1
|
Xu P, Li N, Yao J, Ma J, Hou B. Periodate activation for tetracycline degradation with MoS 2/MnFe 2O 4 nanocomposite: Efficiency and Mechanistic insights. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 376:126358. [PMID: 40339881 DOI: 10.1016/j.envpol.2025.126358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 04/15/2025] [Accepted: 04/28/2025] [Indexed: 05/10/2025]
Abstract
In this study, a MoS2/MnFe2O4 nanocomposite was employed as a periodate (PI) activator for the first time, aiming to synergistically degrade tetracycline (TC). Three different ratios of MoS2/MnFe2O4 nanocomposites were synthesized using a solvothermal method, among which MoS2/MnFe2O4-3 (MMF-3) exhibited the highest efficiency in TC degradation. At pH 4.65, PI concentration of 0.2 mM and MMF-3 dosage of 0.2 g/L, the removal rate of TC was 80.74 %. The potential reaction mechanism of the MMF-3/PI system was revealed, identifying IO•3, 1O2, and •OH as the primary reactive oxygen species (ROS) responsible for TC removal. Furthermore, the Mo(IV)/Mo(VI) cycle within the MoS2/MnFe2O4 composite significantly enhanced the Fe(II)/Fe(III) redox cycle, promoting ROS regeneration and thereby enabling the efficient degradation of TC. Two potential pathways for TC degradation were proposed, and the biotoxicity of the degradation process was assessed, demonstrating that the MMF-3/PI system is environmentally friendly and does not produce highly toxic byproducts. Additionally, Cl- and NO3- showed negligible effects on TC removal, while H2PO4- significantly inhibited the process, and humic acid enhanced it. Cycling experiments revealed consistent TC removal rates exceeding 70 % across four cycles, highlighting the stability and reusability of the MMF-3 material. The removal efficiency of TC was largely unaffected by various natural water conditions, underscoring the substantial practical potential of the MMF-3/PI system. Overall, the MMF-3/PI system offers a promising approach to mitigating antibiotic contamination in water bodies.
Collapse
Affiliation(s)
- Peng Xu
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Hunan University, Changsha, 410082, PR China.
| | - Na Li
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Hunan University, Changsha, 410082, PR China
| | - Jiafan Yao
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Hunan University, Changsha, 410082, PR China
| | - Jingwei Ma
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Hunan University, Changsha, 410082, PR China
| | - Baolin Hou
- School of Civil Engineering, Hunan University of Science and Technology, Xiangtan, 411201, PR China
| |
Collapse
|
2
|
Xiao M, Jiang R, Xu Z, Wang Q, Fu Y, Jiang S, Long Y, Zhu H. Floatable and magnetic MoS 2/NiFe 2O 4/chitosan nanocomposite integrated melamine sponges with hybrid photothermal and photocatalytic enhancement for pollutant removal. Int J Biol Macromol 2025; 291:138965. [PMID: 39706447 DOI: 10.1016/j.ijbiomac.2024.138965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 12/13/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024]
Abstract
Magnetic chitosan-based materials with good adsorption-photocatalysis and magnetic properties have great prospect in wastewater treatment. In this paper, a floating magnetic molybdenum disulfide/NiFe2O4/chitosan integrated melamine sponges (m-MoS2/CS@MS) was fabricated using chitosan as absorbent and adhesive, MoS2 and NiFe2O4 as photocatalysts, and melamine sponge as support material. The m-MoS2/CS@MS has a rich light-water-air-material interaction interface and can float on the water surface. The light absorbance of m-MoS2/CS@MS had dramatically increased by 55.77 % with the introduction of MoS2 and NiFe2O4 nanoparticles. The m-MoS2/CS@MS can effectively remove Congo red dye at pH = 2-10 under different coexisting inorganic salts (Cl-, SO42-) and water matrices (ultrapure water, tap water, Lake water, and mineral water). The m-MoS2/CS@MS had excellent photocatalytic degradation ability, reaching a degradation rate of 98.88 % under simulated solar light irradiation. Furthermore, the m-MoS2/CS@MS composite exhibited excellent stability, convenient magnetic recycling performance, reusability and its suitability for dye wastewater treatment under different conditions. This research provided a new insight into the practical application of sustainable and clean chitosan-based materials.
Collapse
Affiliation(s)
- Mei Xiao
- College of Life Science, Taizhou University, Taizhou, Zhejiang 318000, PR China
| | - Ru Jiang
- College of Life Science, Taizhou University, Taizhou, Zhejiang 318000, PR China; Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, Zhejiang 318000, PR China.
| | - Zeen Xu
- College of Life Science, Taizhou University, Taizhou, Zhejiang 318000, PR China
| | - Qi Wang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, PR China.
| | - Yongqian Fu
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, Zhejiang 318000, PR China
| | - Shengtao Jiang
- College of Life Science, Taizhou University, Taizhou, Zhejiang 318000, PR China
| | - Yangke Long
- Department of Transportation and Environment, Shenzhen Institute of Information Technology, Shenzhen 518172, PR China
| | - Huayue Zhu
- College of Life Science, Taizhou University, Taizhou, Zhejiang 318000, PR China; Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, Zhejiang 318000, PR China; Zhejiang Key Laboratory for Island Green Energy and New Materials, Taizhou University, Taizhou, Zhejiang 318000, PR China.
| |
Collapse
|
3
|
Wu H, Han X, Guo X, Wen Y, Zheng B, Liu B. MnFe 2O 4/MoS 2 catalyst used for ozonation: optimization and mechanism analysis of phenolic wastewater treatment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:45588-45601. [PMID: 38967847 DOI: 10.1007/s11356-024-33984-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 06/09/2024] [Indexed: 07/06/2024]
Abstract
The performance of catalytic ability of MFe2O4/MoS2 in the ozonation process was investigated in this work. The synthesized MnFe2O4/MoS2 was optimize prepared and then characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, X-ray photo-electron spectroscopy, and magnetic saturation strength. The results showed that when Cphenol = 200 mg/L, initial pH = 9.0, Q = 0.10 L/min, and CMnFe2O4/MoS2 = 0.10 g/L, MnFe2O4/MoS2 addition improved the degradation efficiency of phenol by 20.0%. The effects of pH, catalyst dosage, and inorganic ions on the phenol removal by the MnFe2O4/MoS2 catalytic ozonation were investigated. Five cycle experiments proved that MnFe2O4/MoS2 had good recyclability and stability. MnFe2O4/MoS2 also showed good catalytic performance in the treatment of coal chemical wastewater pesticide wastewater. The MnFe2O4 doped with MoS2 could provide abundant surface active sites for ozone and promote the stable cycle of Mn2+/Mn3+and Fe2+/Fe3+, thus generating large amounts of •OH and improving the degradation of phenol by ozonation. The MnFe2O4/MoS2/ozonation treatment system provides a technical reference and theoretical basis for industrial wastewater treatment.
Collapse
Affiliation(s)
- Haixia Wu
- College of Urban Construction, Nanjing Tech University, Nanjing, 211800, PR China
| | - Xiao Han
- College of Urban Construction, Nanjing Tech University, Nanjing, 211800, PR China
| | - Xinrui Guo
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing, 211800, PR China
| | - Yiyun Wen
- Jiangsu Hejiahai Environmental Design and Research Institute Co., Ltd, Nanjing, 210012, PR China
| | - Bin Zheng
- College of Urban Construction, Nanjing Tech University, Nanjing, 211800, PR China
| | - Biming Liu
- School of Energy and Environment, Anhui University of Technology, Ma Anshan, 243002, PR China.
| |
Collapse
|
4
|
Tien VM, Ong VH, Pham TN, Quang Hoa N, Nguyen TL, Thang PD, Khanh Vinh L, Trinh PTN, Thanh DTN, Tung LM, Le AT. A molybdenum disulfide/nickel ferrite-modified voltammetric sensing platform for ultra-sensitive determination of clenbuterol under the presence of an external magnetic field †. RSC Adv 2023; 13:10577-10591. [PMID: 37021107 PMCID: PMC10069232 DOI: 10.1039/d3ra01136d] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 03/28/2023] [Indexed: 04/05/2023] Open
Abstract
The electrochemical behavior and sensing performance of an electrode modified with NiFe2O4 (NFO), MoS2, and MoS2–NFO were thoroughly investigated using CV, EIS, DPV, and CA measurements, respectively. MoS2–NFO/SPE provided a higher sensing performance towards the detection of clenbuterol (CLB) than other proposed electrodes. After optimization of pH and accumulation time, the current response recorded at MoS2–NFO/SPE linearly increased with an increase of CLB concentration in the range from 1 to 50 μM, corresponding to a LOD of 0.471 μM. In the presence of an external magnetic field, there were positive impacts not only on mass transfer, ionic/charge diffusion, and absorption capacity but also on the electrocatalytic ability for redox reactions of CLB. As a result, the linear range was widened to 0.5–50 μM and the LOD value was about 0.161 μM. Furthermore, stability, repeatability, and selectivity were assessed, emphasizing their high practical applicability. The electrochemical behavior and sensing performance of an electrode modified with NiFe2O4 (NFO), MoS2, and MoS2–NFO were thoroughly investigated using CV, EIS, DPV, and CA measurements, respectively.![]()
Collapse
Affiliation(s)
- Van Manh Tien
- Phenikaa University Nano Institute (PHENA), Phenikaa UniversityHanoi 12116Vietnam
| | - Van Hoang Ong
- Phenikaa University Nano Institute (PHENA), Phenikaa UniversityHanoi 12116Vietnam
- University of Transport TechnologyTrieu Khuc, Thanh Xuan DistrictHanoiVietnam
| | - Tuyet Nhung Pham
- Phenikaa University Nano Institute (PHENA), Phenikaa UniversityHanoi 12116Vietnam
| | - Nguyen Quang Hoa
- Faculty of Physics, VNU University of Science, Vietnam National University, Hanoi334 Nguyen Trai, Thanh XuanHanoiVietnam
| | - Thi Lan Nguyen
- International Training Institute for Materials Science (ITIMS), Hanoi University of Science and Technology (HUST)01 Dai Co Viet RoadHanoiVietnam
| | - Pham Duc Thang
- Phenikaa University Nano Institute (PHENA), Phenikaa UniversityHanoi 12116Vietnam
- Faculty of Materials Science and Engineering, Phenikaa UniversityHanoi 12116Vietnam
| | - Le Khanh Vinh
- Institute of Physics at Ho Chi Minh City, Vietnam Academy of Science and Technology (VAST)Ho Chi Minh 70000Vietnam
| | - Pham Thi Nhat Trinh
- Department of Education and Basic Science, Tien Giang UniversityMy Tho CityTien Giang ProvinceVietnam
| | - Doan Thi Ngoc Thanh
- Department of Agriculture and Food Technology, Tien Giang UniversityMy Tho CityTien Giang ProvinceVietnam
| | - Le Minh Tung
- Department of Physics, Tien Giang UniversityMy Tho CityTien Giang ProvinceVietnam
| | - Anh-Tuan Le
- Phenikaa University Nano Institute (PHENA), Phenikaa UniversityHanoi 12116Vietnam
- Faculty of Materials Science and Engineering, Phenikaa UniversityHanoi 12116Vietnam
| |
Collapse
|
5
|
Gowthaman K, Gowthaman Metthodology P, Venkatachalam M, Saroja M, Kutraleeswaran M, Dhinesh S. Design and synthesis of TiO2/ZnO nanocomposite with enhanced oxygen vacancy: Better photocatalytic removal of MB dye under visible light-driven condition. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
6
|
Rahman A, Jennings JR, Tan AL, Khan MM. Molybdenum Disulfide-Based Nanomaterials for Visible-Light-Induced Photocatalysis. ACS OMEGA 2022; 7:22089-22110. [PMID: 35811905 PMCID: PMC9260757 DOI: 10.1021/acsomega.2c01314] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 06/08/2022] [Indexed: 05/08/2023]
Abstract
Visible-light-responsive photocatalytic materials have a multitude of important applications, ranging from energy conversion and storage to industrial waste treatment. Molybdenum disulfide (MoS2) and its variants exhibit high photocatalytic activity under irradiation by visible light as well as good stability and recyclability, which are desirable for all photocatalytic applications. MoS2-based materials have been widely applied in various fields such as wastewater treatment, environmental remediation, and organic transformation reactions because of their excellent physicochemical properties. The present review focuses on the fundamental properties of MoS2, recent developments and remaining challenges, and key strategies for tackling issues related to the utilization of MoS2 in photocatalysis. The application of MoS2-based materials in visible-light-induced catalytic reactions for the treatment of diverse kinds of pollutants including industrial, environmental, pharmaceutical, and agricultural waste are also critically discussed. The review concludes by highlighting the prospects of MoS2 for use in various established and emerging areas of photocatalysis.
Collapse
Affiliation(s)
- Ashmalina Rahman
- Chemical
Sciences, Faculty of Science, Universiti
Brunei Darussalam, Jalan Tungku Link, Gadong, BE 1410, Brunei Darussalam
| | - James Robert Jennings
- Applied
Physics, Faculty of Science, Universiti
Brunei Darussalam, Jalan Tungku Link, Gadong, BE 1410, Brunei Darussalam
- Optoelectronic
Device Research Group, Universiti Brunei
Darussalam, Jalan Tungku Link, Gadong, BE 1410, Brunei Darussalam
| | - Ai Ling Tan
- Chemical
Sciences, Faculty of Science, Universiti
Brunei Darussalam, Jalan Tungku Link, Gadong, BE 1410, Brunei Darussalam
| | - Mohammad Mansoob Khan
- Chemical
Sciences, Faculty of Science, Universiti
Brunei Darussalam, Jalan Tungku Link, Gadong, BE 1410, Brunei Darussalam
- Optoelectronic
Device Research Group, Universiti Brunei
Darussalam, Jalan Tungku Link, Gadong, BE 1410, Brunei Darussalam
- ;
| |
Collapse
|
7
|
Zhang X, Gao Y, Li Y, Zhou Y, Ma H, Shang J, Cheng X. Synthesis of magnetic NiFe2O4/CuS activator for degradation of lomefloxacin via the activation of peroxymonosulfate under simulated sunlight illumination. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
8
|
Rational construction of uniform CoS/NiFe2O4 heterostructure as efficient bifunctional electrocatalysts for hydrogen evolution and oxygen evolution reactions. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2021.139596] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
9
|
Preparation of magnetically retrievable flower-like AgBr/BiOBr/NiFe2O4 direct Z-scheme heterojunction photocatalyst with enhanced visible-light photoactivity. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.127880] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
10
|
Zhang S, Guo S, Li A, Liu D, Sun H, Zhao F. Low-cost bauxite residue-MoS2 possessing adsorption and photocatalysis ability for removing organic pollutants in wastewater. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120144] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
11
|
Gürbüz MU, Elmacı G, Zhang Y, Meng X, Ertürk AS. Cryptomelane nanorods coated with Ni ion doped Birnessite polymorphs as bifunctional efficient catalyst for the oxygen evolution reaction and degradation of organic contaminants. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Mustafa Ulvi Gürbüz
- Department of Chemistry, Faculty of Arts and Sciences Yıldız Technical University Istanbul Turkey
| | - Gökhan Elmacı
- Department of Chemistry School of Technical Sciences, Adıyaman University Adıyaman Turkey
| | - Yajun Zhang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP) Chinese Academy of Sciences Lanzhou China
| | - Xu Meng
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP) Chinese Academy of Sciences Lanzhou China
| | - Ali Serol Ertürk
- Department of Analytical Chemistry, Faculty of Pharmacy Adıyaman University Adıyaman Turkey
| |
Collapse
|
12
|
Karpuraranjith M, Chen Y, Rajaboopathi S, Ramadoss M, Srinivas K, Yang D, Wang B. Three-dimensional porous MoS 2 nanobox embedded g-C 3N 4@TiO 2 architecture for highly efficient photocatalytic degradation of organic pollutant. J Colloid Interface Sci 2021; 605:613-623. [PMID: 34343734 DOI: 10.1016/j.jcis.2021.07.133] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 07/18/2021] [Accepted: 07/25/2021] [Indexed: 01/11/2023]
Abstract
Herein, a simple, highly efficient and stable MoS2 nanobox embedded graphitic-C3N4@TiO2 (g-CN@TiO2) nanoarchitecture was synthesized by a facile solvothermal approach. The nano-hybrid photocatalyst was constructed by TiO2 nanoparticles anchored on the surface of g-CN nanosheets. Then highly crystalline three-dimensional porous MoS2 nanobox was homogeneously distributed on the g-CN@TiO2 surface. The g-CN@TiO2/MoS2 hybrid achieved a high photocatalytic degradation efficiency of 97.5% for methylene blue (MB) dye pollutant under visible-light irradiant in an hour which was much better than TiO2@MoS2, g-CN@TiO2, MoS2, TiO2 and g-CN. Furthermore, the reaction rate (k) value of g-CN@TiO2/MoS2 for MB dye is as high as 3.18 X 10-2 min-1, which is ~ 2.65 times better than those of g-CN@TiO2 and MoS2. This work presents a rational structure design, interfacial construction and suitable band gap strategy to synthesize advanced nano-hybrid photocatalyst for degradation of organic pollutant with excellent performance and long-term stability.
Collapse
Affiliation(s)
- Marimuthu Karpuraranjith
- School of Electronic Science and Technology, and State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, PR China.
| | - Yuanfu Chen
- School of Electronic Science and Technology, and State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, PR China; College of Science and Institute of Oxygen Supply, Tibet University, Lhasa 850000, PR China.
| | - Sivamoorthy Rajaboopathi
- Department of Chemistry, Government Arts College for Women, Sivagangai 630561, Tamil Nadu, India
| | - Manigandan Ramadoss
- School of Electronic Science and Technology, and State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, PR China
| | - Katam Srinivas
- School of Electronic Science and Technology, and State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, PR China
| | - Dongxu Yang
- School of Electronic Science and Technology, and State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, PR China
| | - Bin Wang
- School of Electronic Science and Technology, and State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, PR China
| |
Collapse
|