosystem showed favorable biocompatibility and stability as well as acid-driven DOX release characteristics. Owing to the aptamer-guided targeting delivery, specific uptake of the FNA-based theranostic nanosystem by HepG2 cells was verified with confocal laser scanning microscopy and flow cytometry analyses, which therefore resulted in apoptosis of HepG2 cells while doing minimal damage to normal H9c2 and HL-7702 cells. Strikingly, both in vitro and in vivo experiments demonstrated the achievements of the FNA-enabled miR-21 imaging and synergistically enhanced chemo/gene therapy. This work thus represents a noteworthy advance on the FNA-based theranostic strategy that can effectively avoid the undesirable premature leakage of anticarcinogen and off-target of siRNA, and achieve on-demand reagents release for tumor diagnostics and treatment.
Collapse
Affiliation(s)
- Haikun Luo
- Key Laboratory of Micro-Nanoscale Bioanalysis and Drug Screening of Guangxi Education Department, Pharmaceutical College, Guangxi Medical University, 22 Shuangyong Road, Nanning, Guangxi 530021, China
| | - Zhao Wang
- Key Laboratory of Micro-Nanoscale Bioanalysis and Drug Screening of Guangxi Education Department, Pharmaceutical College, Guangxi Medical University, 22 Shuangyong Road, Nanning, Guangxi 530021, China
- School of Medicine, Xiamen University, Xiang-an South Road, Xiamen 361102, China
| | - Qian Mo
- Key Laboratory of Micro-Nanoscale Bioanalysis and Drug Screening of Guangxi Education Department, Pharmaceutical College, Guangxi Medical University, 22 Shuangyong Road, Nanning, Guangxi 530021, China
| | - Jianying Yang
- Key Laboratory of Micro-Nanoscale Bioanalysis and Drug Screening of Guangxi Education Department, Pharmaceutical College, Guangxi Medical University, 22 Shuangyong Road, Nanning, Guangxi 530021, China
| | - Fan Yang
- Key Laboratory of Micro-Nanoscale Bioanalysis and Drug Screening of Guangxi Education Department, Pharmaceutical College, Guangxi Medical University, 22 Shuangyong Road, Nanning, Guangxi 530021, China
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, Guangxi Medical University, 22 Shuangyong Road, Nanning, Guangxi 530021, China
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Medical University, 22 Shuangyong Road, Nanning, Guangxi 530021, China
| | - Yujin Tang
- Department of Orthopedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi 533000, China
| | - Jia Liu
- Department of Orthopedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi 533000, China
| | - Xinchun Li
- Key Laboratory of Micro-Nanoscale Bioanalysis and Drug Screening of Guangxi Education Department, Pharmaceutical College, Guangxi Medical University, 22 Shuangyong Road, Nanning, Guangxi 530021, China
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, Guangxi Medical University, 22 Shuangyong Road, Nanning, Guangxi 530021, China
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Medical University, 22 Shuangyong Road, Nanning, Guangxi 530021, China
| |
Collapse
|
7
|
Cheng X, Wang L, Liu L, Shi S, Xu Y, Xu Z, Wei B, Li C. A sequentially responsive cascade nanoplatform for increasing chemo-chemodynamic therapy. Colloids Surf B Biointerfaces 2023; 222:113099. [PMID: 36584448 DOI: 10.1016/j.colsurfb.2022.113099] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/27/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
Poly(lactide-co-glycolide) (PLGA) is promising carrier material for drugs delivery in cancer therapy. However, the slow degradation and lack of targeting have greatly limited the clinical effectiveness of PLGA-based nanomedicines. Herein, we fabricated a hybrid nanosystem (3 P @ He/Pt-NPs) comprising of acid-sensitive polymer (mPOE-PLGA), active-targeting polymer (PBA-PLGA) and therapeutic agents (hemin+cisplatin) to combat these problems. In neutral environment, PEGylation can effectively improve the blood stability and circulation time of hybrid nanosystem. After reaching tumor regions, this nanosystem efficiently increased cellular uptake by dePEGylation and PBA-mediated active-targeting. Furthermore, encapsulated hemin could catalyze the oxygen bubbles generation, which remarkably increasing the drugs release rate. Subsequently, hybrid particles produced a higher cell-killing effect to lung cancer cells (A549) by the combination therapy (chemotherapy and chemodynamic therapy (CDT)). Importantly, cisplatin further amplified CDT effect by inducing H2O2 regeneration owing to the cascade enzymatic reactions, while hemin decreased intracellular glutathione (GSH) level, resulting in a low detoxification effect to cisplatin. Thus, hybrid particles could efficiently inhibit drug-resistant tumor growth and the inhibition rate reached 83.2%. Overall, this hybrid polymer nanosystem improve the drawbacks of PLGA-based nanocarriers, and can realize a cascading enhanced tumor treatment.
Collapse
Affiliation(s)
- Xu Cheng
- School of Life Sciences, Anqing Normal University, Anqing 246052, PR China
| | - Lu Wang
- School of Life Sciences, Anqing Normal University, Anqing 246052, PR China
| | - Liwen Liu
- School of Life Sciences, Anqing Normal University, Anqing 246052, PR China
| | - Shuiqing Shi
- School of Life Sciences, Anqing Normal University, Anqing 246052, PR China
| | - Yingran Xu
- School of Life Sciences, Anqing Normal University, Anqing 246052, PR China
| | - Zhengrong Xu
- School of Life Sciences, Anqing Normal University, Anqing 246052, PR China
| | - Bing Wei
- Research Center of Anti-aging Chinese Herbal Medicine of Anhui Province, Biology and Food Engineering School, Fuyang Normal University, Fuyang 236037, PR China.
| | - Conghu Li
- School of Life Sciences, Anqing Normal University, Anqing 246052, PR China.
| |
Collapse
|
8
|
de Castro KC, Coco JC, Dos Santos ÉM, Ataide JA, Martinez RM, do Nascimento MHM, Prata J, da Fonte PRML, Severino P, Mazzola PG, Baby AR, Souto EB, de Araujo DR, Lopes AM. Pluronic® triblock copolymer-based nanoformulations for cancer therapy: A 10-year overview. J Control Release 2023; 353:802-822. [PMID: 36521691 DOI: 10.1016/j.jconrel.2022.12.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022]
Abstract
This paper provides a review of the literature on the use of Pluronic® triblock copolymers for drug encapsulation over the last 10 years. A special focus is given to the progress of drug delivery systems (e.g., micelles, liposomes, micro/nanoemulsions, hydrogels and nanogels, and polymersomes and niosomes); the beneficial aspects of Pluronic® triblock copolymers as biological response modifiers and as pharmaceutical additives, adjuvants, and stabilizers, are also discussed. The advantages and limitations encountered in developing site-specific targeting approaches based on Pluronic-based nanostructures in cancer treatment are highlighted, in addition to innovative examples for improving tumor cytotoxicity while reducing side effects.
Collapse
Affiliation(s)
| | - Julia Cedran Coco
- Faculty of Pharmaceutical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | | | - Janaína Artem Ataide
- Faculty of Pharmaceutical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | | | | | - João Prata
- Institute for Bioengineering and Biosciences (iBB), Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal; Associate Laboratory i4HB-Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Pedro Ricardo Martins Lopes da Fonte
- Institute for Bioengineering and Biosciences (iBB), Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal; Associate Laboratory i4HB-Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; Center for Marine Sciences (CCMAR), University of Algarve, Gambelas Campus, Portugal; Department of Chemistry and Pharmacy, Faculty of Sciences and Technology, University of Algarve, Gambelas Campus, 8005-139 Faro, Portugal
| | - Patrícia Severino
- Nanomedicine and Nanotechnology Laboratory (LNMed), Institute of Technology and Research (ITP) and Tiradentes University, Aracaju, Brazil
| | - Priscila Gava Mazzola
- Faculty of Pharmaceutical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | - André Rolim Baby
- Faculty of Pharmaceutical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | - Eliana Barbosa Souto
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; REQUIMTE/UCIBIO, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | | | - André Moreni Lopes
- Faculty of Pharmaceutical Sciences, University of Campinas (UNICAMP), Campinas, Brazil.
| |
Collapse
|
9
|
Karimi-Soflou R, Karkhaneh A, Shabani I. Size-adjustable self-assembled nanoparticles through microfluidic platform promotes neuronal differentiation of mouse embryonic stem cells. BIOMATERIALS ADVANCES 2022; 140:213056. [PMID: 35932661 DOI: 10.1016/j.bioadv.2022.213056] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/16/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
Neuronal differentiation from stem cells is one of the most potent therapeutic approaches for recovering neurological function in individuals with neurodegenerative disorders. Herein, an on-demand intracellular retinoic acid released nanoparticles with tunable size and accurately controlled physico-biological properties have been prepared for achieving efficient neuronal differentiation. The amphiphilic chitosan oligosaccharide-cholesterol copolymers were synthesized by varying cholesterol content and self-assembled into spherical micelle in a microfluidic chip with different flow rates. Notably, the results indicated that by increasing the lipophilicity of the chitosan chain as well as mixing rate, the size of micelles was decreased. Retinoic acid (RA) was efficiently encapsulated in the core of micelles. The retinoic acid-containing nanoparticles could escape lysosome, accumulate in the cytoplasm, and release payload with a sustained pattern. The cytotoxicity assay of free retinoic acid and retinoic acid-loaded formulations against P19 embryonic stem cells confirmed the desirable safety of micelles. The result obtained from the uptake study showed that internalization of micelles occurs predominantly via lipid-raft endocytosis in the presence of higher cholesterol content. Moreover, the intracellular RA release upregulated the expression levels of neuronal factors. The micelles described here offer a promising nanomedicine strategy for neuronal differentiation of stem cells.
Collapse
Affiliation(s)
- Reza Karimi-Soflou
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Iran
| | - Akbar Karkhaneh
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Iran.
| | - Iman Shabani
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Iran.
| |
Collapse
|
10
|
Gharnas‐Ghamesh H, Masoumi M, Erfani‐Moghadam V. Synthesis of doxorubicin‐loaded
PBMA‐b‐POEGMA
micelles and assessment of its anticancer activity against breast cancer cells (4T1). J Appl Polym Sci 2022. [DOI: 10.1002/app.52162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Hamideh Gharnas‐Ghamesh
- Department of Chemical Engineering, Ayatollah Amoli Branch Islamic Azad University Amol Iran
| | - Mojtaba Masoumi
- Department of Chemical Engineering, Ayatollah Amoli Branch Islamic Azad University Amol Iran
| | - Vahid Erfani‐Moghadam
- Medical Cellular and Molecular Research Center Golestan University of Medical Sciences Gorgan Iran
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine Golestan University of Medical Sciences Gorgan Iran
| |
Collapse
|
11
|
Aqeel R, Srivastava N, Kushwaha P. Micelles in Cancer Therapy: An Update on Preclinical and Clinical Status. RECENT PATENTS ON NANOTECHNOLOGY 2022; 16:283-294. [PMID: 34303336 DOI: 10.2174/1872210515666210720125717] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 03/24/2021] [Accepted: 04/05/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND In the recent years, Micelles represent a promising carrier for the treatment and diagnosis of cancer. Architecturally, micelles are self-assembled nanosized colloidal aggregates prepared from amphiphilic surfactant with a hydrophobic core and hydrophilic shell. Such a composition makes them a potential carrier for delivery of hydrophobic anticancer drugs with in their core. METHODS Micelles have received increasing interest as an enhanced permeability and retention (EPR) targeted drug delivery systems for cancer treatment. Micelles can be modified to contribute various attractive properties, for instance, active targeting, stimuli-responsiveness. They have also proven their ability in drug targeting to tumor tissue, enhanced drug accumulation, drug stabilization, tissue penetration, prolong circulation, in vivo biocompatibility, biodegradability and reduced side effects. Micelles have displayed a vital role in multidrug delivery for cancer therapy. RESULTS AND DISCUSSION The aim of the present review is to provide an overview on the status of micellar nanoformulations for anticancer agents, including their pre-clinical and clinical researches. Emphasis is placed on presenting the newer strategies to enhance the therapeutic efficacy of anticancer drug at the target site. The type of co-polymers used and methods for the preparation of micelles are also highlighted in the paper.
Collapse
Affiliation(s)
- Rabia Aqeel
- Faculty of Pharmacy, Integral University, Lucknow, India
| | - Nidhi Srivastava
- Herbal Medicinal Product Department, CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, UP-226015, India
| | | |
Collapse
|
12
|
Long M, Xu J, Fang W, Mao J, Zhang J, Liu S, Qiu L. Enhanced delivery of artesunate by stimuli-responsive polymeric micelles for lung tumor therapy. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102812] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
13
|
Li J, Wang Y, Xu C, Yu Q, Wang X, Xie H, Tian L, Qiu Y, Guo R, Lu Z, Li M, He Q. Rapid pH-responsive self-disintegrating nanoassemblies balance tumor accumulation and penetration for enhanced anti-breast cancer therapy. Acta Biomater 2021; 134:546-558. [PMID: 33882357 DOI: 10.1016/j.actbio.2021.04.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 04/06/2021] [Accepted: 04/12/2021] [Indexed: 01/08/2023]
Abstract
The dilemma of tumor accumulation and deep penetration has always been a barrier in antitumor therapy. Stimuli-responsive size changeable drug delivery systems provide possible solutions. Nevertheless, the low size-shrinkage efficiency limited the antitumor effects. In this study, an instant pH-responsive size shrinkable nanoassemblies named self-aggregated DOX@HA-CD (SA-DOX@HA-CD) was formulated using small-sized hyaluronic acid modified carbon dots (HA-CD) as monomers, which could self-aggregate into raspberry-like structure via hydrophobicity force in neutral pH and rapidly disassemble into shotgun-like DOX-loaded CD monomer in simulated tumor microenvironment (pH 6.5), owing to the transformation in electrical charge and hydrophobicity/hydrophilicity of this system. The transmission electron microscopy showed that the clustered SA-DOX@HA-CD had a diameter of ~150 nm, and thoroughly disassembled into ~30 nm nanoparticles in response to acidic environment. The disassemble efficiency was approximately 100%. Attributed to this property, SA-DOX@HA-CD led to enhanced cellular internalization and accumulation in 4T1 cells in simulated tumor microenvironment, as well as deep tumor penetration in 3D tumor spheroid model. Besides, the imine bond between DOX and HA-CD endowed DOX with pH-responsive release profile in the acidic lysosome environment. Furthermore, in the orthotopic 4T1 tumor-bearing mouse model, SA-DOX@HA-CD demonstrated higher tumor accumulation than non-aggregated DOX-HA-CD. Meanwhile, in response to the acid tumor microenvironment, the dissociated DOX-HA achieved deep tumor penetration, which consequently resulted in 2.5-fold higher antitumor efficiency. The formulation of self-aggregated SA-DOX@HA-CD provides a simple and effective alternative to prepare pH-responsive size-shrinkable nanodrug delivery systems. STATEMENT OF SIGNIFICANCE: The heterogeneity of tumor vasculature and the high tumor interstitial pressure lead to the barriers in tumor accumulation and deep penetration, which calls for opposite properties (e.g. size) of drug delivery systems. To address this dilemma, various size changeable nanoparticles have been developed utilizing special features of tumor microenvironment, such as pH, enzyme and reactive oxygen species. Nevertheless, the current strategies face the problems of incomplete hydrolysis of chemical bonds or insufficient enzyme degradation, which result in only partial size shrinkage, hindering the tumor deep penetration effects. Here we developed a self-assembled nanocluster, which could respond to acidic pH rapidly and thoroughly disassemble into small nanodots due to the alteration of hydrophobicity/hydrophilicity/charge, leading to approximately 100% dissociation. This strategy provides a new concept for design of size changeable drug delivery systems.
Collapse
Affiliation(s)
- Jianping Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China
| | - Yashi Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China
| | - Chaoqun Xu
- Sichuan Academy of Chinese Medicine Science, Chengdu, 610041, People's Republic of China
| | - Qianwen Yu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China
| | - Xuhui Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China
| | - Hanbing Xie
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University and the Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, 610064, People's Republic of China
| | - Lifeng Tian
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China
| | - Yue Qiu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China
| | - Rong Guo
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China
| | - Zhengze Lu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China
| | - Man Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China.
| | - Qin He
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China.
| |
Collapse
|
14
|
Interplay of distributions of multiple guest molecules in block copolymer micelles: A dissipative particle dynamics study. J Colloid Interface Sci 2021; 607:1142-1152. [PMID: 34571301 DOI: 10.1016/j.jcis.2021.09.057] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/01/2021] [Accepted: 09/10/2021] [Indexed: 01/09/2023]
Abstract
HYPOTHESIS Delivery of multiple payloads using the same micelle is of significance to achieve multifunctional or synergistic effects. The interacting distribution of different payloads in micelles is expected to influence the loading stability and capacity. It is highly desirable to explore how intermolecular interactions affect the joint distribution of multi-payloads. EXPERIMENTS Dissipative Particle Dynamics simulations were performed to probe the loading of three payloads: decane with a linear carbon chain, butylbenzene with an aromatic ring connected to carbon chain, and naphthalene with double aromatic rings, within poly(β-amino ester)-b-poly(ethylene glycol) micelles. Properties of core-shell micelles, e.g., morphological evolution, radial density distribution, mean square displacement, and contact statistics, were analyzed to reveal payloads loading stability and capacity. Explorations were extended to vesicular, multi-compartment, double helix, and layer-by-layer micelles with more complex inner structures. FINDINGS Different payloads have their own preferred locations. Decane locates at the hydrophilic/hydrophobic interface, butylbenzene occupies both the hydrophilic/hydrophobic interface and the hydrophobic core, while naphthalene enters the hydrophobic core. More efficient delivery of multi-payloads is achieved since the competition of payloads occupying preferred locations is minimized. The fusion of micelles encapsulating different payloads suggests that specific payloads will move to their preferred positions without interfering other payloads.
Collapse
|
15
|
Lori MS, Ohadi M, Estabragh MAR, Afsharipour S, Banat IM, Dehghannoudeh G. pH-sensitive polymer-based carriers as a useful approach for oral delivery of therapeutic protein: A review. Protein Pept Lett 2021; 28:1230-1237. [PMID: 34303327 DOI: 10.2174/0929866528666210720142841] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/12/2021] [Accepted: 04/20/2021] [Indexed: 11/22/2022]
Abstract
There are many proteins and enzymes in the human body, and their dysfunction can lead to disease. The use of proteins as a drug is common in various diseases such as diabetes. Proteins are hydrophilic molecules whose spatial structure is critical to their correct function. There are different ways to the administration of proteins. Protein structures are degraded by gastric acid and enzymes in the gastrointestinal tract and have a slight ability to permeation from the gastrointestinal epithelium due to their large hydrophilic nature. Therefore, their oral use has limitations. Since the oral use of drugs is one of the best and easiest routes for patients, many studies have been done to increase the stability, penetration and ultimately increase the bioavailability of proteins through oral administration. One of the studied strategies for oral delivery of protein is the use of pH-sensitive polymer-based carriers. These carriers use different pH-sensitive polymers such as eudragit®, chitosan, dextran, and alginate. The use of pH-sensitive polymer-based carriers by protecting the protein from stomach acid (low pH) and degrading enzymes, increasing permeability, and maintaining the spatial structure of the protein leads to increased bioavailability. In this review, we focus on the various polymers used to prepare pH-sensitive polymer-based carriers for the oral delivery of proteins.
Collapse
Affiliation(s)
- Maryam Shamseddini Lori
- Department of Pharmaceutics, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Mandana Ohadi
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Sepehr Afsharipour
- Department of Pharmaceutics, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Ibrahim M Banat
- School of Biomedical Sciences, Faculty of Life & Health Sciences, University of Ulster, Coleraine BT52 1SA, Northern Ireland, United Kingdom
| | - Gholamreza Dehghannoudeh
- Department of Pharmaceutics, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
16
|
Yu J, Qiu H, Yin S, Wang H, Li Y. Polymeric Drug Delivery System Based on Pluronics for Cancer Treatment. Molecules 2021; 26:3610. [PMID: 34204668 PMCID: PMC8231161 DOI: 10.3390/molecules26123610] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 02/07/2023] Open
Abstract
Pluronic polymers (pluronics) are a unique class of synthetic triblock copolymers containing hydrophobic polypropylene oxide (PPO) and hydrophilic polyethylene oxide (PEO) arranged in the PEO-PPO-PEO manner. Due to their excellent biocompatibility and amphiphilic properties, pluronics are an ideal and promising biological material, which is widely used in drug delivery, disease diagnosis, and treatment, among other applications. Through self-assembly or in combination with other materials, pluronics can form nano carriers with different morphologies, representing a kind of multifunctional pharmaceutical excipients. In recent years, the utilization of pluronic-based multi-functional drug carriers in tumor treatment has become widespread, and various responsive drug carriers are designed according to the characteristics of the tumor microenvironment, resulting in major progress in tumor therapy. This review introduces the specific role of pluronic-based polymer drug delivery systems in tumor therapy, focusing on their physical and chemical properties as well as the design aspects of pluronic polymers. Finally, using newer literature reports, this review provides insights into the future potential and challenges posed by different pluronic-based polymer drug delivery systems in tumor therapy.
Collapse
Affiliation(s)
- Jialin Yu
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China; (J.Y.); (H.Q.); (S.Y.)
| | - Huayu Qiu
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China; (J.Y.); (H.Q.); (S.Y.)
- Key Laboratory of Organosilicon Chemistry and Materials Technology of Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China
| | - Shouchun Yin
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China; (J.Y.); (H.Q.); (S.Y.)
| | - Hebin Wang
- College of Chemical Engineering and Technology, Tianshui Normal University, Tianshui 741099, China
| | - Yang Li
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China; (J.Y.); (H.Q.); (S.Y.)
| |
Collapse
|
17
|
Drug Resistance in Metastatic Breast Cancer: Tumor Targeted Nanomedicine to the Rescue. Int J Mol Sci 2021; 22:ijms22094673. [PMID: 33925129 PMCID: PMC8125767 DOI: 10.3390/ijms22094673] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/25/2021] [Accepted: 04/26/2021] [Indexed: 02/07/2023] Open
Abstract
Breast cancer, specifically metastatic breast, is a leading cause of morbidity and mortality in women. This is mainly due to relapse and reoccurrence of tumor. The primary reason for cancer relapse is the development of multidrug resistance (MDR) hampering the treatment and prognosis. MDR can occur due to a multitude of molecular events, including increased expression of efflux transporters such as P-gp, BCRP, or MRP1; epithelial to mesenchymal transition; and resistance development in breast cancer stem cells. Excessive dose dumping in chemotherapy can cause intrinsic anti-cancer MDR to appear prior to chemotherapy and after the treatment. Hence, novel targeted nanomedicines encapsulating chemotherapeutics and gene therapy products may assist to overcome cancer drug resistance. Targeted nanomedicines offer innovative strategies to overcome the limitations of conventional chemotherapy while permitting enhanced selectivity to cancer cells. Targeted nanotheranostics permit targeted drug release, precise breast cancer diagnosis, and importantly, the ability to overcome MDR. The article discusses various nanomedicines designed to selectively target breast cancer, triple negative breast cancer, and breast cancer stem cells. In addition, the review discusses recent approaches, including combination nanoparticles (NPs), theranostic NPs, and stimuli sensitive or “smart” NPs. Recent innovations in microRNA NPs and personalized medicine NPs are also discussed. Future perspective research for complex targeted and multi-stage responsive nanomedicines for metastatic breast cancer is discussed.
Collapse
|
18
|
Wu T, Gong Y, Li Z, Li Y, Xiong X. Preparation and in vitro/vivo evaluation of folate-conjugated pluronic F87-PLGA/TPGS mixed nanoparticles for targeted drug delivery. Curr Drug Deliv 2021; 18:1505-1514. [PMID: 33845742 DOI: 10.2174/1567201818666210412123210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/01/2021] [Accepted: 02/22/2021] [Indexed: 11/22/2022]
Abstract
AIM Folate-conjugated Pluronic F87-poly(lactic-co-glycolic acid) block copolymer (FA-F87-PLGA) was synthesized to encapsulate anticancer drug Paclitaxel (PTX) for targeted drug delivery. To further improve the curative effect, D-α-tocopheryl poly(ethylene glycol) 1000 succinate (TPGS or Vitamin E TPGS) was added to form FA-F87-PLGA/TPGS mixed NPs. METHODS FA-F87-PLGA was synthesized by the ring-opening polymerization and the structure was characterized. PTX-loaded nanoparticles were prepared with the nanoprecipitation method. The physicochemical characteristics were studied to determine the appropriate dose ratio of the FA-F87-PLGA to TPGS. The cytotoxicity against Ovarian Cancer Cells (OVCAR-3) was determined by MTT assay. The Area-Under-the Curve (AUC) and half-life were measured in the vivo pharmacokinetic studies. RESULTS Based on the optimization of particle size and embedding rate of PTX-loaded mixed NPs, the appropriate dosage ratio of FA-F87-PLGA to TPGS was finally determined to be 5:3. According to in vitro release studies, the cumulative release rate of PTX-loaded FA-F87-PLGA/TPGS mixed NPs was 92.04%, which was higher than that of nanoparticles without TPGS. The cytotoxicity studies showed that the IC50 value of PTX-loaded FA-F87-PLGA/TPGS decreased by 75.4 times and 19.7 times after 72 h treatment compared with free PTX injections and PTX-loaded FA-F87-PLGA NPs, respectively. In vivo pharmacokinetic studies indicated that FA-F87-PLGA/TPGS mixed NPs had a longer drug metabolism time and a larger Area-Under-the-Curve (AUC) compared with free PTX injections. CONCLUSION FA-F87-PLGA/TPGS mixed NPs are potential candidates for targeted drug delivery systems.
Collapse
Affiliation(s)
- Tianyi Wu
- School of Life Science, Jiangxi Science and Technology Normal University, Nanchang, Jiangxi. China
| | - Yanchun Gong
- School of Life Science, Jiangxi Science and Technology Normal University, Nanchang, Jiangxi. China
| | - Ziling Li
- School of Life Science, Jiangxi Science and Technology Normal University, Nanchang, Jiangxi. China
| | - Yuping Li
- School of Life Science, Jiangxi Science and Technology Normal University, Nanchang, Jiangxi. China
| | - Xiangyuan Xiong
- School of Life Science, Jiangxi Science and Technology Normal University, Nanchang, Jiangxi. China
| |
Collapse
|
19
|
Liang X, Wang Y, Shi H, Dong M, Han H, Li Q. Nucleolin-Targeting AS1411 Aptamer-Modified Micelle for the Co-Delivery of Doxorubicin and miR-519c to Improve the Therapeutic Efficacy in Hepatocellular Carcinoma Treatment. Int J Nanomedicine 2021; 16:2569-2584. [PMID: 33833512 PMCID: PMC8019667 DOI: 10.2147/ijn.s304526] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/15/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Multidrug resistance (MDR) has emerged to be a major hindrance in cancer therapy, which contributes to the reduced sensitivity of cancer cells toward chemotherapeutic drugs mainly owing to the over-expression of drug efflux transporters. The combination of gene therapy and chemotherapy has been considered as a potential approach to improve the anti-cancer efficacy by reversing the MDR effect. MATERIALS AND METHODS The AS1411 aptamer-functionalized micelles were constructed through an emulsion/solvent evaporation strategy for the simultaneous co-delivery of doxorubicin and miR-519c. The therapeutic efficacy and related mechanism of micelles were explored based on the in vitro and in vivo active targeting ability and the suppression of MDR, using hepatocellular carcinoma cell line HepG2 as a model. RESULTS The micelle was demonstrated to possess favorable cellular uptake and tumor penetration ability by specifically recognizing the nucleolin in an AS1411 aptamer-dependent manner. Further, the intracellular accumulation of doxorubicin was significantly improved due to the suppression of ABCG2-mediated drug efflux by miR-519c, resulting in the efficient inhibition of tumor growth. CONCLUSION The micelle-mediated co-delivery of doxorubicin and miR-519c provided a promising strategy to obtain ideal anti-cancer efficacy through the active targeting function and the reversion of MDR.
Collapse
MESH Headings
- Animals
- Antibiotics, Antineoplastic/administration & dosage
- Antibiotics, Antineoplastic/pharmacology
- Apoptosis
- Aptamers, Nucleotide/administration & dosage
- Aptamers, Nucleotide/chemistry
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/therapy
- Cell Cycle
- Cell Movement
- Cell Proliferation
- Doxorubicin/administration & dosage
- Doxorubicin/pharmacology
- Drug Delivery Systems/methods
- Drug Resistance, Multiple
- Female
- Gene Expression Regulation, Neoplastic
- Humans
- Liver Neoplasms/genetics
- Liver Neoplasms/pathology
- Liver Neoplasms/therapy
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- Micelles
- MicroRNAs/administration & dosage
- Oligodeoxyribonucleotides/administration & dosage
- Oligodeoxyribonucleotides/chemistry
- Phosphoproteins/antagonists & inhibitors
- RNA-Binding Proteins/antagonists & inhibitors
- Tumor Cells, Cultured
- Xenograft Model Antitumor Assays
- Nucleolin
Collapse
Affiliation(s)
- Xiao Liang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, People’s Republic of China
| | - Yudi Wang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, People’s Republic of China
| | - Hui Shi
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, People’s Republic of China
| | - Mengmeng Dong
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, People’s Republic of China
| | - Haobo Han
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, People’s Republic of China
| | - Quanshun Li
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, People’s Republic of China
| |
Collapse
|
20
|
Li Y, Li Z. Potential Mechanism Underlying the Role of Mitochondria in Breast Cancer Drug Resistance and Its Related Treatment Prospects. Front Oncol 2021; 11:629614. [PMID: 33816265 PMCID: PMC8013997 DOI: 10.3389/fonc.2021.629614] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 03/03/2021] [Indexed: 12/22/2022] Open
Abstract
Breast cancer incidence and mortality rates have been consistently high among women. The use of diverse therapeutic strategies, including chemotherapy, endocrine therapy, targeted therapy, and immunotherapy, has improved breast cancer prognosis. However, drug resistance has become a tremendous obstacle in overcoming breast cancer recurrence and metastasis. It is known that mitochondria play an important role in carcinoma cell growth, invasion and apoptosis. Recent studies have explored the involvement of mitochondrial metabolism in breast cancer prognosis. Here, we will provide an overview of studies that investigated mitochondrial metabolism pathways in breast cancer treatment resistance, and discuss the application prospects of agents targeting mitochondrial pathways against drug-resistant breast cancer.
Collapse
Affiliation(s)
- Yuefeng Li
- Department of Oncological Surgery, Shaoxing Second Hospital, Shaoxing, China
| | - Zhian Li
- Department of Oncological Surgery, Shaoxing Second Hospital, Shaoxing, China
| |
Collapse
|
21
|
Vitamin E succinate with multiple functions: A versatile agent in nanomedicine-based cancer therapy and its delivery strategies. Int J Pharm 2021; 600:120457. [PMID: 33676991 DOI: 10.1016/j.ijpharm.2021.120457] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/15/2021] [Accepted: 03/02/2021] [Indexed: 11/20/2022]
Abstract
Vitamin E succinate (VES), a succinic acid ester of vitamin E, is one of the most effective anticancer compounds of the vitamin E family. VES can inhibit tumor growth by multiple pathways mainly involve tumor proliferation inhibition, apoptosis induction, and metastasis prevention. More importantly, the mitochondrial targeting and damaging property of VES endows it with great potential in exhibiting synergetic effect with conventional chemotherapeutic drugs and overcoming multidrug resistance (MDR). Given the lipophilicity of VES that hinders its bioavailability and therapeutic activity, nanotechnology with multiple advantages has been widely explored to deliver VES and opened up new avenues for its in vivo application. This review aims to introduce the anticancer mechanisms of VES and summarize its delivery strategies using nano-drug delivery systems. Specifically, VES-based combination therapy for synergetic anticancer effect, MDR-reversal, and oral chemotherapy improvement are highlighted. Finally, the challenges and perspectives are discussed.
Collapse
|
22
|
Mishra AK, Lim J, Lee J, Park S, Seo Y, Hwang H, Kim JK. Control drug release behavior by highly stable and pH sensitive poly(N-vinylpyrrolidone)-block-poly(4-vinylpyridine) copolymer micelles. POLYMER 2021. [DOI: 10.1016/j.polymer.2020.123329] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
23
|
Liang E, Guo Z, Hu Z, Chen Z, Reheman A, Wang J, Hu J. pH-Responsive expandable polycarbonate–doxorubicin conjugate nanoparticles for fast intracellular drug release. NEW J CHEM 2021. [DOI: 10.1039/d1nj00598g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nanoparticles with tertiary amines were prepared, which are pH-responsive, expanding to expose the acid-sensitive chemical bond and accelerating drug release.
Collapse
Affiliation(s)
- Enhui Liang
- Center for Molecular Science and Engineering
- College of Science
- Northeastern University
- Shenyang
- P. R. China
| | - Zhihao Guo
- Center for Molecular Science and Engineering
- College of Science
- Northeastern University
- Shenyang
- P. R. China
| | - Zhuang Hu
- Center for Molecular Science and Engineering
- College of Science
- Northeastern University
- Shenyang
- P. R. China
| | - Zhangpei Chen
- Center for Molecular Science and Engineering
- College of Science
- Northeastern University
- Shenyang
- P. R. China
| | - Aikebaier Reheman
- Key Laboratory of Toxicology
- Medical College
- Ningde Normal University
- Ningde
- China
| | - Jiwei Wang
- Fujian Province University Engineering Research Center of Mindong She Medicine
- Medical College
- Ningde Normal University
- Ningde
- China
| | - Jianshe Hu
- Center for Molecular Science and Engineering
- College of Science
- Northeastern University
- Shenyang
- P. R. China
| |
Collapse
|
24
|
Jarak I, Varela CL, Tavares da Silva E, Roleira FFM, Veiga F, Figueiras A. Pluronic-based nanovehicles: Recent advances in anticancer therapeutic applications. Eur J Med Chem 2020; 206:112526. [PMID: 32971442 DOI: 10.1016/j.ejmech.2020.112526] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 05/27/2020] [Accepted: 06/01/2020] [Indexed: 02/06/2023]
Abstract
Pluronics are a class of amphiphilic tri-block copolymers with wide pharmaceutical applicability. In the past decades, the ability to form biocompatible nanosized micelles was exploited to formulate stable drug nanovehicles with potential use in antitumor therapy. Due to the great potential for tuning physical and structural properties of Pluronic unimers, a panoply of drug or polynucleotide-loaded micelles was prepared and tested for their antitumoral activity. The attractive inherent antitumor properties of Pluronic polymers in combination with cell targeting and stimuli-responsive ligands greatly improved antitumoral therapeutic effects of tested drugs. In spite of that, the extraordinary complexity of biological challenges in the delivery of micellar drug payload makes their therapeutic potential still not exploited to the fullest. In this review paper we attempt to present the latest developments in the field of Pluronic based nanovehicles and their application in anticancer therapy with an overview of the chemistry involved in the preparation of these nanovehicles.
Collapse
Affiliation(s)
- Ivana Jarak
- Univ. Coimbra, Department of Pharmaceutical Technology, Faculty of Pharmacy, Azinhaga de Santa Comba, Pólo III - Pólo das Ciências da Saúde, 3000-548, Coimbra, Portugal
| | - Carla L Varela
- Univ. Coimbra, CIEPQPF, FFUC, Laboratory of Pharmaceutical Chemistry, Azinhaga de Santa Comba, Pólo III - Pólo das Ciências da Saúde, 3000-548, Coimbra, Portugal
| | - Elisiário Tavares da Silva
- Univ. Coimbra, CIEPQPF, FFUC, Laboratory of Pharmaceutical Chemistry, Azinhaga de Santa Comba, Pólo III - Pólo das Ciências da Saúde, 3000-548, Coimbra, Portugal
| | - Fernanda F M Roleira
- Univ. Coimbra, CIEPQPF, FFUC, Laboratory of Pharmaceutical Chemistry, Azinhaga de Santa Comba, Pólo III - Pólo das Ciências da Saúde, 3000-548, Coimbra, Portugal
| | - Francisco Veiga
- Univ. Coimbra, Department of Pharmaceutical Technology, Faculty of Pharmacy, Azinhaga de Santa Comba, Pólo III - Pólo das Ciências da Saúde, 3000-548, Coimbra, Portugal; Univ. Coimbra, REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, Azinhaga de Santa Comba, Pólo III - Pólo das Ciências da Saúde, 3000-548, Coimbra, Portugal
| | - Ana Figueiras
- Univ. Coimbra, Department of Pharmaceutical Technology, Faculty of Pharmacy, Azinhaga de Santa Comba, Pólo III - Pólo das Ciências da Saúde, 3000-548, Coimbra, Portugal; Univ. Coimbra, REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, Azinhaga de Santa Comba, Pólo III - Pólo das Ciências da Saúde, 3000-548, Coimbra, Portugal.
| |
Collapse
|
25
|
Targeting anticancer drugs with pluronic aggregates: Recent updates. Int J Pharm 2020; 586:119544. [DOI: 10.1016/j.ijpharm.2020.119544] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 06/04/2020] [Accepted: 06/10/2020] [Indexed: 12/20/2022]
|
26
|
Tumor microenvironment-induced structure changing drug/gene delivery system for overcoming delivery-associated challenges. J Control Release 2020; 323:203-224. [PMID: 32320817 DOI: 10.1016/j.jconrel.2020.04.026] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/15/2020] [Accepted: 04/16/2020] [Indexed: 02/07/2023]
Abstract
Nano-drug/gene delivery systems (DDS) are powerful weapons for the targeted delivery of various therapeutic molecules in treatment of tumors. Nano systems are being extensively investigated for drug and gene delivery applications because of their exceptional ability to protect the payload from degradation in vivo, prolong circulation of the nanoparticles (NPs), realize controlled release of the contents, reduce side effects, and enhance targeted delivery among others. However, the specific properties required for a DDS vary at different phase of the complex delivery process, and these requirements are often conflicting, including the surface charge, particle size, and stability of DDS, which severely reduces the efficiency of the drug/gene delivery. Therefore, researchers have attempted to fabricate structure, size, or charge changeable DDS by introducing various tumor microenvironment (TME) stimuli-responsive elements into the DDS to meet the varying requirements at different phases of the delivery process, thus improving drug/gene delivery efficiency. This paper summarizes the most recent developments in TME stimuli-responsive DDS and addresses the aforementioned challenges.
Collapse
|