1
|
Cui C, Ma H, Du J, Xie L, Chen A. Recent Advances in the Design and Application of Asymmetric Carbon-Based Materials. SMALL METHODS 2025; 9:e2401580. [PMID: 39865857 DOI: 10.1002/smtd.202401580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 01/15/2025] [Indexed: 01/28/2025]
Abstract
Asymmetric carbon-based materials (ACBMs) have received significant attention in scientific research due to their unique structures and properties. Through the introduction of heterogeneous atoms and the construction of asymmetric ordered/disordered structures, ACBMs are optimized in terms of electrical conductivity, pore structure, and chemical composition and exhibit multiple properties such as hydrophilicity, hydrophobicity, optical characteristics, and magnetic behavior. Here, the recent research progress of ACBMs is reviewed, focusing on the potential of these materials for electrochemical, catalysis, and biomedical applications and their unique advantages over conventional symmetric carbon-based materials. Meanwhile, a variety of construction strategies of asymmetric structures, including template method, nanoemulsion assembly method, and self-assembly method, are described in detail. In addition, the contradictions between material synthesis and application are pointed out, such as the limitations of synthesis methods and morphology modulation means, as well as the trade-off between property improvement and production costs. Finally, the future development path of ACBMs is envisioned, emphasizing the importance of the close integration of theory and practice, and looking forward to promoting the research and development of a new generation of high-performance materials through the in-depth understanding of the design principles and action mechanisms of ACBMs.
Collapse
Affiliation(s)
- Chenqi Cui
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, P. R. China
| | - Haoxuan Ma
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, P. R. China
| | - Juan Du
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, P. R. China
| | - Lei Xie
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Aibing Chen
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, P. R. China
| |
Collapse
|
2
|
Sam DK, Cao Y. Iron-Cobalt Nanoparticles Embedded in B,N-Doped Chitosan-Derived Porous Carbon Aerogel for Overall Water Splitting. ACS APPLIED MATERIALS & INTERFACES 2024; 16:32311-32321. [PMID: 38870486 DOI: 10.1021/acsami.4c06141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Given their intriguing properties, porous carbons have surfaced as promising electrocatalysts for various energy conversion reactions. This study presents a unique approach where iron-cobalt (FeCo) is confined in a boron, nitrogen-doped chitosan-derived porous carbon aerogel (BNPC-FeCo) to serve as an electrocatalyst for the hydrogen evolution and oxygen evolution reactions (HER and OER). The BNPC-FeCo-900 electrocatalyst demonstrates excellent catalyst activity, with very low overpotentials of 186 and 320 mV at 10 mA cm-2, low Tafel slopes of 82 and 55 mV dec-1, and low charge transfer resistance of 2.68 and 9.25 Ω for HER and OER, respectively. Density functional theory (DFT) calculations further reveal that the cooperation between the boron, nitrogen codoped porous carbon, and the FeCo nanoparticles reduces intermediates' energy barriers, significantly enhancing the HER and OER performance. In conclusion, this work offers significant and informative perspectives into the potential of porous carbon materials as dual-purpose electrocatalysts for water splitting.
Collapse
Affiliation(s)
- Daniel Kobina Sam
- School of Energy Science and Engineering, University of Science and Technology of China, Guangzhou 510640, China
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
- CAS Key Laboratory of Renewable Energy, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China
| | - Yan Cao
- School of Energy Science and Engineering, University of Science and Technology of China, Guangzhou 510640, China
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
- CAS Key Laboratory of Renewable Energy, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China
| |
Collapse
|
3
|
Huang F, Sun Y, Liu J, Dai B, Li J, Guo X. Nitrogen-oxygen co-doped carbon@silica hollow spheres as encapsulated Pd nanoreactors for acetylene dialkoxycarbonylation. J Colloid Interface Sci 2024; 662:479-489. [PMID: 38364473 DOI: 10.1016/j.jcis.2024.02.072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/25/2024] [Accepted: 02/06/2024] [Indexed: 02/18/2024]
Abstract
The introduction of heteroatoms into hollow carbon spheres is imperative for enhancing catalytic activity. Consequently, we investigated the utilization of nitrogen-oxygen(N/O) co-doped hollow carbon (C)/silica (SiO2) nanospheres (NxC@mSiO2), which have a large internal volume and a nano-constrained environment that limits metal aggregation and loss, making them a potential candidate. In this study, we demonstrate the synthesis of nitrogen-oxygen (N/O) co-doped hollow carbon spheres using resorcinol and formaldehyde as carbon precursors, covered with silica, and encapsulated with palladium nanoparticles (NPs) in situ. The N/O co-doping process introduced defects on the surface of the internal C structure, which acted as active sites and facilitated substrate adsorption. Subsequent treatment with hydrogen peroxide (H2O2) introduced numerous carboxyl groups onto the C structure, increasing the catalytic environment as acid auxiliaries. The carboxyl group is present in the carbon structure, as determined calculations based on by density functional theory, reduces the adsorption energy of acetylene, thereby promoting its adsorption and enrichment. Furthermore, H2O2-treatment enhanced the oxygen defects in the carbon structure, improving the dispersion of Pd NPs and defect structure. The Pd/NxC@mSiO2-H2O2 catalysts demonstrated outstanding performance in the acetylene dialkoxycarbonylation reaction, showcasing high selectivity towards 1,4-dicarboxylate (>93 %) and remarkable acetylene conversion (>92 %). Notably, the catalyst exhibited exceptional selectivity and durability throughout the reaction.
Collapse
Affiliation(s)
- Fusheng Huang
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, China.
| | - Yongkang Sun
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, China.
| | - Jichang Liu
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, China.
| | - Bin Dai
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, China.
| | - Jiangbing Li
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, China.
| | - Xuhong Guo
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, China; School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
4
|
Controlled synthesis of porous carbons and their electrochemical performance for supercapacitors. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.140066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
5
|
B/N/O/Zn doped porous carbon materials for supercapacitor with high performance. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
6
|
Promotion role of B doping in N, B co-doped humic acids-based porous carbon for enhancing catalytic performance of oxidative dehydrogenation of propane using CO2. REACTION KINETICS MECHANISMS AND CATALYSIS 2022. [DOI: 10.1007/s11144-022-02251-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
7
|
Li H, Chen L, Li X, Sun D, Zhang H. Recent Progress on Asymmetric Carbon- and Silica-Based Nanomaterials: From Synthetic Strategies to Their Applications. NANO-MICRO LETTERS 2022; 14:45. [PMID: 35038075 PMCID: PMC8764017 DOI: 10.1007/s40820-021-00789-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/09/2021] [Indexed: 05/15/2023]
Abstract
HIGHLIGHTS The synthetic strategies and fundamental mechanisms of various asymmetric carbon- and silica-based nanomaterials were systematically summarized. The advantages of asymmetric structure on their related applications were clarified by some representative applications of asymmetric carbon- and silica-based nanomaterials. The future development prospects and challenges of asymmetric carbon- and silica-based nanomaterials were proposed. ABSTRACT Carbon- and silica-based nanomaterials possess a set of merits including large surface area, good structural stability, diversified morphology, adjustable structure, and biocompatibility. These outstanding features make them widely applied in different fields. However, limited by the surface free energy effect, the current studies mainly focus on the symmetric structures, such as nanospheres, nanoflowers, nanowires, nanosheets, and core–shell structured composites. By comparison, the asymmetric structure with ingenious adjustability not only exhibits a larger effective surface area accompanied with more active sites, but also enables each component to work independently or corporately to harness their own merits, thus showing the unusual performances in some specific applications. The current review mainly focuses on the recent progress of design principles and synthesis methods of asymmetric carbon- and silica-based nanomaterials, and their applications in energy storage, catalysis, and biomedicine. Particularly, we provide some deep insights into their unique advantages in related fields from the perspective of materials’ structure–performance relationship. Furthermore, the challenges and development prospects on the synthesis and applications of asymmetric carbon- and silica-based nanomaterials are also presented and highlighted. [Image: see text]
Collapse
Affiliation(s)
- Haitao Li
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Liang Chen
- Department of Chemistry, Laboratory of Advanced Nanomaterials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Nanomaterials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Nanomaterials (2011-iChEM), Fudan University, Shanghai, 200433, People's Republic of China
| | - Xiaomin Li
- Department of Chemistry, Laboratory of Advanced Nanomaterials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Nanomaterials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Nanomaterials (2011-iChEM), Fudan University, Shanghai, 200433, People's Republic of China
| | - Daoguang Sun
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Haijiao Zhang
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai, 200444, People's Republic of China.
| |
Collapse
|
8
|
Dai Y, Li F, Mo DC, Wu D, Lyu SS. Controllable Preparation of Core-Shell Composites and Their Templated Hollow Carbons Based on a Well-Orchestrated Molecular Bridge-Linked Organic-Inorganic Hybrid Interface. ACS APPLIED MATERIALS & INTERFACES 2021; 13:26404-26410. [PMID: 34048216 DOI: 10.1021/acsami.1c05962] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Controlling the interfacial effect is facing challenges because of the weak interactions between the inorganic and the organic materials. We found that the silane coupling agents with -NH2 groups (e.g., KH550) play a key role as a molecular bridge that links an inorganic silica template with an organic precursor (i.e., pyrrole) in the process of constructing a spherical silica core-polypyrrole shell structure. The molecular bridge is also suitable for inorganic core templates with cube or rod shapes for the construction of different core-shell structures. These template core-polymeric shell structures can be transformed into well-defined hollow carbons after carbonization and template removal. The outer diameter, hollow-core size, and carbon shell thickness of hollow carbon materials (e.g., hollow carbon spheres) could be facilely controlled by changing the template size or the pyrrole amount. We believe that our work will provide a guideline for the preparation of well-orchestrated carbon-based composites and their templated hollow carbons.
Collapse
Affiliation(s)
- Yao Dai
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
- Guangdong Engineering Technology Research Centre for Advanced Thermal Control Material and System Integration (ATCMSI), Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Fu Li
- School of Chemical Engineering and Technology, Sun Yat-sen University, Guangzhou 510275, P. R. China
- Guangdong Engineering Technology Research Centre for Advanced Thermal Control Material and System Integration (ATCMSI), Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Dong-Chuan Mo
- School of Materials, Sun Yat-sen University, Guangzhou 510275, P. R. China
- Guangdong Engineering Technology Research Centre for Advanced Thermal Control Material and System Integration (ATCMSI), Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Dingcai Wu
- PCFM Lab, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Shu-Shen Lyu
- School of Materials, Sun Yat-sen University, Guangzhou 510275, P. R. China
- Guangdong Engineering Technology Research Centre for Advanced Thermal Control Material and System Integration (ATCMSI), Sun Yat-sen University, Guangzhou 510275, P. R. China
| |
Collapse
|
9
|
Construction of hierarchically porous biomass carbon using iodine as pore-making agent for energy storage. J Colloid Interface Sci 2021; 599:351-359. [PMID: 33962196 DOI: 10.1016/j.jcis.2021.04.108] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 04/06/2021] [Accepted: 04/20/2021] [Indexed: 11/20/2022]
Abstract
High specific surface area, hierarchical porosity, high conductivity and heteroatoms doping have been considered as the dominating factors of high-performance carbon-based supercapacitors. Inspired by the blue phenomenon of combination of starch and iodine, iodine is employed firstly as pore-making agent to create micropores for the starch-derived carbon in this study. Based on this mechanism, the hierarchically porous carbon is synthesized through simple solvent heating and high-temperature (1000 °C) carbonization, which achieves high specific surface area of 2989 m2 g-1 (an increase of 39.7% compared to that without iodine) and low electrical resistivity of 0.21 Ω·cm. The assembled symmetric supercapacitors, combined with dual redox-active electrolyte (Bi3+ and Br-), deliver the specific capacitance of 1216 F g-1, energy density of 65.4 Wh kg-1, as well as power density of 787.3 W kg-1 at 2 A g-1. In brief, the abundant biomass resource starch is exploited as carbon source, and the iodine sublimation reaction is conducted to provide more micropores to develop high-performance electrodes of supercapacitors.
Collapse
|
10
|
Zhao H, Wang J, Zhao H, Liu Y, Li Y, Zhang R. One-step synthesis of N, B-codoped carbon nanofiber as a novel matrix for high-throughput and efficient laser desorption/ionization mass spectrometry analysis. Microchem J 2021. [DOI: 10.1016/j.microc.2021.105966] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
11
|
Synthesis of hierarchically porous boron-doped carbon material with enhanced surface hydrophobicity and porosity for improved supercapacitor performance. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.137801] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
12
|
Hamouda HA, Cui S, Dai X, Xiao L, Xie X, Peng H, Ma G. Synthesis of porous carbon material based on biomass derived from hibiscus sabdariffa fruits as active electrodes for high-performance symmetric supercapacitors. RSC Adv 2020; 11:354-363. [PMID: 35423056 PMCID: PMC8691107 DOI: 10.1039/d0ra09509e] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 12/14/2020] [Indexed: 12/12/2022] Open
Abstract
Carbon-based materials are manufactured as high-performance electrodes using biomass waste in the renewable energy storage field. Herein, four types of hierarchical porous activated carbon using hibiscus sabdariffa fruits (HBFs) as a low-cost biomass precursor are synthesized through carbonization and activation. NH4Cl is used as a chemical blowing agent to form carbon nanosheets, which are the first types of hibiscus sabdariffa fruit-based carbon (HBFC-1) sample, and KOH also forms a significant bond in the activation process. The prepared HBFC-1 is chosen to manufacture the symmetric supercapacitor due to its rough surface and high surface area (1720.46 m2 g-1), making it show a high specific capacity of 194.50 F g-1 at a current density of 0.5 A g-1 in a three-electrode system. Moreover, the HBFC-1 based symmetric supercapacitor devices display a high energy density of 13.10 W h kg-1 at a power density of 225.00 W kg-1, and a high specific capacity of 29 F g-1 at 0.5 A g-1. Additionally, excellent cycle life is observed (about 96% of capacitance retained after 5000 cycles). Therefore, biomass waste, especially hibiscus sabdariffa fruit based porous carbon, can be used as the electrode for high-performance supercapacitor devices.
Collapse
Affiliation(s)
- Hamouda Adam Hamouda
- Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University Lanzhou 730070 China
- Department of Chemistry, Faculty of Science, University of Kordofan El Obeid 51111 Sudan
| | - Shuzhen Cui
- Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University Lanzhou 730070 China
| | - Xiuwen Dai
- Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University Lanzhou 730070 China
| | - Lele Xiao
- Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University Lanzhou 730070 China
| | - Xuan Xie
- Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University Lanzhou 730070 China
| | - Hui Peng
- Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University Lanzhou 730070 China
| | - Guofu Ma
- Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University Lanzhou 730070 China
| |
Collapse
|
13
|
Luo L, Zhou Y, Yan W, Wu X, Wang S, Zhao W. Two-step synthesis of B and N co-doped porous carbon composites by microwave-assisted hydrothermal and pyrolysis process for supercapacitor application. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.137010] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|