1
|
Shakiba M, Faraji M, Jouybar S, Foroozandeh A, Bigham A, Abdouss M, Saidi M, Vatanpour V, Varma RS. Advanced nanofibers for water treatment: Unveiling the potential of electrospun polyacrylonitrile membranes. ENVIRONMENTAL RESEARCH 2025; 276:121403. [PMID: 40158874 DOI: 10.1016/j.envres.2025.121403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 01/26/2025] [Accepted: 03/13/2025] [Indexed: 04/02/2025]
Abstract
The challenges pertaining to the potable water scarcity and pollution motivates us to envision innovative strategies. Industrial wastewater containing hazardous heavy metals, synthetic dyes, and oil exacerbates the pursuit of clean drinking water. Among the array of available technologies, electrospun nanofiber membranes have garnered attention due to their efficiency, high surface-to-volume ratio, cost-effectiveness, scalability, and multifunctionality. These membranes possess distinct physical and chemical attributes that position them as ideal solutions to water purification challenges. Their versatility enables effective contaminant removal through filtration, adsorption, and chemical interactions. Polyacrylonitrile (PAN) emerges as a frontrunner among electrospun polymers due to its affordability, remarkable physical and chemical characteristics, and the ease of production. Research efforts have been dedicated to the study of electrospun PAN membranes, exploring modifications in terms of the functionalization of PAN molecular chain, incorporation of appropriate nanoparticles, and composition with other functional polymers. Parameters such as functional groups, hydrophilicity, mechanical properties, porosity, pore structure, reusability, sustainability, zeta potential, and operational conditions significantly influence the performance of electrospun PAN membranes in treating the contaminated water. Despite progress, challenges surrounding fouling, toxicity, scalability, selectivity, and production costs ought to be addressed strategically to enhance their practicality and real-world viability. This review comprehensively scrutinizes the current landscape of available electrospun PAN membranes in water treatment encompassing diverse range of synthesized entities and experimental outcomes. Additionally, the review delves into various approaches undertaken to optimize the performance of electrospun PAN membranes while proposing potential strategies to overcome the existing hindrances. By carefully analyzing the parameters that impact the performance of these membranes, this overview offers invaluable guidelines for researchers and engineers, thus empowering them to design tailored electrospun nanofiber membranes for specific water purification applications. As the innovative research continues and strategic efforts address the current challenges, these membranes can play a pivotal role in enhancing water quality, mitigating water scarcity, and contributing to environmental sustainability. The widespread application of electrospun nanofiber membranes in water treatment has the potential to create a lasting positive impact on global water resources and the environment. A dedicated effort towards their implementation will undoubtedly mark a crucial step towards a more sustainable and water-secure future.
Collapse
Affiliation(s)
| | - Mehdi Faraji
- School of Chemistry, College of Science, University of Tehran, 14155-6455, Tehran, Iran.
| | - Shirzad Jouybar
- Department of Chemistry, Amirkabir University of Technology, Tehran, Iran.
| | - Amin Foroozandeh
- Department of Chemistry, Amirkabir University of Technology, Tehran, Iran.
| | - Ashkan Bigham
- Institute of Polymers, Composites, and Biomaterials, National Research Council (IPCB-CNR), Naples, 80125, Italy; Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Piazzale V. Tecchio 80, 80125, Naples, Italy.
| | - Majid Abdouss
- Department of Chemistry, Amirkabir University of Technology, Tehran, Iran.
| | - Majid Saidi
- School of Chemistry, College of Science, University of Tehran, 14155-6455, Tehran, Iran.
| | - Vahid Vatanpour
- Environmental Engineering Department, Istanbul Technical University, Maslak, Istanbul, 34469, Turkey.
| | - Rajender S Varma
- Centre of Excellence for Research in Sustainable Chemistry, Department of Chemistry, Federal University of São Carlos, 13565-905, São Carlos, SP, Brazil.
| |
Collapse
|
2
|
Liu Y, Liu Y, Wu Y, Zhou F. Tuning Surface Functions by Hydrophilic/Hydrophobic Polymer Brushes. ACS NANO 2025; 19:11576-11603. [PMID: 40116630 DOI: 10.1021/acsnano.4c18335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/23/2025]
Abstract
Polymer brushes, an optimal method for surface modification, have garnered significant interest due to their potential in surface wettability and functions regulation. This review summarizes the recent advancements in functional polymer brush surfaces based on surface wettability regulation. First, the fundamental structure and fabrication methods of polymer brushes, emphasizing the two primary strategies, "grafting-to" and "grafting-from", were introduced, and special attention was accorded to the method of subsurface-initiated atom transfer radical polymerization (SSI-ATRP) for the construction of mechanically robust polymer brushes. Subsequently, we delved into the attributes of the stimuli-responsive polymer brush surface, which can effectuate reversible surface wettability transitions in response to external stimuli. Then, this review also offered an in-depth exploration of the potential applications of polymer brushes based on their surface wettability, including lubrication, drag reduction, antifouling, antifogging, anti-icing, oil-water separation, actuation, and emulsion stability. Lastly, the challenges of polymer brush surfaces encountered in practical applications, including mechanical strength, biocompatibility, recyclability, and preparation efficiency, were addressed, and significant achievements in current research were summarized and insights into future directions were offered. This review intends to provide researchers with a comprehensive understanding of the potential applications of polymer brushes based on surface wettability regulation, and with the development of the polymer brush preparation technology, it will be anticipated that they will assume increasingly pivotal roles in various fields.
Collapse
Affiliation(s)
- Yizhe Liu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Gansu Lanzhou 730000, P. R. China
- Shandong Laboratory of Advanced Materials and Green Manufacturing, Yantai 264006, P. R. China
| | - Yubo Liu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Gansu Lanzhou 730000, P. R. China
- Shandong Laboratory of Advanced Materials and Green Manufacturing, Yantai 264006, P. R. China
| | - Yang Wu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Gansu Lanzhou 730000, P. R. China
- Shandong Laboratory of Advanced Materials and Green Manufacturing, Yantai 264006, P. R. China
- Qingdao Centre of Resource Chemistry and New Materials, Qingdao, Shandong 266100, P. R. China
| | - Feng Zhou
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Gansu Lanzhou 730000, P. R. China
| |
Collapse
|
3
|
Li S, Schon BS, Travas‐Sejdic J. Grafting of Porous Conductive Fiber Mats with an Antifouling Polymer Brush by Means of Filtration-Based Surface Initiated ATRP. Macromol Rapid Commun 2025; 46:e2300069. [PMID: 36965049 PMCID: PMC12004905 DOI: 10.1002/marc.202300069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/15/2023] [Indexed: 03/27/2023]
Abstract
This work addresses the challenge of surface modification of porous, electrospun fiber mats containing an insoluble conducting polymer coating. Herein, a novel methodology of grafting a polymer brush onto conducting polymer fiber mats is developed that employs filtering of the polymerization solution through the fiber mat. An electrospun sulfonated polystyrene-poly(ethylene-ran-butylene)-polystyrene (sSEBS) fiber mat is first coated with a layer of conducting copolymer bearing an Atom Transfer Radical Polymerization (ATRP) initiating functionality (PEDOT-Br). The surface-initiated ATRP from the fibers' surface is then carried out to graft a hydrophilic polymer brush (poly(ethylene glycol) methyl ether methacrylate) by means of filtering the polymerization solution through the fiber mat. Scanning electron microscopy (SEM) images reveal a progressive change in the morphology of the fiber mat surface with the increasing volume of the filtrated polymerization solution, while energy dispersive X-ray spectrosdcopy (EDX) spectra show a change in the atomic oxygen to sulfur (O/S) ratio, therefore confirming the successful grafting from the fibers' surface. The conductive fiber mat grafted with hydrophilic brushes shows a 20% reduction in the non-specific adsorption of bovine serum albumin (BSA) compared to a pristine fiber mat. This study is a proof-of-concept for this novel, filtration-based, surface-initiated polymerization methodology.
Collapse
Affiliation(s)
- Sheung‐Yin Li
- School of Chemical SciencesThe University of Auckland23 Symonds Street, Auckland CBDAuckland1010New Zealand
- The MacDiarmid Institute of Advanced Materials and NanotechnologyWellington6140New Zealand
| | - Benjamin S. Schon
- The New Zealand Institute for Plant and Food Research LimitedCanterbury Agriculture & Science Centre74 Gerald StLincoln7608New Zealand
| | - Jadranka Travas‐Sejdic
- School of Chemical SciencesThe University of Auckland23 Symonds Street, Auckland CBDAuckland1010New Zealand
- The MacDiarmid Institute of Advanced Materials and NanotechnologyWellington6140New Zealand
| |
Collapse
|
4
|
Gao C, Gao Y, Liu Q, Tong J, Sun H. Polyzwitterions: controlled synthesis, soft materials and applications. SOFT MATTER 2025; 21:538-555. [PMID: 39692690 DOI: 10.1039/d4sm00674g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Polyzwitterions refer to polymers containing both positive and negative charged groups in one side chain, which have shown unique physicochemical properties and significant potential in diverse applications due to their amphiphilic and net-neutral charged properties. This review aims to highlight the recent advances in the design and synthesis of polyzwitterions including direct polymerization of zwitterionic monomers and deionization of polymers. Furthermore, the formation of polyzwitterion based soft materials such as nanoparticles by self-assembly, hydrogels, coatings and polyzwitterion brushes, as well as the influence of the microstructure on their properties and applications are discussed. The potential applications of polyzwitterions in drug delivery, antifouling, lubrication, energy storage and antibacterial are also summarized. Finally, the prospects of polyzwitterions are proposed.
Collapse
Affiliation(s)
- Chenchen Gao
- State Key Laboratory of High-Efficiency Coal Utilization and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China.
| | - Yaning Gao
- State Key Laboratory of High-Efficiency Coal Utilization and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China.
| | - Qin Liu
- State Key Laboratory of High-Efficiency Coal Utilization and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China.
| | - Jinhua Tong
- State Key Laboratory of High-Efficiency Coal Utilization and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China.
| | - Hui Sun
- State Key Laboratory of High-Efficiency Coal Utilization and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China.
| |
Collapse
|
5
|
Nie B, Zhang W, Wang Y, Meng Y, Zhao X, Dou X, Wu YC, Li HJ. "Coir Raincoat"-Boosted Biomimetic Hydrogel for Efficient Solar Desalination and Wastewater Purification. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404347. [PMID: 38958084 DOI: 10.1002/smll.202404347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/24/2024] [Indexed: 07/04/2024]
Abstract
Solar-driven interfacial evaporation is an efficient method for purifying contaminated or saline water. Nonetheless, the suboptimal design of the structure and composition still necessitates a compromise between evaporation rate and service life. Therefore, achieving efficient production of clean water remains a key challenge. Here, a biomimetic dictyophora hydrogel based on loofah/carbonized sucrose@ZIF-8/polyvinyl alcohol is demonstrated, which can serve as an independent solar evaporator for clean water recovery. This special structural design achieves effective thermal positioning and minimal heat loss, while reducing the actual enthalpy of water evaporation. The evaporator achieves a pure water evaporation rate of 3.88 kg m-2 h-1 and a solar-vapor conversion efficiency of 97.16% under 1 sun irradiation. In comparison, the wastewater evaporation rate of the evaporator with ZIF-8 remains at 3.85 kg m-2 h-1 for 30 days, which is 16.3% higher than the light irradiation without ZIF-8. Equally important, the evaporator also showcases the capability to cleanse water from diverse sources of contaminants, including those with small molecules, oil, heavy metal ions, and bacteria, greatly improving the lifespan of the evaporator.
Collapse
Affiliation(s)
- Boli Nie
- Weihai Marine Organism & Medical Technology Research Institute, Harbin Institute of Technology, Weihai, 264209, P. R. China
| | - Weiwei Zhang
- Weihai Marine Organism & Medical Technology Research Institute, Harbin Institute of Technology, Weihai, 264209, P. R. China
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, P. R. China
| | - Yizhen Wang
- Weihai Marine Organism & Medical Technology Research Institute, Harbin Institute of Technology, Weihai, 264209, P. R. China
| | - Yanming Meng
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, P. R. China
| | - Xi Zhao
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, P. R. China
| | - Xiangyu Dou
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, P. R. China
| | - Yan-Chao Wu
- Weihai Marine Organism & Medical Technology Research Institute, Harbin Institute of Technology, Weihai, 264209, P. R. China
| | - Hui-Jing Li
- Weihai Marine Organism & Medical Technology Research Institute, Harbin Institute of Technology, Weihai, 264209, P. R. China
| |
Collapse
|
6
|
Yin H, Zhang H, Cui J, Wu Q, Huang L, Qiu J, Zhang X, Xiang Y, Li B, Liu H, Tang Z, Zhang Y, Zhu H. Enrichment of Nutmeg Essential Oil from Oil-in-Water Emulsions with PAN-Based Membranes. MEMBRANES 2024; 14:97. [PMID: 38786932 PMCID: PMC11122826 DOI: 10.3390/membranes14050097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/20/2024] [Accepted: 04/23/2024] [Indexed: 05/25/2024]
Abstract
This study used polyacrylonitrile (PAN) and heat-treated polyacrylonitrile (H-PAN) membranes to enrich nutmeg essential oils, which have more complex compositions compared with common oils. The oil rejection rate of the H-PAN membrane was higher than that of the PAN membrane for different oil concentrations of nutmeg essential oil-in-water emulsions. After heat treatment, the H-PAN membrane showed a smaller pore size, narrower pore size distribution, a rougher surface, higher hydrophilicity, and higher oleophobicity. According to the GC-MS results, the similarities of the essential oils enriched by the PAN and H-PAN membranes to those obtained by steam distillation (SD) were 0.988 and 0.990, respectively. In addition, these two membranes also exhibited higher essential oil rejection for Bupleuri Radix, Magnolia Officinalis Cortex, Caryophylli Flos, and Cinnamomi Cortex essential oil-in-water emulsions. This work could provide a reference for membrane technology for the non-destructive separation of oil with complex components from oil-in-water emulsions.
Collapse
Affiliation(s)
- Huilan Yin
- Jiangsu Botanical Medicine Refinement Engineering Research Center, Nanjing University of Chinese Medicine, Nanjing 210023, China; (H.Y.); (H.Z.); (J.C.); (Q.W.); (L.H.); (J.Q.); (X.Z.); (Y.X.); (B.L.)
| | - Haoyu Zhang
- Jiangsu Botanical Medicine Refinement Engineering Research Center, Nanjing University of Chinese Medicine, Nanjing 210023, China; (H.Y.); (H.Z.); (J.C.); (Q.W.); (L.H.); (J.Q.); (X.Z.); (Y.X.); (B.L.)
| | - Jiaoyang Cui
- Jiangsu Botanical Medicine Refinement Engineering Research Center, Nanjing University of Chinese Medicine, Nanjing 210023, China; (H.Y.); (H.Z.); (J.C.); (Q.W.); (L.H.); (J.Q.); (X.Z.); (Y.X.); (B.L.)
| | - Qianlian Wu
- Jiangsu Botanical Medicine Refinement Engineering Research Center, Nanjing University of Chinese Medicine, Nanjing 210023, China; (H.Y.); (H.Z.); (J.C.); (Q.W.); (L.H.); (J.Q.); (X.Z.); (Y.X.); (B.L.)
| | - Linlin Huang
- Jiangsu Botanical Medicine Refinement Engineering Research Center, Nanjing University of Chinese Medicine, Nanjing 210023, China; (H.Y.); (H.Z.); (J.C.); (Q.W.); (L.H.); (J.Q.); (X.Z.); (Y.X.); (B.L.)
| | - Jiaoyue Qiu
- Jiangsu Botanical Medicine Refinement Engineering Research Center, Nanjing University of Chinese Medicine, Nanjing 210023, China; (H.Y.); (H.Z.); (J.C.); (Q.W.); (L.H.); (J.Q.); (X.Z.); (Y.X.); (B.L.)
| | - Xin Zhang
- Jiangsu Botanical Medicine Refinement Engineering Research Center, Nanjing University of Chinese Medicine, Nanjing 210023, China; (H.Y.); (H.Z.); (J.C.); (Q.W.); (L.H.); (J.Q.); (X.Z.); (Y.X.); (B.L.)
| | - Yanyu Xiang
- Jiangsu Botanical Medicine Refinement Engineering Research Center, Nanjing University of Chinese Medicine, Nanjing 210023, China; (H.Y.); (H.Z.); (J.C.); (Q.W.); (L.H.); (J.Q.); (X.Z.); (Y.X.); (B.L.)
| | - Bo Li
- Jiangsu Botanical Medicine Refinement Engineering Research Center, Nanjing University of Chinese Medicine, Nanjing 210023, China; (H.Y.); (H.Z.); (J.C.); (Q.W.); (L.H.); (J.Q.); (X.Z.); (Y.X.); (B.L.)
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Hongbo Liu
- Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xianyang 712046, China; (H.L.); (Z.T.)
| | - Zhishu Tang
- Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xianyang 712046, China; (H.L.); (Z.T.)
| | - Yue Zhang
- Jiangsu Botanical Medicine Refinement Engineering Research Center, Nanjing University of Chinese Medicine, Nanjing 210023, China; (H.Y.); (H.Z.); (J.C.); (Q.W.); (L.H.); (J.Q.); (X.Z.); (Y.X.); (B.L.)
| | - Huaxu Zhu
- Jiangsu Botanical Medicine Refinement Engineering Research Center, Nanjing University of Chinese Medicine, Nanjing 210023, China; (H.Y.); (H.Z.); (J.C.); (Q.W.); (L.H.); (J.Q.); (X.Z.); (Y.X.); (B.L.)
| |
Collapse
|
7
|
Fan C, Liu Y, Fan S, Liang Z, Zhang W, Zhang Y, Gan T, Hu H, Huang Z, Qin Y. Fabrication of a poly(N-isopropylacrylamide)-grafted alginate composite aerogel for efficient treatment of emulsified oily wastewater. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133381. [PMID: 38171201 DOI: 10.1016/j.jhazmat.2023.133381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 11/26/2023] [Accepted: 12/25/2023] [Indexed: 01/05/2024]
Abstract
The treatment of emulsion wastewater poses significant challenges. In this study, a novel porous material, namely esterified bagasse/poly(N, N-dimethylacrylamide)/sodium alginate (SBS/PDMAA/Alg) aerogel, was developed for efficient demulsification and oil recovery. By grafting a poly(N-isopropylacrylamide) (PNIPAM) brush onto the SBS/PDMAA/Alg skeleton through free radical polymerization, the resulting aerogel exhibits both surface charge and a molecular brush structure. The aerogel demonstrates remarkable demulsification efficiency for cationic surfactant-stabilized emulsions at various concentrations, achieving a demulsification efficiency of 95.6% even at an oil content of 100 g L-1. Furthermore, the molecular brush structure extends the application range of the aerogel, enabling a demulsification efficiency of 98.3% for anionic and non-ionic surfactant-stabilized emulsions. The interpenetrating polymer network (IPN) structure formed by SBS, PDMAA, and alginate enhances the mechanical stability of the aerogel, enabling a demulsification efficiency of 91.3% even after 20 repeated cycles. The demulsification ability of the composite aerogel is attributed to its surface charge, high interfacial activity, and unique brush-like structure. A demulsification mechanism based on the synergistic effect of surface charge and molecular brush is proposed to elucidate the efficient demulsification process.
Collapse
Affiliation(s)
- Chao Fan
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Yiping Liu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Songlin Fan
- Shenzhen Changlong Technology Company limited, Shenzhen 518116, China; School of Environmental Science and Engineering, Nankai University, Tianjing 300350, China.
| | - Zirong Liang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Wuxiang Zhang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Yanjuan Zhang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Tao Gan
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Huayu Hu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Zuqiang Huang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China.
| | - Yuben Qin
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| |
Collapse
|
8
|
Yu X, Ji J, Wu QY, Gu L. Direct-coating of cellulose hydrogel on PVDF membranes with superhydrophilic and antifouling properties for high-efficiency oil/water emulsion separation. Int J Biol Macromol 2024; 256:128579. [PMID: 38048931 DOI: 10.1016/j.ijbiomac.2023.128579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/28/2023] [Accepted: 12/01/2023] [Indexed: 12/06/2023]
Abstract
As a well-known natural and innocuous plant constituent, cellulose consists of abundant hydroxyl groups and can tightly adsorb onto material surfaces hydrogen bonding, resulting in a superhydrophilic surface. In this work, the hydrophobic polyvinylidene fluoride (PVDF) membranes were modified by immersing them in cellulose hydrogel using a simple one-step process. The modified PVDF membrane exhibited excellent resistance to fouling and oil adhesion, making it highly effective in separating various oil-in-water emulsions. The cellulose-modified PVDF membranes achieved a high oil rejection rate (>99 %) and a maximum separation flux of 2675.2 L·m-2·h-1. Furthermore, even an oil-in-water emulsion containing bovine serum albumin maintained a steady permeation flux after four filtration cycles. Additionally, these cellulose-modified PVDF membranes demonstrated excellent underwater superoleophobicity across a wide range of pH levels and high saline conditions. Overall, these cellulose-modified superhydrophilic PVDF membranes are sustainable, environmentally friendly, easily scalable, and hold great promise for practical applications in oily wastewater treatment.
Collapse
Affiliation(s)
- Xiao Yu
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| | - Jing Ji
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518000, China; University of Chinese Academy of Sciences, Beijing 100049, China; Guangzhou Institute of Advanced Technology, Guangzhou 511458, China
| | - Qing-Yun Wu
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China.
| | - Lin Gu
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China.
| |
Collapse
|
9
|
Mo Y, Zhang F, Dong H, Zhang X, Gao S, Zhang S, Jin J. Ultrasmall Cu 3(PO 4) 2 Nanoparticles Reinforced Hydrogel Membrane for Super-antifouling Oil/Water Emulsion Separation. ACS NANO 2022; 16:20786-20795. [PMID: 36475618 DOI: 10.1021/acsnano.2c07977] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Membrane fouling is a persistent and crippling challenge for oily wastewater treatment due to the high susceptibility of membranes to contamination. A feasible strategy is to design a robust and stable hydration layer on the membrane surface to prevent contaminates. A hydrogel illustrates a distinct category of materials with outstanding antifouling performance but is limited by its weak mechanical property. In this research, we report a reinforced hydrogel on a membrane by in situ growing ultrasmall hydrophilic Cu3(PO4)2 nanoparticles in a copper alginate (CuAlg) layer via metal-ion-coordination-mediated mineralization. The embeddedness of hydrophilic Cu3(PO4)2 nanoparticle with a size of 3-5 nm endows the CuAlg/Cu3(PO4)2 composite hydrogel with enhanced mechanical property as well as reinforced hydrate ability. The as-prepared CuAlg/Cu3(PO4)2 modified membrane exhibits a superior oil-repulsive property and achieves a nearly zero flux decline for separating surfactant stabilized oil-in-water emulsions with a high permeate flux up to ∼1330 L m-2 h-1 bar-1. Notably, it is capable of keeping similar permeate flux for both pure water and oil-in-water emulsions during filtration, which is superior to the currently reported membranes, indicating its super-antifouling properties.
Collapse
Affiliation(s)
- Yuyue Mo
- College of Chemistry, Chemical Engineering and Materials Science; Collaborative Innovation Center of Suzhou Nano Science and Technology; Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis; Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, China
| | - Feng Zhang
- College of Chemistry, Chemical Engineering and Materials Science; Collaborative Innovation Center of Suzhou Nano Science and Technology; Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis; Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, China
| | - Hefeng Dong
- China State Shipbuilding Corporation System Engineering Research Institute, Beijing100036, China
| | - Xingzhen Zhang
- College of Chemistry, Chemical Engineering and Materials Science; Collaborative Innovation Center of Suzhou Nano Science and Technology; Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis; Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, China
| | - Shoujian Gao
- i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou215123, China
| | - Shenxiang Zhang
- College of Chemistry, Chemical Engineering and Materials Science; Collaborative Innovation Center of Suzhou Nano Science and Technology; Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis; Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, China
| | - Jian Jin
- College of Chemistry, Chemical Engineering and Materials Science; Collaborative Innovation Center of Suzhou Nano Science and Technology; Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis; Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, China
| |
Collapse
|
10
|
Qiao B, Song H, Qian H, Kong Q. Fabrication of novel zwitterionic copolymer high performance membrane applied for Oil/Water Mixtures and Emulsions Separation. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
11
|
Shakiba M, Abdouss M, Mazinani S, Reza Kalaee M. Super-hydrophilic electrospun PAN nanofibrous membrane modified with alkaline treatment and ultrasonic-assisted PANI in-situ polymerization for highly efficient gravity-driven oil/water separation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.123032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
12
|
Wang D, Gao Y, Gao S, Huang H, Min F, Li Y, Seeger S, Jin J, Chu Z. Antifouling superhydrophilic porous glass membrane based on sulfobetaine prepared by thiol−ene click chemistry for high-efficiency oil/water separation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
13
|
Zhao X, Zhao W, Zhang Y, Zhang X, Ma Z, Wang R, Wei Q, Ma S, Zhou F. Recent progress of bioinspired cartilage hydrogel lubrication materials. BIOSURFACE AND BIOTRIBOLOGY 2022. [DOI: 10.1049/bsb2.12047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Xiaoduo Zhao
- State Key Laboratory of Solid Lubrication Lanzhou Institute of Chemical Physics Chinese Academy of Sciences Lanzhou China
- Yantai Zhongke Research Institute of Advanced Materials and Green Chemical Engineering Yantai China
| | - Weiyi Zhao
- State Key Laboratory of Solid Lubrication Lanzhou Institute of Chemical Physics Chinese Academy of Sciences Lanzhou China
| | - Yunlei Zhang
- State Key Laboratory of Solid Lubrication Lanzhou Institute of Chemical Physics Chinese Academy of Sciences Lanzhou China
| | - Xiaoqing Zhang
- State Key Laboratory of Solid Lubrication Lanzhou Institute of Chemical Physics Chinese Academy of Sciences Lanzhou China
| | - Zhengfeng Ma
- State Key Laboratory of Solid Lubrication Lanzhou Institute of Chemical Physics Chinese Academy of Sciences Lanzhou China
- Baiyin Zhongke Innovation Research Institute of Green Materials Baiyin China
| | - Rui Wang
- State Key Laboratory of Solid Lubrication Lanzhou Institute of Chemical Physics Chinese Academy of Sciences Lanzhou China
| | - Qiangbing Wei
- College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou China
| | - Shuanhong Ma
- State Key Laboratory of Solid Lubrication Lanzhou Institute of Chemical Physics Chinese Academy of Sciences Lanzhou China
- Yantai Zhongke Research Institute of Advanced Materials and Green Chemical Engineering Yantai China
| | - Feng Zhou
- State Key Laboratory of Solid Lubrication Lanzhou Institute of Chemical Physics Chinese Academy of Sciences Lanzhou China
| |
Collapse
|
14
|
Lv CJ, Hao B, Yasin A, Yue X, Ma PC. H2O2-assisted preparation of superhydrophilic polyacrylonitrile fabric and its application for the separation of oil/water mixture. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
15
|
Li X, Wang C, Wang L, Huang R, Li WC, Wang X, Wong SSW, Cai Z, Leung KCF, Jin L. A glutathione-responsive silica-based nanosystem capped with in-situ polymerized cell-penetrating poly(disulfide)s for precisely modulating immuno-inflammatory responses. J Colloid Interface Sci 2022; 614:322-336. [PMID: 35104706 DOI: 10.1016/j.jcis.2022.01.091] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 01/14/2022] [Accepted: 01/15/2022] [Indexed: 01/02/2023]
Abstract
HYPOTHESIS Precise modulation of immuno-inflammatory response is crucial to control periodontal diseases and related systemic comorbidities. The present nanosystem with the controlled-release and cell-penetrating manner enhances the inflammation modulation effects of baicalein in human gingival epithelial cells (hGECs) for better oral healthcare. EXPERIMENTS We constructed a red-emissive mesoporous silica nanoparticle-based nanosystem with cell-penetrating poly(disulfide) (CPD) capping, through a facile in-situ polymerization approach. It was featured with a glutathione-responsive manner and instant cellular internalization capacity for precisely delivering baicalein intracellularly. Laboratory experiments assessed whether and how the nanosystem per se with the delivered baicalein could modulate immuno-inflammatory responses in hGECs. FINDINGS The in-situ polymerized CPD layer capped the nanoparticles and yet controlled the release of baicalein in a glutathione-responsive manner. The CPD coating could facilitate cellular internalization of the nanosystem via endocytosis and thiol-mediated approaches. Notably, the intracellularly released baicalein effectively downregulated the expression of pro-inflammatory cytokines through inhibiting the NF-κB signaling pathway. The nanosystem per se could modulate immuno-inflammatory responses by passivating the cellular response to interlukin-1β. This study highlights that the as-synthesized nanosystem may serve as a novel multi-functional vehicle to modulate innate host response via targeting the NF-κB pathway for precision healthcare.
Collapse
Affiliation(s)
- Xuan Li
- Faculty of Dentistry, The University of Hong Kong, 34 Hospital Road, Hong Kong Special Administrative Region, China
| | - Chuan Wang
- Faculty of Dentistry, The University of Hong Kong, 34 Hospital Road, Hong Kong Special Administrative Region, China
| | - Leilei Wang
- Faculty of Dentistry, The University of Hong Kong, 34 Hospital Road, Hong Kong Special Administrative Region, China
| | - Regina Huang
- Faculty of Dentistry, The University of Hong Kong, 34 Hospital Road, Hong Kong Special Administrative Region, China
| | - Wai-Chung Li
- Department of Chemistry, State Key Laboratory of Environmental and Biological Analysis, The Hong Kong Baptist University, Hong Kong Special Administrative Region, China
| | - Xinna Wang
- Tissue Engineering Laboratory, Department of Mechanical Engineering, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | | | - Zongwei Cai
- Department of Chemistry, State Key Laboratory of Environmental and Biological Analysis, The Hong Kong Baptist University, Hong Kong Special Administrative Region, China
| | - Ken Cham-Fai Leung
- Department of Chemistry, State Key Laboratory of Environmental and Biological Analysis, The Hong Kong Baptist University, Hong Kong Special Administrative Region, China.
| | - Lijian Jin
- Faculty of Dentistry, The University of Hong Kong, 34 Hospital Road, Hong Kong Special Administrative Region, China.
| |
Collapse
|
16
|
Liu Q, Yan J, Zhang T, Hu J, Bao Y, Wu L, Yu D, Li J. Multiphase media superwettability regulated by coexisting prewetting phase. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
17
|
Zhao Y, Ji X, Wu L, Tian J, Zhang C. Preparation of demulsifying functional membrane and its application in separation of emulsified oil. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
18
|
Anthi J, Kolivoška V, Holubová B, Vaisocherová-Lísalová H. Probing polymer brushes with electrochemical impedance spectroscopy: a mini review. Biomater Sci 2021; 9:7379-7391. [PMID: 34693954 DOI: 10.1039/d1bm01330k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Polymer brushes are frequently used as surface-tethered antifouling layers in biosensors to improve sensor surface-analyte recognition in the presence of abundant non-target molecules in complex biological samples by suppressing nonspecific interactions. However, because brushes are complex systems highly responsive to changes in their surrounding environment, studying their properties remains a challenge. Electrochemical impedance spectroscopy (EIS) is an emerging method in this context. In this mini review, we aim to elucidate the potential of EIS for investigating the physicochemical properties and structural aspects of polymer brushes. The application of EIS in brush-based biosensors is also discussed. Most common principles employed in these biosensors are presented, as well as interpretation of EIS data obtained in such setups. Overall, we demonstrate that the EIS-polymer brush pairing has a considerable potential for providing new insights into brush functionalities and designing highly sensitive and specific biosensors.
Collapse
Affiliation(s)
- Judita Anthi
- Institute of Physics of the CAS, Na Slovance 2, 182 21 Prague, Czech Republic. .,Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 3, 16628 Prague, Czech Republic
| | - Viliam Kolivoška
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 3, 182 23 Prague, Czech Republic.
| | - Barbora Holubová
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 3, 16628 Prague, Czech Republic
| | | |
Collapse
|
19
|
Hu J, Zhu X, Xie D, Peng X, Zhu M, Cheng F, Shen X. Antifouling enhancement of polyacrylonitrile-based membrane grafted with poly(sulfobetaine methacrylate) layers. JOURNAL OF POLYMER ENGINEERING 2021. [DOI: 10.1515/polyeng-2021-0112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Abstract
In this work, zwitterionic polyacrylonitrile (PAN)-based membranes were synthesized via surface grafting strategy for improving the antifouling properties. The copolymer membrane consisting of PAN and poly(hydroxyethyl methacrylate) segments, was cast via nonsolvent induced phase separation, and then treated with acryloyl chloride to tether with carbon-carbon double bonds. Zwitterionic poly(sulfobetaine methacrylate) (PSBMA) layers were grafted onto membrane surface via concerted reactions of radical grafting copolymerization and quaternization with 2-(dimethylamino)ethyl methacrylate) and 1, 3-propanesultone (1, 3-PS) as the monomers. The grafting degree (GD) of PSBMA layers increases with the incremental content of monomers, leading to the enhancement in membranes surface hydrophilicity. The permeation experiments show that the flux of the zwitterionic membrane increases and then decreases with the increasing GD value, because of the surface coverage of PSBMA layers. The zwitterionic membrane has excellent separation efficiency for oil-in-water emulsion, with the rejection of a higher value than 99%. The irreversible membrane fouling caused by oil adsorption has been suppressed, as proved by the cycle-filtration tests. These outcomes confirm that oil-fouling resistances of membranes are improved obviously by the surface grafting of zwitterionic PSBMA layers.
Collapse
Affiliation(s)
- Jianlong Hu
- College of Chemistry and Environmental Science, Qujing Normal University , Qujing , 655011 , China
| | - Xuanren Zhu
- College of Chemistry and Environmental Science, Qujing Normal University , Qujing , 655011 , China
| | - Deqiong Xie
- College of Chemistry and Environmental Science, Qujing Normal University , Qujing , 655011 , China
| | - Xianya Peng
- College of Chemistry and Environmental Science, Qujing Normal University , Qujing , 655011 , China
| | - Meng Zhu
- College of Chemistry and Environmental Science, Qujing Normal University , Qujing , 655011 , China
| | - Feixiang Cheng
- College of Chemistry and Environmental Science, Qujing Normal University , Qujing , 655011 , China
| | - Xiang Shen
- College of Chemistry and Environmental Science, Qujing Normal University , Qujing , 655011 , China
| |
Collapse
|
20
|
Niu H, Qiang Z, Ren J. Durable, magnetic-responsive melamine sponge composite for high efficiency, in situoil-water separation. NANOTECHNOLOGY 2021; 32:275705. [PMID: 33725679 DOI: 10.1088/1361-6528/abef2e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 03/16/2021] [Indexed: 05/25/2023]
Abstract
The development of durable and high-performance absorbents forin situoil-water separation is of critical importance for addressing severe water pollution in daily life as well as for solving accidental large-scale oil spillages. Herein, we demonstrate a simple and scalable approach to fabricate magnetic-responsive superhydrophobic melamine sponges byin situdeposition of PDA coatings and Fe3O4nanoparticles, followed by surface silanization with low surface energy 1H,1H,2H,2H-perfluorooctyltriethoxysilane (PTOS) layer. The prepared melamine sponge composite (PTOS-Fe3O4@PDA/MF) not only exhibits a very high water contact angle of 165 ± 1.5° and an excellent ability to uptake a variety of oils and organic solvents (e.g. up to 141.1 g/g for chloroform), but also shows robust durability and superior recyclability. The PTOS-Fe3O4@PDA/MF sponge can also efficiently separate oils (or organic solvents) and water, as demonstrated by different model systems including immiscible oil-water solution mixture and miscible water-oil (W/O) emulsion (stabilized by surfactants). Furthermore, the PTOS-Fe3O4@PDA/MF sponge is able toin siturecover organics from water using a peristaltic pump, which gives it significant advantages over other traditional batch processes for oil-water separation. We believe that the PTOS-Fe3O4@PDA/MF sponge provides a very promising material solution to address oil-water separation, especially for the large-scale problems that have been long-time challenges with conventional sorption methods.
Collapse
Affiliation(s)
- Haifeng Niu
- Institute of Nano and Biopolymeric Materials, Department of Polymeric Materials, Key Laboratory of Advanced Civil Engineering Materials (Ministry of Education), School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, People's Republic of China
| | - Zhe Qiang
- School of Polymer Science and Engineering, University of Southern Mississippi, Hattiesburg, MS, 39406, United States of America
| | - Jie Ren
- Institute of Nano and Biopolymeric Materials, Department of Polymeric Materials, Key Laboratory of Advanced Civil Engineering Materials (Ministry of Education), School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, People's Republic of China
| |
Collapse
|
21
|
Lin Y, Zhang Z, Ren Z, Yang Y, Guo Z. A solvent-responsive robust superwetting titanium dioxide-based metal rubber for oil-water separation and dye degradation. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126179] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
22
|
Xing J, Zhang G, Jia X, Liu D, Wyman I. Preparation of Multipurpose Polyvinylidene Fluoride Membranes via a Spray-Coating Strategy Using Waterborne Polymers. ACS APPLIED MATERIALS & INTERFACES 2021; 13:4485-4498. [PMID: 33443998 DOI: 10.1021/acsami.0c18788] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
As reported herein, the waterborne polymers poly(glycidyl methacrylate-co-poly(ethylene glycol) methyl ether methacrylate) P(GMA-co-mPEGMA) and polyethyleneimine (PEI) were used to prepare multipurpose polyvinylidene fluoride (PVDF) membranes via a direct spray-coating method. P(GMA-co-mPEGMA) and PEI were alternately sprayed onto the PVDF membrane to yield stable cross-linked copolymer coatings. The successful coating of polymers onto the membrane surface was verified by scanning electron microscopy, attenuated total reflectance-Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy characterization. The coated membrane exhibited oil rejection rates that exceeded 99.0% for oil water mixture separation and 98.0% for oil/water emulsion separation. The flux recovery ratio reached 96.7% after bovine serum albumin filtration and washing with water. The removal efficiencies of the coated membrane M3 for Congo red, methyl orange, methylene blue, and crystal violet, Pb(II), Cu(II), and Cd(II) were 82.4, 83.9, 6.3, 26.8, 90.6, 91.3, and 86.2%, respectively. Thus, it can be used for the removal of dyes and heavy metal ions from wastewater. The antibacterial activities of the coated membranes were also confirmed by the inhibition zone tests and confocal laser scanning microscopy analysis. In addition, the cross-linking strategy provides the coated membranes with excellent durability and repeatability. More importantly, the use of water as the solvent can ensure that the application of these membrane coatings proceeds via a very safe and environmentally friendly coating process.
Collapse
Affiliation(s)
- Jiale Xing
- Jiangsu Province Engineering Research Center for Separation and Purification Materials & Technologies, Suzhou Key Laboratory of Separation and Purification Materials & Technologies, School of Environmental Science & Engineering, Suzhou University of Science and Technology, Suzhou 215009, P.R. China
| | - Ganwei Zhang
- Jiangsu Province Engineering Research Center for Separation and Purification Materials & Technologies, Suzhou Key Laboratory of Separation and Purification Materials & Technologies, School of Environmental Science & Engineering, Suzhou University of Science and Technology, Suzhou 215009, P.R. China
| | - Xinying Jia
- Jiangsu Province Engineering Research Center for Separation and Purification Materials & Technologies, Suzhou Key Laboratory of Separation and Purification Materials & Technologies, School of Environmental Science & Engineering, Suzhou University of Science and Technology, Suzhou 215009, P.R. China
| | - Dapeng Liu
- Jiangsu Province Engineering Research Center for Separation and Purification Materials & Technologies, Suzhou Key Laboratory of Separation and Purification Materials & Technologies, School of Environmental Science & Engineering, Suzhou University of Science and Technology, Suzhou 215009, P.R. China
| | - Ian Wyman
- Department of Chemistry, Queen's University, 90 Bader Lane, Kingston K7L 3N6, Canada
| |
Collapse
|
23
|
Shen X, Liu T, Xia S, Liu J, Liu P, Cheng F, He C. Polyzwitterions Grafted onto Polyacrylonitrile Membranes by Thiol–Ene Click Chemistry for Oil/Water Separation. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c04759] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Xiang Shen
- Center for Yunnan-Guizhou Plateau Chemical Functional Materials and Pollution Control, College of Chemistry and Environmental Science, Qujing Normal University, Qujing 655011, China
| | - Teng Liu
- Center for Yunnan-Guizhou Plateau Chemical Functional Materials and Pollution Control, College of Chemistry and Environmental Science, Qujing Normal University, Qujing 655011, China
| | - Shubiao Xia
- Center for Yunnan-Guizhou Plateau Chemical Functional Materials and Pollution Control, College of Chemistry and Environmental Science, Qujing Normal University, Qujing 655011, China
| | - Jianjun Liu
- Center for Yunnan-Guizhou Plateau Chemical Functional Materials and Pollution Control, College of Chemistry and Environmental Science, Qujing Normal University, Qujing 655011, China
| | - Peng Liu
- Center for Yunnan-Guizhou Plateau Chemical Functional Materials and Pollution Control, College of Chemistry and Environmental Science, Qujing Normal University, Qujing 655011, China
| | - Feixiang Cheng
- Center for Yunnan-Guizhou Plateau Chemical Functional Materials and Pollution Control, College of Chemistry and Environmental Science, Qujing Normal University, Qujing 655011, China
| | - Chixian He
- Center for Yunnan-Guizhou Plateau Chemical Functional Materials and Pollution Control, College of Chemistry and Environmental Science, Qujing Normal University, Qujing 655011, China
| |
Collapse
|
24
|
He T, Xing Z, Wang Y, Wu D, Liu Y, Liu X. Direct fluorination as a one-step ATRP initiator immobilization for convenient surface grafting of phenyl ring-containing substrates. Polym Chem 2020. [DOI: 10.1039/d0py00860e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Direct fluorination is proposed as a one-step ATRP initiator immobilization and the C–F added on the phenyl ring is demonstrated to be more suitable for initiation of ATRP.
Collapse
Affiliation(s)
- Taijun He
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Material and Engineering
- Sichuan University
- Chengdu 610065
- People's Republic of China
| | - Zhenyu Xing
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Material and Engineering
- Sichuan University
- Chengdu 610065
- People's Republic of China
| | - Yixing Wang
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Material and Engineering
- Sichuan University
- Chengdu 610065
- People's Republic of China
| | - Difeng Wu
- Sichuan EM Technology Co
- Ltd
- Mianyang 621000
- China
| | - Yang Liu
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Material and Engineering
- Sichuan University
- Chengdu 610065
- People's Republic of China
| | - Xiangyang Liu
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Material and Engineering
- Sichuan University
- Chengdu 610065
- People's Republic of China
| |
Collapse
|