1
|
Bar-On R, Manor O. Contributions of Colloidal Forces to the Heterogeneous Separation of Stable Oil-In-Water Emulsions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:23458-23464. [PMID: 39462839 PMCID: PMC11542182 DOI: 10.1021/acs.langmuir.4c03056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/14/2024] [Accepted: 10/15/2024] [Indexed: 10/29/2024]
Abstract
We use theory to study the distribution of spherical emulsion oil droplets in water near a lipophilic surface as a guideline for designing membranes for oil/water phase separation. Heterogeneous phase separations are shown in our laboratory using hydrophilic and hydrophobic membrane designs, where the affinity of the membrane surface to one of the phases in the mixture locally increases its concentration. Considering a colloidal emulsion (nano- to microemulsions) of spherical and noncoalescing droplets, we assess the contribution of colloidal forces, i.e., van der Waals, electrical double layer, and hydrophobic interactions and the finite size of the droplets to the accumulation of spherical emulsion droplets near a surface. We use our theory to study an experiment-inspired case study and find that an isolated lipophilic membrane surface in contact with an oil-in-water emulsion supports the oil-enriched emulsion phase in a thin layer near the membrane surface, suggesting that a membrane pore size comparable to this thickness should support oil-enriched emulsion in the membrane pores and hence past the membrane.
Collapse
Affiliation(s)
- Roi Bar-On
- Applied
mathematics department, Technion - Israel
Institute of Technology, Haifa, 3200000, Israel. Currently at Institut
de Biologie de l’École Normale Supérieure ENS, Paris 75005, France
| | - Ofer Manor
- Department
of Chemical Engineering, Technion - Israel
Institute of Technology, Haifa 3200000, Israel
| |
Collapse
|
2
|
Leontev A, Rozental L, Freger V. Dynamics of underwater microparticle adhesion to soft hydrated surfaces: Modeling and analysis by time-dependent AFM force spectroscopy. J Colloid Interface Sci 2023; 651:464-476. [PMID: 37556904 DOI: 10.1016/j.jcis.2023.07.185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/23/2023] [Accepted: 07/28/2023] [Indexed: 08/11/2023]
Abstract
HYPOTHESIS Understanding the attachment and detachment of microparticles and living cells to surfaces is crucial for developing antifouling strategies. Hydrogel coatings have shown promise in reducing fouling and particle adhesion due to their softness and high water content, yet the mechanisms involved are dynamic and complex, and relevant parameters are not easily accessible. AFM-based force spectroscopy (FS) experiments with colloidal probe particles is a direct way of evaluating adhesive and mechanical relaxational dynamics, yet their interpretation and modeling has been challenging. The present study proposes and examines several dynamic models, suitable for quantitative analysis of FS results with model probe particle on hydrogels surfaces. EXPERIMENTS FS were performed using polyethylene glycol (PEG) hydrogels and polystyrene microspheres including particle attachement to the hydrogel surface (loading), holding the particle on the surface with a constant force for variable times (dwell) and pulling the particle away from the surface (unloading) FINDINGS: It was found that a viscoelastic extension of the classical JKR model with energy of adhesion unevenly distributed over the contact area and vanishing at its circumferences accurately described all FS experiments and yielded physically consistent viscoelastic and adhesive dynamic parameters, steadily changing with dwell time and applied force. The observed time evolution and force dependence were rationalized as combination of osmotic and osmo-mechnical relaxation in the contact region.
Collapse
Affiliation(s)
- Aleksandr Leontev
- Wolfson Department of Chemical Engineering, Technion - IIT, Haifa, Israel
| | - Lina Rozental
- Wolfson Department of Chemical Engineering, Technion - IIT, Haifa, Israel
| | - Viatcheslav Freger
- Wolfson Department of Chemical Engineering, Technion - IIT, Haifa, Israel; Grand Technion Energy Program, Technion - IIT, Haifa, Israel; Russel Berrie Nanotechnology Institute, Technion - IIT, Haifa, Israel.
| |
Collapse
|
3
|
Mu M, Liu S, DeFlorio W, Hao L, Wang X, Salazar KS, Taylor M, Castillo A, Cisneros-Zevallos L, Oh JK, Min Y, Akbulut M. Influence of Surface Roughness, Nanostructure, and Wetting on Bacterial Adhesion. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:5426-5439. [PMID: 37014907 PMCID: PMC10848269 DOI: 10.1021/acs.langmuir.3c00091] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/22/2023] [Indexed: 05/11/2023]
Abstract
Bacterial fouling is a persistent problem causing the deterioration and failure of functional surfaces for industrial equipment/components; numerous human, animal, and plant infections/diseases; and energy waste due to the inefficiencies at internal and external geometries of transport systems. This work gains new insights into the effect of surface roughness on bacterial fouling by systematically studying bacterial adhesion on model hydrophobic (methyl-terminated) surfaces with roughness scales spanning from ∼2 nm to ∼390 nm. Additionally, a surface energy integration framework is developed to elucidate the role of surface roughness on the energetics of bacteria and substrate interactions. For a given bacteria type and surface chemistry; the extent of bacterial fouling was found to demonstrate up to a 75-fold variation with surface roughness. For the cases showing hydrophobic wetting behavior, both increased effective surface area with increasing roughness and decreased activation energy with increased surface roughness was concluded to enhance the extent of bacterial adhesion. For the cases of superhydrophobic surfaces, the combination of factors including (i) the surpassing of Laplace pressure force of interstitial air over bacterial adhesive force, (ii) the reduced effective substrate area for bacteria wall due to air gaps to have direct/solid contact, and (iii) the reduction of attractive van der Waals force that holds adhering bacteria on the substrate were summarized to weaken the bacterial adhesion. Overall, this study is significant in the context of designing antifouling coatings and systems as well as explaining variations in bacterial contamination and biofilm formation processes on functional surfaces.
Collapse
Affiliation(s)
- Minchen Mu
- Artie
McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Shuhao Liu
- Artie
McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - William DeFlorio
- Artie
McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Li Hao
- School
of Chemistry and Chemical Engineering, Zhongkai
University of Agriculture and Engineering, Guangzhou, Guangdong 510225, P. R. China
| | - Xunhao Wang
- Department
of Chemical and Environmental Engineering, University of California, Riverside, California 92521, United States
| | - Karla Solis Salazar
- Department
of Food Science and Technology, Texas A&M
University, College Station, Texas 77843, United States
| | - Matthew Taylor
- Department
of Food Science and Technology, Texas A&M
University, College Station, Texas 77843, United States
| | - Alejandro Castillo
- Department
of Food Science and Technology, Texas A&M
University, College Station, Texas 77843, United States
| | - Luis Cisneros-Zevallos
- Department
of Horticultural Sciences, Texas A&M
University, College Station, Texas 77843, United States
| | - Jun Kyun Oh
- Department
of Polymer Science and Engineering, Dankook
University, 152 Jukjeon-ro, Suji-gu, Yongin-si, Gyeonggi-do 16890, Republic of Korea
| | - Younjin Min
- Department
of Chemical and Environmental Engineering, University of California, Riverside, California 92521, United States
| | - Mustafa Akbulut
- Artie
McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
4
|
Cherpin C, Lister D, Dacquait F, Liu L, Weerakul S. Magnetite (Fe3O4) and nickel ferrite (NiFe2O4) zeta potential measurements at high temperature: Part I—Design, materials and preliminary characterization of an apparatus implementing the streaming potential method. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|