1
|
Huang M, Li L, Wen S, Zou H, Wang J. Hybridization chain reaction and magnetic beads-assisted highly sensitive detection of microRNA-21 with helical gold nanorods as dark-filed light scattering optical probe. Talanta 2025; 285:127382. [PMID: 39681057 DOI: 10.1016/j.talanta.2024.127382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 11/30/2024] [Accepted: 12/12/2024] [Indexed: 12/18/2024]
Abstract
As a promising cancer biomarker, microRNA-21 (miRNA-21) has attracted great attention. However, the assay sensitivity of miRNA-21 is highly demanded due to its low abundance. In this work, a highly sensitive sensing platform for miRNA-21 detection was developed based on hybridization chain reaction (HCR) and magnetic beads (MBs)-assisted cascade signal amplification strategy with helical gold nanorods (HGNRs) as dark-field light scattering probes. The target miRNA-21 triggered triiodide (I3-)-mediated etching of HGNRs, leading to the decrease in scattering intensity of HGNRs. Compared with the common gold nanorods, the protuberant helical structure on the rough surface endowed HGNRs with larger specific surface area and higher reactivity, resulting in a higher sensitivity with a linear range of 0.1-3 pmol/L and a limit of detection as low as 61.33 fmol/L, which realized the detection of miRNA-21 in serum samples from cancer patients. Moreover, the proposed strategy offered the remarkable specificity and high accuracy, which was capable of distinguishing mismatch sequences and offering the similar result obtained from polymerase chain reaction, supplying a new idea for early diagnosis of cancers.
Collapse
Affiliation(s)
- Min Huang
- Key Laboratory of Biomedical Analytics (Southwest University), Chongqing Science and Technology Bureau, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, PR China
| | - Liangtong Li
- Key Laboratory of Biomedical Analytics (Southwest University), Chongqing Science and Technology Bureau, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, PR China
| | - Shuai Wen
- Key Laboratory of Biomedical Analytics (Southwest University), Chongqing Science and Technology Bureau, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, PR China
| | - Hongyan Zou
- Key Laboratory of Biomedical Analytics (Southwest University), Chongqing Science and Technology Bureau, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, PR China.
| | - Jian Wang
- Key Laboratory of Biomedical Analytics (Southwest University), Chongqing Science and Technology Bureau, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, PR China.
| |
Collapse
|
2
|
Nagdeve SN, Suganthan B, Ramasamy RP. An electrochemical biosensor for the detection of microRNA-31 as a potential oral cancer biomarker. J Biol Eng 2025; 19:24. [PMID: 40133958 PMCID: PMC11938787 DOI: 10.1186/s13036-025-00492-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 02/28/2025] [Indexed: 03/27/2025] Open
Abstract
Oral cancer presents substantial challenges to global health due to its elevated mortality rates. Approximately 90% of these malignancies are oral squamous cell carcinoma (OSCC). A significant contributor to the prevalence of oral cancer is the difficulty in detecting cancerous biomarkers, further exacerbated by socioeconomic disadvantages and late-stage diagnoses. Given the critical nature of oral cancer, the early detection of biomarkers is essential for reducing mortality rates. This study investigates the application of microRNA-31 (miRNA-31) as a biomarker for the electrochemical detection of oral cancer, recognizing the considerable potential that microRNAs have demonstrated in cancer screening and diagnosis. The methodology employed includes the use of a glassy carbon electrode modified with graphene and a molecular tethering agent designed to enhance sensitivity and specificity. The biosensor exhibited a limit of detection of 10- 11 M (70 pg/mL or 6.022 × 106 copies/µL) in buffer and 10- 10 M (700 pg/mL or 6.022 × 107 copies/µL) in diluted serum for the complementary target miRNA-31 using the Six Sigma method. The efficacy of this biosensor was further validated through specificity studies utilizing a non-complementary miRNA in both buffer and human serum samples. The electrochemical biosensor displayed exceptional performance and high sensitivity in detecting miRNA-31, confirming its role as an innovative sensor for the non-invasive diagnosis of oral cancer. Furthermore, the proposed biosensor demonstrates several advantages over current methodologies, including reduced detection time, and cost-effective reagents.
Collapse
Affiliation(s)
- Sanket Naresh Nagdeve
- Nano Electrochemistry Laboratory, School of Chemical, Materials, and Biomedical Engineering, University of Georgia, Athens, 30602, USA
| | - Baviththira Suganthan
- Nano Electrochemistry Laboratory, School of Chemical, Materials, and Biomedical Engineering, University of Georgia, Athens, 30602, USA
| | - Ramaraja P Ramasamy
- Nano Electrochemistry Laboratory, School of Chemical, Materials, and Biomedical Engineering, University of Georgia, Athens, 30602, USA.
| |
Collapse
|
3
|
Jiang N, Shrotriya P. Low-Cost and Portable Biosensor Based on Monitoring Impedance Changes in Aptamer-Functionalized Nanoporous Anodized Aluminum Oxide Membrane. MICROMACHINES 2024; 16:35. [PMID: 39858691 PMCID: PMC11767673 DOI: 10.3390/mi16010035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 12/25/2024] [Accepted: 12/27/2024] [Indexed: 01/27/2025]
Abstract
We report a low-cost, portable biosensor composed of an aptamer-functionalized nanoporous anodic aluminum oxide (NAAO) membrane and a commercial microcontroller chip-based impedance reader suitable for electrochemical impedance spectroscopy (EIS)-based sensing. The biosensor consists of two chambers separated by an aptamer-functionalized NAAO membrane, and the impedance reader is utilized to monitor transmembrane impedance changes. The biosensor is utilized to detect amodiaquine molecules using an amodiaquine-binding aptamer (OR7)-functionalized membrane. The aptamer-functionalized membrane is exposed to different concentrations of amodiaquine molecules to characterize the sensitivity of the sensor response. The specificity of the sensor response is characterized by exposure to varying concentrations of chloroquine, which is similar in structure to amodiaquine but does not bind to the OR7 aptamer. A commercial potentiostat is also used to measure the sensor response for amodiaquine and chloroquine. The sensing response measured using both the portable impedance reader and the commercial potentiostat showed a similar dynamic response and detection threshold. The specific and sensitive sensing results for amodiaquine demonstrate the efficacy of the low-cost and portable biosensor.
Collapse
Affiliation(s)
- Nianyu Jiang
- Ames National Laboratory, Mechanical Engineering Department, Iowa State University, Ames, IA 50014, USA;
| | - Pranav Shrotriya
- Ames National Laboratory, Mechanical Engineering Department, Iowa State University, Ames, IA 50014, USA;
- Mechanical Engineering Department, Iowa State University, Ames, IA 50014, USA
| |
Collapse
|
4
|
Chu M, Zhang Y, Ji C, Zhang Y, Yuan Q, Tan J. DNA Nanomaterial-Based Electrochemical Biosensors for Clinical Diagnosis. ACS NANO 2024; 18:31713-31736. [PMID: 39509537 DOI: 10.1021/acsnano.4c11857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Sensitive and quantitative detection of chemical and biological molecules for screening, diagnosis and monitoring diseases is essential to treatment planning and response monitoring. Electrochemical biosensors are fast, sensitive, and easy to miniaturize, which has led to rapid development in clinical diagnosis. Benefiting from their excellent molecular recognition ability and high programmability, DNA nanomaterials could overcome the Debye length of electrochemical biosensors by simple molecular design and are well suited as recognition elements for electrochemical biosensors. Therefore, to enhance the sensitivity and specificity of electrochemical biosensors, significant progress has been made in recent years by optimizing the DNA nanomaterials design. Here, the establishment of electrochemical sensing strategies based on DNA nanomaterials is reviewed in detail. First, the structural design of DNA nanomaterial is examined to enhance the sensitivity of electrochemical biosensors by improving recognition and overcoming Debye length. In addition, the strategies of electrical signal transduction and signal amplification based on DNA nanomaterials are reviewed, and the applications of DNA nanomaterial-based electrochemical biosensors and integrated devices in clinical diagnosis are further summarized. Finally, the main opportunities and challenges of DNA nanomaterial-based electrochemical biosensors in detecting disease biomarkers are presented in an aim to guide the design of DNA nanomaterial-based electrochemical devices with high sensitivity and specificity.
Collapse
Affiliation(s)
- Mengge Chu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Yawen Zhang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Cailing Ji
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Yun Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Quan Yuan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Jie Tan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
5
|
Zhang L, He Y. A label-free and ultrasensitive electrochemical biosensor using hybrid polypyrrole/gold nanoelectrocatalyst mediated signal amplification for the detection of miRNA-21. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:7567-7575. [PMID: 39371036 DOI: 10.1039/d4ay01215a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
The quantitative detection of microRNAs (miRNAs) is crucial for the diagnosis of cancers, while the traditional methods involve complicated procedures and restricted signal gain. In this study, we have established an ultrasensitive electrochemical biosensor by combining a target-induced hybridization reaction and signal amplification strategy for the detection of miRNA-21. The signal amplification is achieved through employing double-stranded DNA as scaffolds for methylene blue (MB) and using a polypyrrole@gold nanocomposite (ppy@AuNPs) as the electrochemical catalyst for further enhancing the signal. Therefore, this proposed electrochemical platform displayed an analytical performance with a wide linear range from 10 fM to 100 nM and a low detection limit down to 5.4 fM. The excellent selectivity allows the biosensor to discriminate miRNA-21 from other miRNAs, even the one base-mismatched sequence. Moreover, this nanoelectrocatalyst-based platform exhibited good reproducibility and remarkable storage stability, which shows great potential for miRNA-21 detection.
Collapse
Affiliation(s)
- LiNa Zhang
- Department of Chemical Engineering, Jincheng Institute of Technology, Jincheng 048000, China
| | - YanBin He
- School of Pharmacy, Changzhi Medical College, Changzhi 046000, China.
| |
Collapse
|
6
|
Huang S, Wang Y, Liu S, Li H, Yang M, Fang Y, Xiao Q. Triblock polyadenine-based electrochemical aptasensor for ultra-sensitive detection of carcinoembryonic antigen via exonuclease III-assisted target recycling and hybridization chain reaction. Bioelectrochemistry 2024; 159:108749. [PMID: 38823375 DOI: 10.1016/j.bioelechem.2024.108749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/18/2024] [Accepted: 05/26/2024] [Indexed: 06/03/2024]
Abstract
Carcinoembryonic antigen (CEA), a key colon biomarker, demands a precise detection method for cancer diagnosis and prognosis. This study introduces a novel electrochemical aptasensor using a triblock polyadenine probe for ultra-sensitive detection of CEA. The method leverages Exonuclease III (Exo III)-assisted target recycling and hybridization chain reaction. The triblock polyadenine probe self-assembles on the bare gold electrode through the strong affinity between adenine and gold electrode, blocking CEA diffusion and providing a large immobilization surface. CEA binding to hairpin probe 1 (HP1), followed by the hybridization between HP1 and hairpin probe 2 (HP2), triggers DNA cleavage by Exo III, amplifying the signal via a hybridization chain reaction and producing numerous dsDNA walkers that generates a dramatic electrochemical impedance signal. Under optimized conditions, the aptasensor achieved two ultra-low detection limits: 0.39 ag∙mL-1 within the concentration range of 5 ag∙mL-1 to 5 × 106 ag∙mL-1, and 1.5 ag∙mL-1 within the concentration range of 5 × 106 ag∙mL-1 to 1 × 1010 ag∙mL-1. Its performance in human serum samples meets the practical standards, offering a promising new tool for ultrasensitive tumor marker detection, potentially revolutionizing early cancer diagnosis.
Collapse
Affiliation(s)
- Shan Huang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, PR China
| | - Yali Wang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, PR China
| | - Shuai Liu
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, PR China
| | - Huihao Li
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, PR China
| | - Mingli Yang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, PR China
| | - Yi Fang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, PR China
| | - Qi Xiao
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, PR China.
| |
Collapse
|
7
|
Chinnappan R, Makhzoum T, Arai M, Hajja A, Abul Rub F, Alodhaibi I, Alfuwais M, Elahi MA, Alshehri EA, Ramachandran L, Mani NK, Abrahim S, Mir MS, Al-Kattan K, Mir TA, Yaqinuddin A. Recent Advances in Biosensor Technology for Early-Stage Detection of Hepatocellular Carcinoma-Specific Biomarkers: An Overview. Diagnostics (Basel) 2024; 14:1519. [PMID: 39061656 PMCID: PMC11276200 DOI: 10.3390/diagnostics14141519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/06/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Hepatocellular carcinoma is currently the most common malignancy of the liver. It typically occurs due to a series of oncogenic mutations that lead to aberrant cell replication. Most commonly, hepatocellular carcinoma (HCC) occurs as a result of pre-occurring liver diseases, such as hepatitis and cirrhosis. Given its aggressive nature and poor prognosis, the early screening and diagnosis of HCC are crucial. However, due to its plethora of underlying risk factors and pathophysiologies, patient presentation often varies in the early stages, with many patients presenting with few, if any, specific symptoms in the early stages. Conventionally, screening and diagnosis are performed through radiological examination, with diagnosis confirmed by biopsy. Imaging modalities tend to be limited by their requirement of large, expensive equipment; time-consuming operation; and a lack of accurate diagnosis, whereas a biopsy's invasive nature makes it unappealing for repetitive use. Recently, biosensors have gained attention for their potential to detect numerous conditions rapidly, cheaply, accurately, and without complex equipment and training. Through their sensing platforms, they aim to detect various biomarkers, such as nucleic acids, proteins, and even whole cells extracted by a liquid biopsy. Numerous biosensors have been developed that may detect HCC in its early stages. We discuss the recent updates in biosensing technology, highlighting its competitive potential compared to conventional methodology and its prospects as a tool for screening and diagnosis.
Collapse
Affiliation(s)
- Raja Chinnappan
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (T.M.); (M.A.); (A.H.); (F.A.R.); (I.A.); (M.A.); (M.A.E.); (K.A.-K.); (T.A.M.)
- Tissue/Organ Bioengineering & BioMEMS Laboratory, Organ Transplant Centre of Excellence (TR&I-Dpt), King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia;
| | - Tariq Makhzoum
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (T.M.); (M.A.); (A.H.); (F.A.R.); (I.A.); (M.A.); (M.A.E.); (K.A.-K.); (T.A.M.)
| | - Momo Arai
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (T.M.); (M.A.); (A.H.); (F.A.R.); (I.A.); (M.A.); (M.A.E.); (K.A.-K.); (T.A.M.)
| | - Amro Hajja
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (T.M.); (M.A.); (A.H.); (F.A.R.); (I.A.); (M.A.); (M.A.E.); (K.A.-K.); (T.A.M.)
| | - Farah Abul Rub
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (T.M.); (M.A.); (A.H.); (F.A.R.); (I.A.); (M.A.); (M.A.E.); (K.A.-K.); (T.A.M.)
| | - Ibrahim Alodhaibi
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (T.M.); (M.A.); (A.H.); (F.A.R.); (I.A.); (M.A.); (M.A.E.); (K.A.-K.); (T.A.M.)
| | - Mohammed Alfuwais
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (T.M.); (M.A.); (A.H.); (F.A.R.); (I.A.); (M.A.); (M.A.E.); (K.A.-K.); (T.A.M.)
| | - Muhammad Affan Elahi
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (T.M.); (M.A.); (A.H.); (F.A.R.); (I.A.); (M.A.); (M.A.E.); (K.A.-K.); (T.A.M.)
| | - Eman Abdullah Alshehri
- Tissue/Organ Bioengineering & BioMEMS Laboratory, Organ Transplant Centre of Excellence (TR&I-Dpt), King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia;
| | - Lohit Ramachandran
- Microfluidics, Sensors & Diagnostics (μSenD) Laboratory, Centre for Microfluidics, Biomarkers, Photoceutics and Sensors (μBioPS), Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India; (L.R.); (N.K.M.)
| | - Naresh Kumar Mani
- Microfluidics, Sensors & Diagnostics (μSenD) Laboratory, Centre for Microfluidics, Biomarkers, Photoceutics and Sensors (μBioPS), Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India; (L.R.); (N.K.M.)
| | - Shugufta Abrahim
- Graduate School of Science and Engineering for Education, University of Toyama, 3190 Gofuku, Toyama 930-8555, Japan;
| | - Mohammad Shabab Mir
- School of Pharmacy, Desh Bhagat University, Mandi Gobindgarh 147301, Punjab, India;
| | - Khaled Al-Kattan
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (T.M.); (M.A.); (A.H.); (F.A.R.); (I.A.); (M.A.); (M.A.E.); (K.A.-K.); (T.A.M.)
- Lung Health Centre Department, Organ Transplant Centre of Excellence, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Tanveer Ahmad Mir
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (T.M.); (M.A.); (A.H.); (F.A.R.); (I.A.); (M.A.); (M.A.E.); (K.A.-K.); (T.A.M.)
- Tissue/Organ Bioengineering & BioMEMS Laboratory, Organ Transplant Centre of Excellence (TR&I-Dpt), King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia;
| | - Ahmed Yaqinuddin
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (T.M.); (M.A.); (A.H.); (F.A.R.); (I.A.); (M.A.); (M.A.E.); (K.A.-K.); (T.A.M.)
| |
Collapse
|
8
|
Gunasekaran BM, Srinivasan S, Ezhilan M, Nesakumar N. Nucleic acid-based electrochemical biosensors. Clin Chim Acta 2024; 559:119715. [PMID: 38735514 DOI: 10.1016/j.cca.2024.119715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/01/2024] [Accepted: 05/01/2024] [Indexed: 05/14/2024]
Abstract
Colorectal cancer, breast cancer, oxidative DNA damage, and viral infections are all significant and major health threats to human health, presenting substantial challenges in early diagnosis. In this regard, a wide range of nucleic acid-based electrochemical platforms have been widely employed as point-of-care diagnostics in health care and biosensing technologies. This review focuses on biosensor design strategies, underlying principles involved in the development of advanced electrochemical genosensing devices, approaches for immobilizing DNA on electrode surfaces, as well as their utility in early disease diagnosis, with a particular emphasis on cancer, leukaemia, oxidative DNA damage, and viral pathogen detection. Notably, the role of biorecognition elements and nanointerfaces employed in the design and development of advanced electrochemical genosensors for recognizing biomarkers related to colorectal cancer, breast cancer, leukaemia, oxidative DNA damage, and viral pathogens has been extensively reviewed. Finally, challenges associated with the fabrication of nucleic acid-based biosensors to achieve high sensitivity, selectivity, a wide detection range, and a low detection limit have been addressed. We believe that this review will provide valuable information for scientists and bioengineers interested in gaining a deeper understanding of the fabrication and functionality of nucleic acid-based electrochemical biosensors for biomedical diagnostic applications.
Collapse
Affiliation(s)
- Balu Mahendran Gunasekaran
- School of Chemical & Biotechnology (SCBT), SASTRA Deemed University, Thanjavur 613 401, Tamil Nadu, India; Center for Nanotechnology & Advanced Biomaterials (CENTAB), SASTRA Deemed University, Thanjavur 613401, Tamil Nadu, India
| | - Soorya Srinivasan
- Department of Chemistry, A.V.V.M Sri Pushpam College (Autonomous), (Affiliated to Bharathidasan University, Tiruchirappalli), Poondi, Thanjavur, Tamil Nadu 613 503, India
| | - Madeshwari Ezhilan
- Department of biomedical engineering, Vel Tech Rangarajan Dr. Sagunthala R & D Institute of Science and Technology, Vel Nagar, Avadi, Chennai 600062, Tamil Nadu, India
| | - Noel Nesakumar
- School of Chemical & Biotechnology (SCBT), SASTRA Deemed University, Thanjavur 613 401, Tamil Nadu, India; Center for Nanotechnology & Advanced Biomaterials (CENTAB), SASTRA Deemed University, Thanjavur 613401, Tamil Nadu, India.
| |
Collapse
|
9
|
Watanabe Y, Yajima S, Koda M, Kinjou A, Koto A, Takamura E, Sakamoto H, Suye SI. Selective miR-21 detection technology based on photocrosslinkable artificial nucleic acid-modified magnetic particles and hybridization chain reaction. Biosens Bioelectron 2024; 247:115920. [PMID: 38091896 DOI: 10.1016/j.bios.2023.115920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/28/2023] [Accepted: 12/06/2023] [Indexed: 01/02/2024]
Abstract
Recently, microRNA (miRNA) detection in blood has attracted attention as a new early detection technology for cancer. The extraction of target miRNA is a necessary preliminary step for detection; however, currently, most extraction methods extract all RNA from the blood, which limits the detection selectivity. Therefore, a method for the selective extraction and detection of target miRNA from blood is very important. In this study, we utilized photocrosslinkable artificial nucleic acids and the hybridization chain reaction (HCR) in an attempt to improve upon the current standard method RT-qPCR, which is hampered by problems with primer design and enzymatic amplification. By introducing photocrosslinkable artificial nucleic acids to oligonucleotide probes modified with magnetic particles with a sequence complementary to that of the target miRNA and irradiating them with light, covalent bonds were formed between the target miRNA and the oligonucleotide probes. These tight covalent bonds enabled the capture of miRNA in blood, and intensive washing ensured that only the target miRNA were extracted. After extraction, two types of DNA (H1 and H2) modified with fluorescent dyes were added and the fluorescence signals were amplified by the HCR in the presence of the target miRNA bound to the photocrosslinkable artificial nucleic acids, allowing for isothermal and enzyme-free miRNA detection. The novel method is suitable for selective miRNA detection in real blood samples. Because the reaction proceeds isothermally and no specialized equipment is used for washing, this detection technology is simple and selective and suitable for application to point-of-care technology using microfluidic devices.
Collapse
Affiliation(s)
- Yui Watanabe
- University of Fukui, Faculty of Engineering, Graduate School of Engineering, Fukui, Japan
| | - Shuto Yajima
- University of Fukui, Faculty of Engineering, Graduate School of Engineering, Fukui, Japan
| | - Maho Koda
- University of Fukui, Faculty of Engineering, Graduate School of Engineering, Fukui, Japan
| | - Ayumu Kinjou
- University of Fukui, Faculty of Engineering, Graduate School of Engineering, Fukui, Japan
| | | | - Eiichiro Takamura
- University of Fukui, Faculty of Engineering, Graduate School of Engineering, Fukui, Japan
| | - Hiroaki Sakamoto
- University of Fukui, Faculty of Engineering, Graduate School of Engineering, Fukui, Japan.
| | - Shin-Ichiro Suye
- University of Fukui, Faculty of Engineering, Graduate School of Engineering, Fukui, Japan
| |
Collapse
|
10
|
Jiang J, Wang B, Luo L, Ying N, Shi G, Zhang M, Su H, Zeng D. A two-step electrochemical biosensor based on Tetrazyme for the detection of fibrin. Biotechnol Appl Biochem 2024; 71:193-201. [PMID: 37904286 DOI: 10.1002/bab.2531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 10/10/2023] [Indexed: 11/01/2023]
Abstract
In this study, an electrochemical biosensor was constructed for the detection of fibrin, specifically by a simple two-step approach, with a novel artificial enzyme (Tetrazyme) based on the DNA tetrahedral framework as signal probe. The multichannel screen-printed electrode with the activated surface cannot only remove some biological impurities, but also serve as a carrier to immobilize a large number of antigen proteins. The DNA tetrahedral nanostructure was employed to ensure the high sensitivity of the probe for biological analysis. The hemin was chimeric into the G-quadruplex to constitute the complex with peroxidase catalytic activity (hemin/G4-DNAzyme), subsequently, Tetrazyme was formed through combining of this complex and DNA tetrahedral nucleic acid framework. The artificial enzyme signal probe formed by the covalent combination of the homing peptide (Cys-Arg-Glu-Lys-Ala, CREKA), which is the aptamer of fibrin and the new artificial enzyme is fixed on the surface of the multichannel carbon electrode by CREKA-specific recognition, so as to realize the sensitive detection of fibrin. The feasibility of sensing platform was validated by cyclic voltammetry (CV) and amperometric i-t curve (IT) methods. Effects of Tetrazyme concentration, CREKA concentrations and hybridization time on the sensor were explored. Under the best optimal conditions of 0.6 μmol/L Tetrazyme, 80 μmol/L CREKA, and 2.5 h reaction time, the immunosensor had two linear detection ranges, 10-40 nmol/L, with linear regression equation Y = 0.01487X - 0.011 (R2 = 0.992), and 50-100 nmol/L, with linear regression equation Y = 0.00137X + 0.6405 (R2 = 0.998), the detection limit was 9.4 nmol/L, S/N ≥ 3. The biosensor could provide a new method with great potential for the detection of fibrin with good selectivity, stability, and reproducibility.
Collapse
Affiliation(s)
- Jiayi Jiang
- Department of Medical Devices, Shanghai University of Medicine & Health Sciences, Shanghai, China
- Department of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Bin Wang
- Department of Medical Devices, Shanghai University of Medicine & Health Sciences, Shanghai, China
- Department of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Linghuan Luo
- Department of Medical Devices, Shanghai University of Medicine & Health Sciences, Shanghai, China
- Department of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Na Ying
- Department of Medical Devices, Shanghai University of Medicine & Health Sciences, Shanghai, China
- Department of Graduate, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Gaofan Shi
- Department of Medical Devices, Shanghai University of Medicine & Health Sciences, Shanghai, China
- Department of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Mengmeng Zhang
- Department of Medical Devices, Shanghai University of Medicine & Health Sciences, Shanghai, China
- Department of Graduate, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Haoyuan Su
- Department of Medical Devices, Shanghai University of Medicine & Health Sciences, Shanghai, China
- Department of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Dongdong Zeng
- Department of Medical Devices, Shanghai University of Medicine & Health Sciences, Shanghai, China
| |
Collapse
|
11
|
Xing Y, Zhang Y, Zhu X, Wang C, Zhang T, Cheng F, Qu J, Peijnenburg WJGM. A highly selective and sensitive electrochemical sensor for tetracycline resistant genes detection based on the non-covalent interaction of graphene oxide and nucleobase. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167615. [PMID: 37806581 DOI: 10.1016/j.scitotenv.2023.167615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/03/2023] [Accepted: 10/04/2023] [Indexed: 10/10/2023]
Abstract
Antibiotic resistance genes (ARGs) are causing worldwide environmental problems, however, the traditional analytical methods and test equipment for them are time-consuming and expensive. The electrochemical sensor using the non-covalent bond between graphene oxide (GO) and single-stranded tet (ss-tet) was established for specific tetracycline resistance genes (tet, composed of ss-tet and complementary ss-tet (ss-tet') in water) detection, which preparation time was only 35 min and far less than most reported sensors based on covalent bond. As the result of the detection for tet, the developed sensor not only had the low detection limit of 50.0 pM (8.1 × 102 copies·mL-1), the short detection time within 42 min, but also had satisfactory stability, excellent reproducibility, and highly selectivity (RSD < 4.43 %). Besides, it also had acceptable accuracy comparing to the real-time quantitative polymerase chain reaction (RT-qPCR) and PCR array in tet detection. Noticeably, it also had been successfully applied to tetA detection in different water samples. In brief, the prepared non-covalent bond sensor is simple, rapid, and suitable for highly selective and sensitive detection of the ARGs in actual water.
Collapse
Affiliation(s)
- Yi Xing
- School of Environment, Northeast Normal University, Changchun 130117, China
| | - Yanan Zhang
- School of Environment, Northeast Normal University, Changchun 130117, China
| | - Xiaolin Zhu
- School of Environment, Northeast Normal University, Changchun 130117, China
| | - Chengzhi Wang
- Center for Water Research, Beijing Normal University, Beijing 100875, China
| | - Tingting Zhang
- School of Environment, Northeast Normal University, Changchun 130117, China
| | - Fangyuan Cheng
- School of Environment, Northeast Normal University, Changchun 130117, China
| | - Jiao Qu
- School of Environment, Northeast Normal University, Changchun 130117, China.
| | - Willie J G M Peijnenburg
- Institute of Environmental Sciences, Leiden University, Leiden, the Netherlands; National Institute of Public Health and the Environment (RIVM), Center for Safety of Substances and Products, Bilthoven, the Netherlands
| |
Collapse
|
12
|
Zhou S, Sun H, Dong J, Lu P, Deng L, Liu Y, Yang M, Huo D, Hou C. Highly sensitive and facile microRNA detection based on target triggered exponential rolling-circle amplification coupling with CRISPR/Cas12a. Anal Chim Acta 2023; 1265:341278. [PMID: 37230569 DOI: 10.1016/j.aca.2023.341278] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 03/28/2023] [Accepted: 04/24/2023] [Indexed: 05/27/2023]
Abstract
MicroRNAs (miRNAs) play a crucial role in the regulation of gene expression and have been implicated in many diseases. Herein, we develop a target triggered exponential rolling-circle amplification coupling with CRISPR/Cas12a (T-ERCA/Cas12a) system, which can achieve the ultrasensitive detection with simple operation and no annealing procedure. In this assay, T-ERCA combines the exponential amplification with rolling-circle amplification by introducing a dumb-bell probe with two enzyme recognition sites. miRNA-155 targets are activators that trigger exponential rolling circle amplification to produce large amounts of ssDNA, which is then recognized by CRISPR/Cas12a for further amplification. Compared with single EXPAR or RCA combined with CRISPR/Cas12a, this assay shows higher amplification efficiency. Therefore, benefiting from the excellent amplification effect of T-ERCA and the high recognition specificity of CRISPR/Cas12a, the proposed strategy shows a wide detection range from 1 fM to 5 nM with a LOD (limit of detection) down to 0.31 fM. Moreover, it shows good application ability for assessing miRNA levels in different cells, indicating that the T-ERCA/Cas12a may provide a new guidance for molecular diagnosis and clinical practical application.
Collapse
Affiliation(s)
- Shiying Zhou
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing, 400044, PR China.
| | - Human Sun
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing, 400044, PR China
| | - Jiangbo Dong
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing, 400044, PR China
| | - Peng Lu
- Chongqing University Three Gorges Hospital, Chongqing, 404000, PR China
| | - Liyuan Deng
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing, 400044, PR China
| | - Yin Liu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing, 400044, PR China
| | - Mei Yang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing, 400044, PR China
| | - Danqun Huo
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing, 400044, PR China; Chongqing Key Laboratory of Bio-perception & Intelligent Information Processing, School of Microelectronics and Communication Engineering, Chongqing University, Chongqing, 400044, PR China.
| | - Changjun Hou
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing, 400044, PR China; National Facility for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, PR China.
| |
Collapse
|
13
|
Song Z, Zhang QY, Li JJ, Su JL, Liu YH, Yang GJ, Wang HS. Visual and Electrochemical Detection of let-7a: A Tumor Suppressor and Biomarker. J Med Chem 2023. [PMID: 37248170 DOI: 10.1021/acs.jmedchem.3c00499] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Let-7a, a type of low-expressed microRNAs in cancer cells, has been investigated as a promising biomarker and therapeutic target for tumor suppression. Developing simple and sensitive detection methods for let-7a is important for cancer diagnosis and treatment. In this work, the hybridization chain reaction (HCR) was initiated by let-7a via two hairpin primers (H1 and H2). After the HCR, the remaining hairpin H1 was further detected by lateral flow assay (LFA) and electrochemical impedance spectroscopy. For LFA, biotin-modified H1(bio-H1) and free H2 were used for HCR. With the decrease of let-7a concentration, the color of T line gradually increased. As for electrochemical methods, the H1'-AuNP-modified electrode was used for detection of bio-H1 based on the difference of impedance (ΔRct) detected without and with different concentrations of let-7a participating in the HCR. This method could detect let-7a in the range of 10.0 fM and 1.0 nM with detection limits of 4.2 fM.
Collapse
Affiliation(s)
- Zhen Song
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Qiang-Yan Zhang
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Jia-Jing Li
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Jing-Lian Su
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Yuan-Hua Liu
- Department of Chemotherapy, Nanjing Medical University Affiliated Cancer Hospital, Cancer Institute of Jiangsu Province, Nanjing 210009, P. R. China
| | - Gong-Jun Yang
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, P. R. China
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Huai-Song Wang
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, P. R. China
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing 210009, P. R. China
| |
Collapse
|
14
|
Studies on the application of single-stranded DNA and PNA probes for electrochemical detection of miRNA 141. Bioelectrochemistry 2023; 150:108363. [PMID: 36608369 DOI: 10.1016/j.bioelechem.2022.108363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 12/09/2022] [Accepted: 12/28/2022] [Indexed: 12/31/2022]
Abstract
The abnormal concentration of microRNAs (miRNAs) can be associated with occurrence of various diseases including cancer, cardiovascular and neurodegenerative, hence they can be considered as potential biomarkers. An attractive approach could be the application of electrochemical methods, particularly where hybridization event between single-stranded deoxyribonucleic acid (ssDNA) or peptide-nucleic acid (PNA) with miRNA strand happens. Recently, the use of various nanomaterials such as gold nanoparticles, graphene oxide, quantum dots as well as catalyzed hairpin assembly or hybridization chain reaction were proposed to further enhance the performance of elaborated sensors. Herein, we present the studies on selection of receptor layer composition for detection of miRNA 141. The possibility of formation of receptor layer and further duplex monolayer between ssDNA or PNA with miRNA was analyzed by atomic force microscopy (AFM) technique. The interaction of ssDNA and PNA probes with miRNA was further verified using surface plasmon resonance (SPR) and quartz - crystal microbalance (QCM) techniques. On the basis of impedance spectroscopy it was shown that the use of unlabelled ssDNA as receptor layer provided 0.1 pM detection limit. This shows that proposed biosensor that is simple in preparation and use is an attractive alternative to other recently presented approaches.
Collapse
|
15
|
Chen Q, Wu L, Zhao F, Liu B, Wu Z, Yu R. Construction of hybridization chain reaction induced optical signal directed change of photonic crystals-DNA hydrogel sensor and its visual determination for aflatoxin B1. Food Chem 2023; 418:135891. [PMID: 36965395 DOI: 10.1016/j.foodchem.2023.135891] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/28/2023] [Accepted: 03/04/2023] [Indexed: 03/27/2023]
Abstract
Herein, we have introduced hybridization chain reaction (HCR) into the photonic crystals (PhCs) hydrogel, for the first time, realizing HCR for inducing the change of the optical signal of PhCs hydrogel and using this hydrogel as a sensor for determination of the aflatoxin B1 (AFB1). By using specific sequences as the cross-linker, the extension of the cross-linker by HCR drives the swelling of the hydrogel, and the optical property of 2D PhCs array converts this swelling into a change of the Debye diffraction ring. Moreover, by further selecting the aptamer to construct the cross-linker, the hydrogel is also endowed with a unique capability for AFB1, making the hydrogel a novel sensor based on the signal amplification strategy. The results show that the designed hairpin DNAs can effectively trigger the HCR and cause the swelling of hydrogel, and the hydrogel sensor has a good determination performance and high specific recognition for AFB1.
Collapse
Affiliation(s)
- Qianshan Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, People's Republic of China
| | - Lingfeng Wu
- Leicester International Institute, Dalian University of Technology, Panjin 124221, People's Republic of China
| | - Feng Zhao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, People's Republic of China
| | - Bing Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, People's Republic of China
| | - Zhaoyang Wu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, People's Republic of China.
| | - Ruqin Yu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, People's Republic of China
| |
Collapse
|
16
|
Ghanbari R, Attaripour Isfahani A, Pirmoradian S, Rezaei H, Radfar S, Kheirollahi M. A rapid and simple method for simultaneous determination of three breast cancer related microRNAs based on magnetic nanoparticles modified with S9.6 antibody. Anal Biochem 2023; 665:115052. [PMID: 36682580 DOI: 10.1016/j.ab.2023.115052] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/11/2023] [Accepted: 01/14/2023] [Indexed: 01/22/2023]
Abstract
Cancer progression is typically associated with the simultaneous changes of multiple microRNA (miR) levels. Therefore, simultaneous determination of multiple miR biomarkers exhibits great promise in early diagnosis of cancers. This research seeks to discuss a simple biosensing method for the ultrasensitive and specific detection of the three miRs related to the breast cancer based on S9.6 antibody coated magnetic beads, titanium phosphate nanospheres, and screen-printed carbon electrode. To prepare signaling probes, three hairpin DNAs (hDNAs) were labeled with three encoding titanium phosphate nanospheres with large quantities of different heavy metal ions (zinc, cadmium, lead), which have been utilized to discriminate the signals of three microRNA targets in relation with the corresponding heavy metal ions. After that, these hairpin structures hybridize with miR-21, miR-155 and miR-10b to form miR-21/hDNA1, miR-155/hDNA2 and miR-10b/hDNA3 complexes, which were captured by S9.6 antibodies (one anti-DNA/RNA antibody) pre-modified on magnetic bead surface. Therefore, the specific preconcentration of targets from complex matrixes can be carried out using magnetic actuation, increasing the sensitivity and specificity of the detection. The biosensor was suitably applied for direct and rapid detection of multiple microRNAs in real sample. It was observed that there were no significant differences between the results obtained by the suggested method and qRT-PCR as a reference method. So, this method makes an ultrasensitive novel platform for miRNAs expression profiling in clinical diagnosis and biomedical research.
Collapse
Affiliation(s)
- Reza Ghanbari
- Department of Biological Science and Technology, Najafabad Branch, Islamic Azad University, Najafabad, Iran.
| | - Ali Attaripour Isfahani
- Department of Biological Science and Technology, Najafabad Branch, Islamic Azad University, Najafabad, Iran.
| | - Sina Pirmoradian
- Department of Biological Science and Technology, Najafabad Branch, Islamic Azad University, Najafabad, Iran.
| | - Halimeh Rezaei
- Genetics Division, Biology Department, Faculty of Sciences, University of Isfahan, Isfahan, 81746-73441, Iran.
| | - Sasan Radfar
- Stem Cell and Regenerative Medicine Center of Excellence, Tehran University of Medical Science, Tehran, Iran.
| | - Majid Kheirollahi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
17
|
MicroRNA biosensors for detection of gastrointestinal cancer. Clin Chim Acta 2023; 541:117245. [PMID: 36754191 DOI: 10.1016/j.cca.2023.117245] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/27/2022] [Accepted: 02/01/2023] [Indexed: 02/08/2023]
Abstract
Gastrointestinal (GI) cancers are one of the most common causes of cancer-related mortality. The discovery of microRNAs (miRs) and their unique role in cancer and other diseases has prompted the development of highly sensitive molecular diagnostic tools using nanomaterials as sensitive and specific biosensors. Among these, electrochemical biosensors, which are based on a simple and inexpensive design, make them desirable in clinical applications as well as a mass-produced point-of-care device. We review miR-based electrochemical biosensors in GI cancer and examine the use of nanoparticles in the evolving development of miR-based biosensors. Among these, a number of approaches including redox labeled probes, catalysts, redox intercalating agents and free redox indicators are highlighted for use in electrochemical biosensor technology.
Collapse
|
18
|
Liu ST, Chen JS, Liu XP, Mao CJ, Jin BK. A photoelectrochemical biosensor based on b-TiO 2/CdS:Eu/Ti 3C 2 heterojunction for the ultrasensitive detection of miRNA-21. Talanta 2023; 253:123601. [PMID: 36126520 DOI: 10.1016/j.talanta.2022.123601] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 01/26/2022] [Accepted: 05/25/2022] [Indexed: 12/13/2022]
Abstract
A novel photoelectrochemical (PEC) biosensor based on b-TiO2/CdS:Eu/Ti3C2 heterojunction was developed for ultrasensitive determination of miRNA-21. In this device, the b-TiO2/CdS:Eu/Ti3C2 heterojunction with excellent energy level arrangement effectively facilitated photoelectric conversion efficiency and accelerated the separation of the photogenerated electron hole pairs, which because that the structure of heterojunction overcomes the drawbacks of single material, such as narrow light absorption range, wide band gap, short carrier lifetime, etc., improves light utilization, extends the lifetime of photogenerated electron hole pairs, and promotes electron transfer. Herein, hairpin DNA1 (H1) decorated on the b-TiO2/CdS:Eu/Ti3C2 electrode surface by Cd-S bonds, after H2/miRNA-21 heterduplex was introduced, the strand-displacement reaction (SDR) was triggered between H1 and H2/miRNA-21, accordingly, miRNA-21 was discharged from the H2/miRNA-21 heterduplex, forming the H1/H2 duplex, and the reuse of miRNA-21 was realized. As a signal amplification factor, the signal amplification factor H3-CdSe was hybridized with H1/H2 duplex, which greatly enhanced the sensitivity of the PEC biosensor. Under optimal conditions, the designed PEC biosensor displayed outstanding sensitivity, selectivity and stability with a wide liner range from 1.0 μM to 10.0 fM and a low detection limit of 3.3 fM. The preparation of the optoelectronic material affords a new direction for the progress of heterojunction photovoltaic materials and the construction of the proposed biosensor also provides a new thought for the PEC detection of human miRNA-21 with superior performance. Simultaneously, the established biosensor exhibiting tremendous possibility for detecting other biomarkers and biomolecules in clinical diagnosis fields.
Collapse
Affiliation(s)
- Shen-Ting Liu
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Ministry of Education), Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials of Anhui Province, Key Laboratory of Functional Inorganic Materials of Anhui Province, School of Chemistry & Chemical Engineering, Anhui University, Hefei, 230601, PR China
| | - Jing-Shuai Chen
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Ministry of Education), Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials of Anhui Province, Key Laboratory of Functional Inorganic Materials of Anhui Province, School of Chemistry & Chemical Engineering, Anhui University, Hefei, 230601, PR China
| | - Xing-Pei Liu
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Ministry of Education), Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials of Anhui Province, Key Laboratory of Functional Inorganic Materials of Anhui Province, School of Chemistry & Chemical Engineering, Anhui University, Hefei, 230601, PR China.
| | - Chang-Jie Mao
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Ministry of Education), Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials of Anhui Province, Key Laboratory of Functional Inorganic Materials of Anhui Province, School of Chemistry & Chemical Engineering, Anhui University, Hefei, 230601, PR China.
| | - Bao-Kang Jin
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Ministry of Education), Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials of Anhui Province, Key Laboratory of Functional Inorganic Materials of Anhui Province, School of Chemistry & Chemical Engineering, Anhui University, Hefei, 230601, PR China
| |
Collapse
|
19
|
Zhang H, Ye S, Huang L, Fan S, Mao W, Hu Y, Yu Y, Fu F. An electrochemical biosensor for the detection of aflatoxin B1 based on the specific aptamer and HCR biological magnification. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 15:99-108. [PMID: 36484245 DOI: 10.1039/d2ay01682f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Aflatoxin B1 (AFB1) is a highly toxic mycotoxin, which causes severe acute or cumulative poisoning. Therefore, it is important to develop sensitive and selective detection methods for AFB1 for the safety of food and medicinal herbs. Herein, we have developed a "signal-on" electrochemical aptasensor based on the high specificity of the aptamer and hybridization chain reaction (HCR) biological amplification for AFB1 detection. In this work, thiol-modified complementary DNA (cDNA) immobilized on the surface of a gold electrode (GE) served as an initiator DNA. When AFB1 was present, it competed with the cDNA for binding to the aptamers, which resulted in the detaching of aptamers from the cDNA-aptamer duplexes. Then, the single-stranded cDNA acted as an initiator to trigger the HCR signal amplification. Therefore, long double-stranded DNA (dsDNA) products were produced, which could load large amounts of methylene blue (MB) molecules to generate a distinct electrochemical signal. Under the optimized conditions, the proposed electrochemical aptasensor achieved the ultrasensitive detection of AFB1 with a linear detection range of 0.01-100 pg mL-1, and a limit of detection (LOD) down to 2.84 fg mL-1. Furthermore, the electrochemical aptasensor was successfully applied for detecting AFB1 in corn and two kinds of traditional Chinese medicine samples, indicating the potential value for AFB1 detection in practical samples.
Collapse
Affiliation(s)
- Hongyan Zhang
- Joint National Local Engineering Research Center of Fujian and Taiwan Chinese Medicine Molecular Biotechnology, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China.
| | - Siying Ye
- Joint National Local Engineering Research Center of Fujian and Taiwan Chinese Medicine Molecular Biotechnology, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China.
| | - Lishan Huang
- Joint National Local Engineering Research Center of Fujian and Taiwan Chinese Medicine Molecular Biotechnology, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China.
| | - Shen Fan
- Joint National Local Engineering Research Center of Fujian and Taiwan Chinese Medicine Molecular Biotechnology, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China.
| | - Weiwei Mao
- Joint National Local Engineering Research Center of Fujian and Taiwan Chinese Medicine Molecular Biotechnology, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China.
| | - Yijin Hu
- Joint National Local Engineering Research Center of Fujian and Taiwan Chinese Medicine Molecular Biotechnology, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China.
| | - Yuyan Yu
- Joint National Local Engineering Research Center of Fujian and Taiwan Chinese Medicine Molecular Biotechnology, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China.
| | - Fengfu Fu
- Key Lab of Analysis and Detection for Food Safety of Ministry of Education, Fujian Provincial Key Lab of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China.
| |
Collapse
|
20
|
Gallay P, López Mujica M, Bollo S, Rivas G. Genosensing Applications of Glassy Carbon Electrodes Modified with Multi-Walled Carbon Nanotubes Non-Covalently Functionalized with Polyarginine. MICROMACHINES 2022; 13:1978. [PMID: 36422406 PMCID: PMC9696550 DOI: 10.3390/mi13111978] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/02/2022] [Accepted: 11/11/2022] [Indexed: 06/16/2023]
Abstract
We report the advantages of glassy carbon electrodes (GCE) modified with multi-walled carbon nanotubes (MWCNTs) non-covalently functionalized with polyarginine (PolyArg) for the adsorption and electrooxidation of different DNAs and the analytical applications of the resulting platform. The presence of the carbon nanostructures, and mainly the charge of the PolyArg that supports them, facilitates the adsorption of calf-thymus and salmon sperm double-stranded DNAs and produces an important decrease in the overvoltages for the oxidation of guanine and adenine residues and a significant enhancement in the associated currents. As a proof-of-concept of possible GCE/MWCNTs-PolyArg biosensing applications, we develop an impedimetric genosensor for the quantification of microRNA-21 at femtomolar levels, using GCE/MWCNTs-PolyArg as a platform for immobilizing the DNA probe, with a detection limit of 3fM, a sensitivity of 1.544 × 103 Ω M-1, and a successful application in enriched biological fluids.
Collapse
Affiliation(s)
- Pablo Gallay
- INFIQC, Departamento de FIsicoquímica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba 5000, Argentina
| | - Michael López Mujica
- INFIQC, Departamento de FIsicoquímica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba 5000, Argentina
| | - Soledad Bollo
- Centro de Investigación de Procesos Redox, CIPRex, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Sergio Livingstone 1007, Independencia, Santiago 8380000, Chile
- Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Sergio Livingstone 1007, Independencia, Santiago 8380000, Chile
| | - Gustavo Rivas
- INFIQC, Departamento de FIsicoquímica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba 5000, Argentina
| |
Collapse
|
21
|
Iqbal MJ, Javed Z, Herrera-Bravo J, Sadia H, Anum F, Raza S, Tahir A, Shahwani MN, Sharifi-Rad J, Calina D, Cho WC. Biosensing chips for cancer diagnosis and treatment: a new wave towards clinical innovation. Cancer Cell Int 2022; 22:354. [PMID: 36376956 PMCID: PMC9664821 DOI: 10.1186/s12935-022-02777-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 11/02/2022] [Indexed: 11/16/2022] Open
Abstract
Recent technological advances in nanoscience and material designing have led to the development of point-of-care devices for biomolecule sensing and cancer diagnosis. In situ and portable sensing devices for bedside, diagnosis can effectively improve the patient's clinical outcomes and reduce the mortality rate. Detection of exosomal RNAs by immuno-biochip with increased sensitivity and specificity to diagnose cancer has raised the understanding of the tumor microenvironment and many other technology-based biosensing devices hold great promise for clinical innovations to conquer the unbeatable fort of cancer metastasis. Electrochemical biosensors are the most sensitive category of biomolecule detection sensors with significantly low concentrations down to the atomic level. In this sense, this review addresses the recent advances in cancer detection and diagnosis by developing significant biological sensing devices that are believed to have better sensing potential than existing facilities.
Collapse
Affiliation(s)
- Muhammad Javed Iqbal
- Department of Biotechnology, Faculty of Sciences, University of Sialkot, Sialkot, Pakistan
| | - Zeeshan Javed
- Lahore Garrison University, Main Campus, Sector C, Phase VI, DHA, Lahore, Pakistan
| | - Jesús Herrera-Bravo
- Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomas, Santiago, Chile
- Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, 4811230 Temuco, Chile
| | - Haleema Sadia
- Department of Biotechnology, Engineering and Management Sciences, Balochistan University of Information Technology, Quetta, Pakistan
| | - Faiza Anum
- Department of Botany, Lahore College for Women University, Lahore, Pakistan
| | - Shahid Raza
- Lahore Garrison University, Main Campus, Sector C, Phase VI, DHA, Lahore, Pakistan
| | - Arifa Tahir
- Department of Environmental Sciences, Lahore College for Women University, Lahore, Pakistan
| | - Muhammad Naeem Shahwani
- Department of Biotechnology, Engineering and Management Sciences, Balochistan University of Information Technology, Quetta, Pakistan
| | | | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong China
| |
Collapse
|
22
|
Ultrasensitive electrochemical detection of hepatitis b virus surface antigen based on hybrid nanomaterials. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
23
|
Zhang Y, Li N, Yang M, Hou C, Huo D. An ultrasensitive electrochemical biosensor for simultaneously detect microRNA-21 and microRNA-155 based on specific interaction of antimonide quantum dot with RNA. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
24
|
Zhou S, Liu C, Lin J, Zhu Z, Hu B, Wu L. Towards Development of Molecularly Imprinted Electrochemical Sensors for Food and Drug Safety: Progress and Trends. BIOSENSORS 2022; 12:bios12060369. [PMID: 35735516 PMCID: PMC9221454 DOI: 10.3390/bios12060369] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/20/2022] [Accepted: 05/25/2022] [Indexed: 05/31/2023]
Abstract
Due to their advantages of good flexibility, low cost, simple operations, and small equipment size, electrochemical sensors have been commonly employed in food safety. However, when they are applied to detect various food or drug samples, their stability and specificity can be greatly influenced by the complex matrix. By combining electrochemical sensors with molecular imprinting techniques (MIT), they will be endowed with new functions of specific recognition and separation, which make them powerful tools in analytical fields. MIT-based electrochemical sensors (MIECs) require preparing or modifying molecularly imprinted polymers (MIPs) on the electrode surface. In this review, we explored different MIECs regarding the design, working principle and functions. Additionally, the applications of MIECs in food and drug safety were discussed, as well as the challenges and prospects for developing new electrochemical methods. The strengths and weaknesses of MIECs including low stability and electrode fouling are discussed to indicate the research direction for future electrochemical sensors.
Collapse
Affiliation(s)
- Shuhong Zhou
- Key Laboratory of Fermentation Engineering (Ministry of Education), College of Bioengineering and Food, Hubei University of Technology, Wuhan 430068, China; (S.Z.); (J.L.)
| | - Chen Liu
- Leibniz-Institute of Photonic Technology, Leibniz Research Alliance-Leibniz Health Technologies, Albert-Einstein-Str. 9, 07745 Jena, Germany;
| | - Jianguo Lin
- Key Laboratory of Fermentation Engineering (Ministry of Education), College of Bioengineering and Food, Hubei University of Technology, Wuhan 430068, China; (S.Z.); (J.L.)
| | - Zhi Zhu
- Key Laboratory of Tropical and Vegetables Quality and Safety for State Market Regulation, School of Food Science and Engineering, Hainan University, Haikou 570228, China;
| | - Bing Hu
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, School of Life Sciences, Dalian Minzu University, Dalian 116600, China;
| | - Long Wu
- Key Laboratory of Fermentation Engineering (Ministry of Education), College of Bioengineering and Food, Hubei University of Technology, Wuhan 430068, China; (S.Z.); (J.L.)
- Key Laboratory of Tropical and Vegetables Quality and Safety for State Market Regulation, School of Food Science and Engineering, Hainan University, Haikou 570228, China;
| |
Collapse
|
25
|
Algov I, Alfonta L. Use of Protein Engineering to Elucidate Electron Transfer Pathways between Proteins and Electrodes. ACS MEASUREMENT SCIENCE AU 2022; 2:78-90. [PMID: 36785727 PMCID: PMC9836065 DOI: 10.1021/acsmeasuresciau.1c00038] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Herein, we review protein engineering tools for electron transfer enhancement and investigation in bioelectrochemical systems. We present recent studies in the field while focusing on how electron transfer investigation and measurements were performed and discuss the use of protein engineering to interpret electron transfer mechanisms.
Collapse
|
26
|
Bodulev OL, Sakharov IY. A Microtiter-Plate Chemiluminescence Method for the Determination of MicroRNA-141 Based on the Application of Catalytic Hairpin Assembly and a Streptavidin–Polyperoxidase Conjugate. JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1134/s1061934822040050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
27
|
Sharafeldin M, Davis JJ. Characterising the biosensing interface. Anal Chim Acta 2022; 1216:339759. [DOI: 10.1016/j.aca.2022.339759] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 02/08/2022] [Accepted: 03/22/2022] [Indexed: 12/19/2022]
|
28
|
Pusta A, Tertis M, Graur F, Cristea C, Al Hajjar N. Aptamers and New Bioreceptors for the Electrochemical Detection of Biomarkers Expressed in Hepatocellular Carcinoma. Curr Med Chem 2022; 29:4363-4390. [PMID: 35196969 DOI: 10.2174/0929867329666220222113707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 12/11/2021] [Accepted: 12/18/2021] [Indexed: 11/22/2022]
Abstract
Hepatocellular carcinoma is a malignancy associated with high mortality and increasing incidence. Early detection of this disease could help increase survival and overall patient benefit. Non-invasive strategies for the diagnosis of this medical condition are of utmost importance. In this scope, the detection of hepatocellular carcinoma biomarkers could provide a useful diagnostic tool. Aptamers represent as short, single-stranded DNAs or RNAs that can specifically bind selected analytes, and also as pseudo-biorecognition elements that can be employed for electrode functionalization. Also, other types of DNA sequences can be used for the construction of DNA-based biosensors applied for the quantification of hepatocellular carcinoma biomarkers. Herein, we will be analyzing recent examples of aptasensors and DNA biosensors for the detection of hepatocellular carcinoma biomarkers like micro-RNAs, long non-coding RNAs, exosomes, circulating tumor cells and proteins. The literature data is discussed comparatively in a critical manner highlighting the advantages of using electrochemical biosensors in diagnosis, as well as the use of nanomaterials and biocomponents in the functionalization of electrodes for improved sensitivity and selectivity.
Collapse
Affiliation(s)
- Alexandra Pusta
- Department of Analytical Chemistry, Faculty of Pharmacy,"Iuliu Hațieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Medical Devices, Faculty of Pharmacy,"Iuliu Hațieganu" University of Medicine and Pharmacy, Cluj-Napoca,Romania
| | - Mihaela Tertis
- Department of Analytical Chemistry, Faculty of Pharmacy,"Iuliu Hațieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Florin Graur
- Department of Surgery, Iuliu Hațieganu University of Medicine and Pharmacy Romania
| | - Cecilia Cristea
- Department of Medical Devices, Faculty of Pharmacy,"Iuliu Hațieganu" University of Medicine and Pharmacy, Cluj-Napoca,Romania
| | - Nadim Al Hajjar
- Department of Surgery, Iuliu Hațieganu University of Medicine and Pharmacy Romania
| |
Collapse
|
29
|
Yuan X, Yang J, Wang X, Zhang Y, Yang H, Wang X. Electrochemical impedance analysis of the CYFRA 21-1 antigen based on doxorubicin-initiated ROP signal amplification. NEW J CHEM 2022. [DOI: 10.1039/d2nj02631g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The electrochemical immunoassay based on the Dox–PCL–PEO copolymer has been firstly used in the detection of CYFRA 21-1.
Collapse
Affiliation(s)
- Xianxian Yuan
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, P. R. China
| | - Jing Yang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, P. R. China
| | - Xia Wang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, P. R. China
| | - Yawen Zhang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, P. R. China
| | - Huaixia Yang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, P. R. China
| | - Xinling Wang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, P. R. China
| |
Collapse
|
30
|
Zhao P, Liang Y, Liu Y, Zhao S, Yang M, Huo D, Hou C. Hemin functionalized hybrid aerogel-enabled electrochemical chip for real-time analysis of H 2O 2. Analyst 2022; 147:3822-3826. [DOI: 10.1039/d2an00524g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, a novel hemin functionalized hybrid aerogel (He@GMA) is synthesized and applied to an electrochemical chip for real-time analysis of hydrogen peroxide (H2O2).
Collapse
Affiliation(s)
- Peng Zhao
- Key Laboratory for Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, PR China
| | - Yi Liang
- Key Laboratory for Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, PR China
| | - Yiyi Liu
- Key Laboratory for Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, PR China
| | - Shixian Zhao
- Chongqing Key Laboratory of Bio-perception & Intelligent Information Processing, School of Microelectronics and Communication Engineering, Chongqing University, Chongqing, 400044, PR China
- Chongqing Engineering and Technology Research Center of Intelligent Rehabilitation and Eldercare, Chongqing City Management College, Chongqing, 401331, China
| | - Mei Yang
- Key Laboratory for Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, PR China
| | - Danqun Huo
- Key Laboratory for Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, PR China
| | - Changjun Hou
- Key Laboratory for Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, PR China
- Chongqing Key Laboratory of Bio-perception & Intelligent Information Processing, School of Microelectronics and Communication Engineering, Chongqing University, Chongqing, 400044, PR China
| |
Collapse
|
31
|
Rezaei H, Hosseini M, Radfar S. A dual-signaling electrochemical ratiometric strategy combining "signal-off" and "signal-on" approaches for detection of MicroRNAs. Anal Biochem 2021; 632:114356. [PMID: 34516967 DOI: 10.1016/j.ab.2021.114356] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 08/18/2021] [Accepted: 08/21/2021] [Indexed: 12/16/2022]
Abstract
A dual-signaling electrochemical ratio metric strategy was developed for detection microRNA-18a based on the duplex-specific nuclease-assisted target recycling and electrochemical atom transfer radical polymerization signal amplification. In the presence of target microRNA, RNA/DNA duplexes are formed, which become the substrate of the duplex-specific nuclease-assisted target recycling. Hence only the DNA strand is cleaved by duplex-specific nuclease enzyme, resulting in the throw away of methylene blue (MB) from the electrode (signal off) accompanied by releasing of target microRNA, which can be recycled in the next hybridization. The remaining piece of capture DNAs on the electrode surface hybridize with the Azide labeled-signal DNAs. "Click reactions" were carried out between 3-Butynyl-2-bromoisobutyrate and Azide to initiate the electrochemical atom transfer radical polymerization reaction. This process could bring a great number of ferrocenylmethyl methacrylate (FMMA) on the surface of electrode (signal on). The IFMMA/IMB value was proportionate to the microRNA-18a concentration and measured by square wave voltammetry. The promising potential of the proposed biosensor in clinical analyses was exhibited by its remarkable features such as strong performance, high specificity, agreeable storage stability, and notable selectivity in real sample evaluation with no pretreatment or amplification. Finally, our biosensing method offers such an application to be used for the early clinical diagnosis of Pancreatic Cancer.
Collapse
Affiliation(s)
- H Rezaei
- Genetics Division, Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Sciences and Technology, University of Isfahan, Isfahan, Iran
| | - M Hosseini
- Chemical Engineering Group, University of Jahad Higher Education Institute of Isfahan Province, Isfahan, Iran
| | - S Radfar
- Faculty of Sciences, Najafabad Branch, Islamic Azad University, Najafabad, Isfahan, Iran.
| |
Collapse
|
32
|
Ai X, Zhao H, Hu T, Yan Y, He H, Ma C. A signal-on fluorescence-based strategy for detection of microRNA-21 based on graphene oxide and λ exonuclease-based signal amplification. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:2107-2113. [PMID: 33870957 DOI: 10.1039/d1ay00309g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
MicroRNA (miRNA) expression is perturbed in various diseases. Herein, we have aimed to develop a novel and rapid fluorescence-based assay for detecting microRNA-21 (miR-21) activity based on FAM molecular signal amplification and graphene oxide (GO) quenching. In this system, a single stranded DNA (ssDNA) with a phosphate group at the 5'-end is labeled with a FAM molecular label at the 3'-end. In the presence of miR-21, this ssDNA forms a DNA/RNA duplex, which is cleaved by λ exonuclease (λ-exo), releasing FAM and resulting in fluorescence signal amplification at 530 nm. However, the DNA/RNA duplex is not generated in the absence of miR-21, which impedes λ-exo cleavage; subsequently, GO quenches the fluorescence intensity. The results show a detection limit of 0.02 nM and a wide linear range of 0.02-5 nM. The high sensitivity and easy operability of this assay can be applied for detecting miR-21 during clinical diagnosis of certain diseases and in biological research.
Collapse
Affiliation(s)
- Xiaojuan Ai
- School of Life Sciences, Central South University, Changsha 410013, China.
| | | | | | | | | | | |
Collapse
|
33
|
Jia H, Shang N, He X, Nsabimana A, Sun D, Wang H, Zhang Y. Epoxy-functionalized macroporous carbon with embedded platinum nanoparticles for electrochemical detection of telomerase activity via telomerase-triggered catalytic hairpin assembly. Talanta 2021; 225:121957. [PMID: 33592712 DOI: 10.1016/j.talanta.2020.121957] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 11/21/2020] [Accepted: 12/01/2020] [Indexed: 01/14/2023]
Abstract
Telomerase is regarded as a crucial biomarker for the early diagnosis of malignant tumors and a valuable therapeutic target. In this work, a telomerase-triggered amplification strategy was designed on the basis of a catalyzed hairpin assembly (CHA) for bridging a signal probe of platinum nanoparticles (Pt NPs) anchored on three-dimensional (3D) epoxy-functionalized macroporous carbon (Pt/MPC-COOH) in an ultrasensitive electrochemical biosensor. Pt/MPC-COOH nanomaterials with interconnected macroporous structure not only immobilized hairpin DNA probe 2 (H2) via an amide reaction (Pt/MPC-COOH-H2), but they also generated an obvious electrochemical signal in response to acetaminophen (AP) oxidation. After the introduction of telomerase, telomerase primer (TP) was extended to a telomerase extension product (TEP) with several hexamer repeats (TTAGGG)n to initiate the CHA cycle, leading to signal amplification. Subsequently, with the TEP-triggered CHA cycle amplification strategy, a large amount of Pt/MPC-COOH-H2 was introduced on the electrode surface for the construction of the electrochemical platform, which realized the sensitive detection of telomerase activity from 102 to107 cells mL-1 with a limit of detection (LOD) of 9.02 cells mL-1. This strategy provides a sensitive method for the detection of biomolecules that could be useful for bioanalysis and early clinical diagnoses of diseases.
Collapse
Affiliation(s)
- Huixian Jia
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Environmental Science, Institute of Life Science and Green Development, Hebei University, 071002, Baoding, PR China
| | - Ningzhao Shang
- College of Science, Hebei Agricultural University, 071001, Baoding, PR China
| | - Xiaobo He
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Environmental Science, Institute of Life Science and Green Development, Hebei University, 071002, Baoding, PR China
| | - Anaclet Nsabimana
- Chemistry Department, College of Science and Technology, University of Rwanda, Po Box: 3900, Kigali, Rwanda
| | - Danna Sun
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Environmental Science, Institute of Life Science and Green Development, Hebei University, 071002, Baoding, PR China
| | - Huan Wang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Environmental Science, Institute of Life Science and Green Development, Hebei University, 071002, Baoding, PR China
| | - Yufan Zhang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Environmental Science, Institute of Life Science and Green Development, Hebei University, 071002, Baoding, PR China.
| |
Collapse
|
34
|
Electrochemical biosensors for measurement of colorectal cancer biomarkers. Anal Bioanal Chem 2021; 413:2407-2428. [PMID: 33666711 DOI: 10.1007/s00216-021-03197-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/15/2021] [Accepted: 01/23/2021] [Indexed: 02/06/2023]
Abstract
Colorectal cancer (CRC) is associated with one of the highest rates of mortality among cancers worldwide. The early detection and management of CRC is imperative. Biomarkers play an important role in CRC screening tests, CRC treatment, and prognosis and clinical management; thus rapid and sensitive detection of biomarkers is helpful for early detection of CRC. In recent years, electrochemical biosensors for detecting CRC biomarkers have been widely investigated. In this review, different electrochemical detection methods for CRC biomarkers including immunosensors, aptasensors, and genosensors are summarized. Further, representative examples are provided that demonstrate the advantages of electrochemical sensors modified by various nanomaterials. Finally, the limitations and prospects of biomarkers and electrochemical sensors in detection are also discussed. Graphical abstract.
Collapse
|
35
|
Li X, Zhang Y, Hao L, Liu Y, Wang X, Yang H, Kong J. Ultrasensitive label-free detection for lung cancer CYFRA 21-1 DNA based on ring-opening polymerization. Talanta 2021; 223:121730. [PMID: 33298260 DOI: 10.1016/j.talanta.2020.121730] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 09/30/2020] [Accepted: 10/02/2020] [Indexed: 02/07/2023]
Abstract
Cytokeratin fragment antigen 21-1 (CYFRA 21-1) DNA is perceived as sensitive tumor marker for the diagnosis of non-small cell lung cancer and other tumor. Herein, linear chain poly(ε-caprolactone) (PCL) synthesized by ring-opening polymerization is applied to ultrasensitive label-free electrochemical impedance detection system for CYFRA 21-1 DNA. First, thiolated peptide nucleic acid (PNA) is self-assembled into the Au electrode surface through the formation of Au-S bonds, allowing the PNA to act as biomolecular probe and form PNA/DNA heteroduplex with the target DNA via specific hybridization. Then, PCL is conjugated to the immobilized DNA on the electrode via "carboxylate-Zr4+-phosphate" bridges. Finally, the electrochemical response of modified PNA/DNA/Zr4+/PCL electrode is determined by electrochemical impedance method to quantify of CYFRA 21-1 DNA. Under optimal conditions, this method exhibits highly sensitivity with a broad linear range (0.1 fM - 1 nM) (R2 = 0.995) and the limit of detection (LOD) is as low as 10.73 aM, which is equivalent to just 64 molecules in a 10 μL sample. What's more, the high selectivity, good anti-interference, label-free operation, and real-time monitoring in complex samples of the proposed strategy demonstrate its broad application for the early diagnosis and clinical monitoring.
Collapse
Affiliation(s)
- Xiaofei Li
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou, 450046, PR China
| | - Yawen Zhang
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou, 450046, PR China
| | - Lulu Hao
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou, 450046, PR China
| | - Yanju Liu
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou, 450046, PR China
| | - Xia Wang
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou, 450046, PR China.
| | - Huaixia Yang
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou, 450046, PR China.
| | - Jinming Kong
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, PR China.
| |
Collapse
|
36
|
Wang J, Wen J, Yan H. Recent Applications of Carbon Nanomaterials for microRNA Electrochemical Sensing. Chem Asian J 2020; 16:114-128. [DOI: 10.1002/asia.202001260] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Indexed: 12/24/2022]
Affiliation(s)
- Jiameng Wang
- College of Pharmaceutical Science Hebei University Institute of Life Science and Green Development, Key Laboratory of Pharmaceutical Quality Control of Hebei Province Baoding 071002 P. R. China
| | - Jia Wen
- College of Pharmaceutical Science Hebei University Institute of Life Science and Green Development, Key Laboratory of Pharmaceutical Quality Control of Hebei Province Baoding 071002 P. R. China
| | - Hongyuan Yan
- College of Pharmaceutical Science Hebei University Institute of Life Science and Green Development, Key Laboratory of Pharmaceutical Quality Control of Hebei Province Baoding 071002 P. R. China
- College of Public Health Hebei University Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education Baoding 071002 P. R. China
| |
Collapse
|
37
|
El Aamri M, Yammouri G, Mohammadi H, Amine A, Korri-Youssoufi H. Electrochemical Biosensors for Detection of MicroRNA as a Cancer Biomarker: Pros and Cons. BIOSENSORS 2020; 10:E186. [PMID: 33233700 PMCID: PMC7699780 DOI: 10.3390/bios10110186] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/16/2020] [Accepted: 11/18/2020] [Indexed: 12/23/2022]
Abstract
Cancer is the second most fatal disease in the world and an early diagnosis is important for a successful treatment. Thus, it is necessary to develop fast, sensitive, simple, and inexpensive analytical tools for cancer biomarker detection. MicroRNA (miRNA) is an RNA cancer biomarker where the expression level in body fluid is strongly correlated to cancer. Various biosensors involving the detection of miRNA for cancer diagnosis were developed. The present review offers a comprehensive overview of the recent developments in electrochemical biosensor for miRNA cancer marker detection from 2015 to 2020. The review focuses on the approaches to direct miRNA detection based on the electrochemical signal. It includes a RedOx-labeled probe with different designs, RedOx DNA-intercalating agents, various kinds of RedOx catalysts used to produce a signal response, and finally a free RedOx indicator. Furthermore, the advantages and drawbacks of these approaches are highlighted.
Collapse
Affiliation(s)
- Maliana El Aamri
- Laboratory of Process Engineering & Environment, Faculty of Sciences and Techniques, Hassan II, University of Casablanca, B.P.146, Mohammedia 28806, Morocco; (M.E.A.); (G.Y.); (H.M.)
| | - Ghita Yammouri
- Laboratory of Process Engineering & Environment, Faculty of Sciences and Techniques, Hassan II, University of Casablanca, B.P.146, Mohammedia 28806, Morocco; (M.E.A.); (G.Y.); (H.M.)
| | - Hasna Mohammadi
- Laboratory of Process Engineering & Environment, Faculty of Sciences and Techniques, Hassan II, University of Casablanca, B.P.146, Mohammedia 28806, Morocco; (M.E.A.); (G.Y.); (H.M.)
| | - Aziz Amine
- Laboratory of Process Engineering & Environment, Faculty of Sciences and Techniques, Hassan II, University of Casablanca, B.P.146, Mohammedia 28806, Morocco; (M.E.A.); (G.Y.); (H.M.)
| | - Hafsa Korri-Youssoufi
- Université Paris-Saclay, CNRS, Institut de Chimie Moléculaire et des Matériaux d’Orsay (ICMMO), Equipe de Chimie Biorganique et Bioinorganique (ECBB), Bât 420, 2 Rue du Doyen Georges Poitou, 91400 Orsay, France;
| |
Collapse
|
38
|
Meng T, Shang N, Nsabimana A, Ye H, Wang H, Wang C, Zhang Y. An enzyme-free electrochemical biosensor based on target-catalytic hairpin assembly and Pd@UiO-66 for the ultrasensitive detection of microRNA-21. Anal Chim Acta 2020; 1138:59-68. [PMID: 33161985 DOI: 10.1016/j.aca.2020.09.022] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/09/2020] [Accepted: 09/10/2020] [Indexed: 02/07/2023]
Abstract
MicroRNA-21 (miR-21) has been widely investigated as important biomarkers for cancer diagnosis and treatment. Herein, a highly sensitive nonenzymatic electrochemical biosensor based on Pd@metal-organic frameworks (Pd@UiO-66) and target-catalytic hairpin assembly (CHA) with target recycling approach has been proposed for the detection of miR-21. The proposed biosensor integrates the efficient CHA strategy and excellent electrocatalytic performance of Pd@UiO-66 nanocomposites. The concentration of miRNA-21 is related to the amount of the adsorbed electrocatalyst, leading to the different electrochemical signals for readout towards paracetamol (AP). This biosensor shows a low limit of detection of 0.713 fM with the dynamic range of 20 fM -600 pM under the optimal experimental conditions, providing a powerful platform for detecting miR-21. Furthermore, the designed biochemical self-assembly strategy of this electrochemical biosensor is promising candidate for potential applications in the analysis of other important genetic biomarkers for early diagnosis of cancers.
Collapse
Affiliation(s)
- Tianjiao Meng
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Environmental Science, Institute of Life Science and Green Development, Hebei University, 071002, Baoding, PR China
| | - Ningzhao Shang
- College of Science, Hebei Agricultural University, 071001, Baoding, PR China
| | - Anaclet Nsabimana
- Chemistry Department, College of Science and Technology, University of Rwanda, Po Box: 3900, Kigali, Rwanda
| | - Huimin Ye
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Environmental Science, Institute of Life Science and Green Development, Hebei University, 071002, Baoding, PR China
| | - Huan Wang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Environmental Science, Institute of Life Science and Green Development, Hebei University, 071002, Baoding, PR China
| | - Chun Wang
- College of Science, Hebei Agricultural University, 071001, Baoding, PR China.
| | - Yufan Zhang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Environmental Science, Institute of Life Science and Green Development, Hebei University, 071002, Baoding, PR China.
| |
Collapse
|