1
|
Kuk K, Ringling J, Gräff K, Hänsch S, Carrasco-Fadanelli V, Rudov AA, Potemkin II, von Klitzing R, Buttinoni I, Karg M. Drying of Soft Colloidal Films. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2406977. [PMID: 39498779 DOI: 10.1002/advs.202406977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 10/25/2024] [Indexed: 11/07/2024]
Abstract
Thin films made of deformable micro- and nano-units, such as biological membranes, polymer interfaces, and particle-laden liquid surfaces, exhibit a complex behavior during drying, with consequences for various applications like wound healing, coating technologies, and additive manufacturing. Studying the drying dynamics and structural changes of soft colloidal films thus holds the potential to yield valuable insights to achieve improvements for applications. In this study, interfacial monolayers of core-shell (CS) microgels with varying degrees of softness are employed as model systems and to investigate their drying behavior on differently modified solid substrates (hydrophobic vs hydrophilic). By leveraging video microscopy, particle tracking, and thin film interference, this study shed light on the interplay between microgel adhesion to solid surfaces and the immersion capillary forces that arise in the thin liquid film. It is discovered that a dried replica of the interfacial microstructure can be more accurately achieved on a hydrophobic substrate relative to a hydrophilic one, particularly when employing softer colloids as opposed to harder counterparts. These observations are qualitatively supported by experiments with a thin film pressure balance which allows mimicking and controlling the drying process and by computer simulations with coarse-grained models.
Collapse
Affiliation(s)
- Keumkyung Kuk
- Institut für Physikalische Chemie I: Kolloide und Nanooptik, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225, Düsseldorf, Germany
| | - Julian Ringling
- Institut für Physikalische Chemie I: Kolloide und Nanooptik, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225, Düsseldorf, Germany
| | - Kevin Gräff
- Institute for Condensed Matter Physics, Soft Matter at Interfaces, Technische Universität Darmstadt, Hochschulstr. 8, 64289, Darmstadt, Germany
| | - Sebastian Hänsch
- Center for Advanced Imaging, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225, Düsseldorf, Germany
| | - Virginia Carrasco-Fadanelli
- Institut für Experimentelle Physik der kondensierten Materie, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225, Düsseldorf, Germany
| | - Andrey A Rudov
- DWI-Leibniz Institute for Interactive Materials, 52056, Aachen, Germany
- Physics Department, Lomonosov Moscow State University, 119991, Moscow, Russian Federation
| | - Igor I Potemkin
- DWI-Leibniz Institute for Interactive Materials, 52056, Aachen, Germany
- Physics Department, Lomonosov Moscow State University, 119991, Moscow, Russian Federation
| | - Regine von Klitzing
- Institute for Condensed Matter Physics, Soft Matter at Interfaces, Technische Universität Darmstadt, Hochschulstr. 8, 64289, Darmstadt, Germany
| | - Ivo Buttinoni
- Institut für Experimentelle Physik der kondensierten Materie, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225, Düsseldorf, Germany
| | - Matthias Karg
- Institut für Physikalische Chemie I: Kolloide und Nanooptik, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225, Düsseldorf, Germany
| |
Collapse
|
2
|
Braun L, von Klitzing R. When Bulk Matters: Disentanglement of the Role of Polyelectrolyte/Surfactant Complexes at Surfaces and in the Bulk of Foam Films. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:111-118. [PMID: 36525629 DOI: 10.1021/acs.langmuir.2c02260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Foam films display exciting systems as on one hand they dictate the performance of macroscopic foams and on the other hand they allow studies of surface forces. With regard to surface forces, we attempt to disentangle the effect of the foam film surfaces and the foam film bulk. For that, we study the influence of salt (LiBr) on foam films formed by mixtures of oppositely charged polyelectrolyte and surfactant: anionic monosulfonated polyphenylene sulfone (sPSO2-220) and cationic tetradecyltrimethylammonium bromide (C14TAB). Adding a small amount of salt (≤10-3 M) decreases the foam film stability due to a weakened electrostatic net repulsion. In contrast, a large amount of salt (10-2 M) unexpectedly increases the foam film stability. Disjoining pressure isotherms reveal that the increased stability is due to an additional steric stabilization, which is attributed to sPSO2-220/C14TAB complexes in the film bulk. These bulk complexes also contribute to the measured apparent surface potential between the two air/water interfaces. We find, for the first time, the formation of Newton black films for mixtures of anionic polyelectrolytes and cationic surfactants.
Collapse
Affiliation(s)
- Larissa Braun
- Soft Matter at Interfaces, Department of Physics, Technische Universität Darmstadt, Hochschulstraße 8, 64289Darmstadt, Germany
| | - Regine von Klitzing
- Soft Matter at Interfaces, Department of Physics, Technische Universität Darmstadt, Hochschulstraße 8, 64289Darmstadt, Germany
| |
Collapse
|
3
|
Kühnhammer M, Gräff K, Loran E, Soltwedel O, Löhmann O, Frielinghaus H, von Klitzing R. Structure formation of PNIPAM microgels in foams and foam films. SOFT MATTER 2022; 18:9249-9262. [PMID: 36440620 DOI: 10.1039/d2sm01021f] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Responsive aqueous foams are very interesting from a fundamental point of view and for various applications like foam flooding or foam flotation. In this study thermoresponsive microgels (MGs) made from poly(N-isopropyl-acrylamide) (PNIPAM) with varying cross-linker content, are used as foam stabilisers. The foams obtained are thermoresponsive and can be destabilised by increasing the temperature. The structuring of MGs inside the foam films is investigated with small-angle neutron scattering and in a thin film pressure balance. The foam films are inhomogeneous and form a network-like structure, in which thin and MG depleted zones with a thickness of ca. 30 nm are interspersed in a continuous network of thick MG containing areas with a thickness of several 100 nm. The thickness of this continuous network is related to the elastic modulus of the individual MGs, which was determined by atomic force microscopy indentation experiments. Both, the elastic moduli and foam film thicknesses, indicate a correlation to the network elasticity of the MGs predicted by the affine network model.
Collapse
Affiliation(s)
- Matthias Kühnhammer
- Institute for Condensed Matter Physics, Technische Universität Darmstadt, Hochschulstraße 8, 64289 Darmstadt, Germany.
| | - Kevin Gräff
- Institute for Condensed Matter Physics, Technische Universität Darmstadt, Hochschulstraße 8, 64289 Darmstadt, Germany.
| | - Edwin Loran
- Institute for Condensed Matter Physics, Technische Universität Darmstadt, Hochschulstraße 8, 64289 Darmstadt, Germany.
| | - Olaf Soltwedel
- Institute for Condensed Matter Physics, Technische Universität Darmstadt, Hochschulstraße 8, 64289 Darmstadt, Germany.
| | - Oliver Löhmann
- Institute for Condensed Matter Physics, Technische Universität Darmstadt, Hochschulstraße 8, 64289 Darmstadt, Germany.
| | - Henrich Frielinghaus
- Jülich Center for Neutron Science at the Heinz Maier Leibnitz Zentrum, Forschungszentrum Jülich GmbH, Lichtenbergstrasse 1, 85747 Garching, Germany
| | - Regine von Klitzing
- Institute for Condensed Matter Physics, Technische Universität Darmstadt, Hochschulstraße 8, 64289 Darmstadt, Germany.
| |
Collapse
|
5
|
He L, Ding L, Waterhouse GIN, Li B, Liu F, Li P. Performance matching between the surface structure of cucumber powdery mildew in different growth stages and the properties of surfactant solution. PEST MANAGEMENT SCIENCE 2021; 77:3538-3546. [PMID: 33837661 DOI: 10.1002/ps.6407] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/02/2021] [Accepted: 04/09/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Understanding performance matching of pesticide droplets on the surface of cucumber leaves modified by powdery mildew is of practical importance for the agricultural sector. Here, the surface texture and wettability of cucumber leaves covered by powdery mildew were systematically examined using parameters such as micromorphology, physicochemical properties, and liquid droplet contact angle measurements. RESULTS Our results show that powdery mildew growth can be divided into four distinct stages according to the surface texture characteristics of the diseased cucumber leaves. The three-dimensional (3D) surface structures of powdery mildew layers on cucumber leaves had individual characteristics at different mildew growth stages, among which powdery mildew was more easily spread in the last growth stage, and powdery mildew height was greatest in the NO. 2 growth stage (Sa = 425.35 μm). Surface free energy values, static contact angle, and contact angle hysteresis all correlated strongly with the surface characteristics of powdery mildew layers at different growth stages. When the concentration of surfactant reached the critical micelle concentration, the wetting state of AEO-5 solution droplets on the surface of cucumber powdery mildew leaves reached the Wenzel state more easily. The wettability of a droplet on the leaf surface depends on the state of the monomer and micelle in the surfactant solution and the surface characteristics of the powdery mildew-covered leaf. CONCLUSION The 3D structure and relative dielectric constant of powdery mildew-covered leaves influenced surface texture characteristics, which in turn controlled the wetting and matching ability of surfactant droplets on diseased leaves. This work provides valuable new insights into the matching of the structure of powdery mildew-covered plant leaves with the properties of surfactant solutions. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Lifei He
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai'an, People's Republic of China
- College of Chemistry and Materials Science, Shandong Agricultural University, Tai'an, People's Republic of China
| | - Lei Ding
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai'an, People's Republic of China
| | - Geoffrey I N Waterhouse
- College of Chemistry and Materials Science, Shandong Agricultural University, Tai'an, People's Republic of China
| | - Beixing Li
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai'an, People's Republic of China
| | - Feng Liu
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai'an, People's Republic of China
| | - Peiqiang Li
- College of Chemistry and Materials Science, Shandong Agricultural University, Tai'an, People's Republic of China
| |
Collapse
|