1
|
Tian M, Hui B, Jia T, Chen X, Li L, Yu X, Zhang X, Lu Z, Yang X. Anion modulation enhances the internal electric field of CuCo 2O 4 to improve the catalysis in ammonia borane hydrolysis. J Colloid Interface Sci 2025; 683:236-246. [PMID: 39733539 DOI: 10.1016/j.jcis.2024.12.206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/21/2024] [Accepted: 12/26/2024] [Indexed: 12/31/2024]
Abstract
Ammonia borane (NH3BH3, AB) is considered a promising chemical hydrogen storage material. The development of efficient, stable, and economical catalysts for AB hydrolysis is essential for realizing the hydrogen energy economy. In this study, a series of p-p heterojunction catalysts, labeled M (P/S/Cl)-CuCo2O4, were fabricated using the high-temperature vapor phase method to achieve anionic interface gradient doping. Due to the differences in electronegativity among the anions P/S/Cl-O, electron-rich and electron-deficient regions are generated at the interface, inducing the formation of local p-p heterojunctions with built-in electric fields (BIEF). The difference in work function (ΔWf) at the interface enhances the strength of the BIEF. Because of the positive influence of the BIEF on the adsorption of intermediates and interfacial behavior, the catalytic performance of P-CuCo2O4, characterized by a hydrogen evolution rate (HER) of 1125 mLH2(gcat·min)-1, is significantly higher than that of intrinsic CuCo2O4, which has an HER of 705 mLH2(gcat·min)-1. Its apparent activation energy of only 32.25 kJ/mol is superior to that of previous non-precious metal catalysts. Density functional theory (DFT) further confirms that the construction and enhancement of the BIEF can reduce the band gap, accelerate electron transfer, regulate the metal d-band center, and enhance the adsorption of AB and H2O molecules. This process facilitates the elongation and breakage of the O-H bond length in H2O and the B-H bond length in AB, thereby promoting the release of H2.
Collapse
Affiliation(s)
- Mengmeng Tian
- School of Materials Science and Engineering, Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, Hebei University of Technology, Tianjin 300130, China
| | - Baiyang Hui
- School of Materials Science and Engineering, Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, Hebei University of Technology, Tianjin 300130, China
| | - Tengyu Jia
- School of Materials Science and Engineering, Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, Hebei University of Technology, Tianjin 300130, China
| | - Xinying Chen
- School of Materials Science and Engineering, Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, Hebei University of Technology, Tianjin 300130, China
| | - Lanlan Li
- School of Materials Science and Engineering, Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, Hebei University of Technology, Tianjin 300130, China
| | - Xiaofei Yu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, Hebei University of Technology, Tianjin 300130, China
| | - Xinghua Zhang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, Hebei University of Technology, Tianjin 300130, China
| | - Zunming Lu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, Hebei University of Technology, Tianjin 300130, China
| | - Xiaojing Yang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, Hebei University of Technology, Tianjin 300130, China.
| |
Collapse
|
2
|
Zhang Y, Wu S, Sun T, Li Q, Fan G. Ultrafast joule-heating-assisted O, N dual-doping of unfunctionalized carbon enhances Ru nanoparticle-catalyzed hydrogen production. J Colloid Interface Sci 2025; 681:71-81. [PMID: 39591857 DOI: 10.1016/j.jcis.2024.11.141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 11/14/2024] [Accepted: 11/18/2024] [Indexed: 11/28/2024]
Abstract
The development of a rapid and convenient strategy to regulate the surface microenvironment of inert carbon supports, along with the physicochemical properties of their supported metal nanoparticles, is essential for enhancing catalytic performance. In this study, we describe a straightforward and efficient solid-state microwave method that utilizes a household microwave oven to achieve the co-doping of oxygen and nitrogen in unfunctionalized carbon black (ONCB) using urea as a nitrogen source. The microwave solid-state treatment of commercial carbon black (CB) with urea not only introduces a significant number of heteroatomic functional groups but also substantially increases the pore size and pore volume of the matrix. These enhancements facilitate the uniform growth and dispersion of ultrafine Ru nanoparticles on the surface of ONCB. Consequently, the Ru/ONCB catalyst provides abundant catalytic active sites and mass transfer channels, thereby improving catalytic performance for hydrogen evolution from ammonia borane hydrolysis (ABH). The turnover frequency of Ru/ONCB for ABH reaches 4529 ± 238 min-1 (determined based on Ru dispersion), surpassing a range of analogues and many previously reported carbon-supported Ru catalysts. This study presents a simple and rapid strategy to regulate the surface microenvironment of unfunctionalized carbon support, thereby enhancing the catalytic performance of its supported metal nanoparticles for catalytic hydrogen generation.
Collapse
Affiliation(s)
- Yihan Zhang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Song Wu
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Ting Sun
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Qianggen Li
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China.
| | - Guangyin Fan
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China.
| |
Collapse
|
3
|
Song S, Wu S, He Y, Zhang Y, Fan G, Long Y, Song S. Boron/nitrogen-trapping and regulative electronic states around Ru nanoparticles towards bifunctional hydrogen production. J Colloid Interface Sci 2024; 672:675-687. [PMID: 38865881 DOI: 10.1016/j.jcis.2024.06.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 06/14/2024]
Abstract
Developing a straightforward and general strategy to regulate the surface microenvironment of a carbon matrix enriched with N/B motifs for efficient atomic utilization and electronic state of metal sites in bifunctional hydrogen production via ammonia-borane hydrolysis (ABH) and water electrolysis is a persistent challenge. Herein, we present a simple, green, and universal approach to fabricate B/N co-doped porous carbons using ammonia-borane (AB) as a triple functional agent, eliminating the need for hazardous and explosive functional agents and complicated procedures. The pyrolysis of AB induces the regulation of the surface microenvironment of the carbon matrix, leading to the formation of abundant surface functional groups, defects, and pore structures. This regulation enhances the efficiency of atom utilization and the electronic state of the active component, resulting in improved bifunctional hydrogen evolution. Among the catalysts, B/N co-doped vulcan carbon (Ru/BNC) with 2.1 wt% Ru loading demonstrates the highest performance in catalytic hydrogen production from ABH, achieving an ultrahigh turnover frequency of 1854 min-1 (depending on the dispersion of Ru). Furthermore, this catalyst shows remarkable electrochemical activity for hydrogen evolution in alkaline water electrolysis with a low overpotential of 31 mV at 10 mA cm-2. The present study provides a simple, green, and universal method to regulate the surface microenvironment of various carbons with B/N modulators, thereby adjusting the atomic utilization and electronic state of active metals for enhanced bifunctional hydrogen evolution.
Collapse
Affiliation(s)
- Shaoxian Song
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Song Wu
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Yating He
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Yiwen Zhang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Guangyin Fan
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China.
| | - Yan Long
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China.
| | - Shuyan Song
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| |
Collapse
|
4
|
Li M, Sun G, Wang Z, Zhang X, Peng J, Jiang F, Li J, Tao S, Liu Y, Pan Y. Structural Design of Single-Atom Catalysts for Enhancing Petrochemical Catalytic Reaction Process. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313661. [PMID: 38499342 DOI: 10.1002/adma.202313661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/02/2024] [Indexed: 03/20/2024]
Abstract
Petroleum, as the "lifeblood" of industrial development, is the important energy source and raw material. The selective transformation of petroleum into high-end chemicals is of great significance, but still exists enormous challenges. Single-atom catalysts (SACs) with 100% atom utilization and homogeneous active sites, promise a broad application in petrochemical processes. Herein, the research systematically summarizes the recent research progress of SACs in petrochemical catalytic reaction, proposes the role of structural design of SACs in enhancing catalytic performance, elucidates the catalytic reaction mechanisms of SACs in the conversion of petrochemical processes, and reveals the high activity origins of SACs at the atomic scale. Finally, the key challenges are summarized and an outlook on the design, identification of active sites, and the appropriate application of artificial intelligence technology is provided for achieving scale-up application of SACs in petrochemical process.
Collapse
Affiliation(s)
- Min Li
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Guangxun Sun
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Zhidong Wang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Xin Zhang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Jiatian Peng
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Fei Jiang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Junxi Li
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Shu Tao
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Yunqi Liu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Yuan Pan
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| |
Collapse
|
5
|
Xu W, Li W, Liu M, Guo X, Wen H, Li B. P-bridged Fe-X-Co coupled sites in hollow carbon spheres for efficient hydrogen generation. J Colloid Interface Sci 2024; 660:792-799. [PMID: 38277836 DOI: 10.1016/j.jcis.2024.01.145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/14/2024] [Accepted: 01/21/2024] [Indexed: 01/28/2024]
Abstract
Non-precious metals have shown attractive catalytic prospects in hydrogen production from ammonia borane hydrolysis. However, the sluggish reaction kinetics in the hydrolysis process remains a challenge. Herein, P-bridged Fe-X-Co coupled sites in hollow carbon spheres (Fe-CoP@C) has been synthesized through in situ template solvothermal and subsequent surface-phosphorization. Benefiting from the optimized electronic structure induced by Fe doping to enhance the specific activity of Co sites, bimetallic synergy and hollow structure, the as-prepared Fe-CoP@C exhibits superior performances with a turnover frequency (TOF) of 183.5 min-1, and stability of over 5 cycles for ammonia borane hydrolysis, comparable to noble metal catalysts. Theoretical calculations reveal that the P-bridged Fe-X-Co coupled sites on the Fe-CoP@C catalyst surfaces is beneficial to adsorb reactant molecules and reduce their reaction barrier. This strategy of constructing hollow P-bridged bimetallic coupled sites may open new avenues for non-precious metal catalysis.
Collapse
Affiliation(s)
- Wenjing Xu
- Research Center of Functional Materials, School of Science, Jiaozuo Normal College, Jiaozuo, Henan 454000, PR China.
| | - Wei Li
- Research Center of Functional Materials, School of Science, Jiaozuo Normal College, Jiaozuo, Henan 454000, PR China
| | - Mei Liu
- Research Center of Functional Materials, School of Science, Jiaozuo Normal College, Jiaozuo, Henan 454000, PR China
| | - Xianji Guo
- Research Center of Green Catalysis, College of Chemistry, Zhengzhou University, Zhengzhou 450001, PR China
| | - Hao Wen
- Research Center of Green Catalysis, College of Chemistry, Zhengzhou University, Zhengzhou 450001, PR China
| | - Baojun Li
- Research Center of Green Catalysis, College of Chemistry, Zhengzhou University, Zhengzhou 450001, PR China.
| |
Collapse
|
6
|
Zhurenok AV, Vasichenko DB, Berdyugin SN, Gerasimov EY, Saraev AA, Cherepanova SV, Kozlova EA. Photocatalysts Based on Graphite-like Carbon Nitride with a Low Content of Rhodium and Palladium for Hydrogen Production under Visible Light. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2176. [PMID: 37570494 PMCID: PMC10421291 DOI: 10.3390/nano13152176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/19/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023]
Abstract
In this study, we proposed photocatalysts based on graphite-like carbon nitride with a low content (0.01-0.5 wt.%) of noble metals (Pd, Rh) for hydrogen evolution under visible light irradiation. As precursors of rhodium and palladium, labile aqua and nitrato complexes [Rh2(H2O)8(μ-OH)2](NO3)4∙4H2O and (Et4N)2[Pd(NO3)4], respectively, were proposed. To obtain metallic particles, reduction was carried out in H2 at 400 °C. The synthesized photocatalysts were studied using X-ray diffraction, X-ray photoelectron spectroscopy, UV-Vis diffuse reflectance spectroscopy and high-resolution transmission electron microscopy. The activity of the photocatalysts was tested in the hydrogen evolution from aqueous and aqueous alkaline solutions of TEOA under visible light with a wavelength of 428 nm. It was shown that the activity for the 0.01-0.5% Rh/g-C3N4 series is higher than in the case of the 0.01-0.5% Pd/g-C3N4 photocatalysts. The 0.5% Rh/g-C3N4 sample showed the highest activity per gram of catalyst, equal to 3.9 mmol gcat-1 h-1, whereas the most efficient use of the metal particles was found over the 0.1% Rh/g-C3N4 photocatalyst, with the activity of 2.4 mol per gram of Rh per hour. The data obtained are of interest and can serve for further research in the field of photocatalytic hydrogen evolution using noble metals as cocatalysts.
Collapse
Affiliation(s)
- Angelina V. Zhurenok
- Federal Research Center, Boreskov Institute of Catalysis SB RAS, Lavrentieva Ave. 5, Novosibirsk 630090, Russia; (A.V.Z.); (D.B.V.); (E.Y.G.); (A.A.S.); (S.V.C.)
| | - Danila B. Vasichenko
- Federal Research Center, Boreskov Institute of Catalysis SB RAS, Lavrentieva Ave. 5, Novosibirsk 630090, Russia; (A.V.Z.); (D.B.V.); (E.Y.G.); (A.A.S.); (S.V.C.)
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Science, Novosibirsk 630090, Russia;
| | - Semen N. Berdyugin
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Science, Novosibirsk 630090, Russia;
| | - Evgeny Yu. Gerasimov
- Federal Research Center, Boreskov Institute of Catalysis SB RAS, Lavrentieva Ave. 5, Novosibirsk 630090, Russia; (A.V.Z.); (D.B.V.); (E.Y.G.); (A.A.S.); (S.V.C.)
| | - Andrey A. Saraev
- Federal Research Center, Boreskov Institute of Catalysis SB RAS, Lavrentieva Ave. 5, Novosibirsk 630090, Russia; (A.V.Z.); (D.B.V.); (E.Y.G.); (A.A.S.); (S.V.C.)
| | - Svetlana V. Cherepanova
- Federal Research Center, Boreskov Institute of Catalysis SB RAS, Lavrentieva Ave. 5, Novosibirsk 630090, Russia; (A.V.Z.); (D.B.V.); (E.Y.G.); (A.A.S.); (S.V.C.)
| | - Ekaterina A. Kozlova
- Federal Research Center, Boreskov Institute of Catalysis SB RAS, Lavrentieva Ave. 5, Novosibirsk 630090, Russia; (A.V.Z.); (D.B.V.); (E.Y.G.); (A.A.S.); (S.V.C.)
| |
Collapse
|
7
|
Jiang J, Wei W, Ren Z, Luo Y, Wang X, Xu Y, Chang M, Ai L. Facile construction of robust Ru-Co 3O 4 Mott-Schottky catalyst enabling efficient dehydrogenation of ammonia borane for hydrogen generation. J Colloid Interface Sci 2023; 646:25-33. [PMID: 37182256 DOI: 10.1016/j.jcis.2023.04.181] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 04/23/2023] [Accepted: 04/30/2023] [Indexed: 05/16/2023]
Abstract
Developing efficient catalysts for the dehydrogenation of ammonia borane (AB) is important for the safe storage and controlled release of hydrogen, but it is a challenging task. In this study, we designed a robust Ru-Co3O4 catalyst using the Mott-Schottky effect to induce favorable charge rearrangement. The self-created electron-rich Co3O4 and electron-deficient Ru sites at heterointerfaces are indispensable for the activation of the B-H bond in NH3BH3 and the OH bond in H2O, respectively. The synergistic electronic interaction between the electron-rich Co3O4 and electron-deficient Ru sites at the heterointerfaces resulted in an optimal Ru-Co3O4 heterostructure that exhibited outstanding catalytic activity for the hydrolysis of AB in the presence of NaOH. The heterostructure had an extremely high hydrogen generation rate (HGR) of 12238 mL min-1 gcat-1 and an expected high turnover frequency (TOF) of 755 molH2 molRu-1 min-1 at 298 K. The activation energy needed for the hydrolysis was low (36.65 kJ mol-1). This study opens up a new avenue for the rational design of high-performance catalysts for AB dehydrogenation based on the Mott-Schottky effect.
Collapse
Affiliation(s)
- Jing Jiang
- College of Materials Science and Engineering, Chongqing Jiaotong University, Chongqing 400074, China.
| | - Wei Wei
- College of Materials Science and Engineering, Chongqing Jiaotong University, Chongqing 400074, China
| | - Zhen Ren
- College of Materials Science and Engineering, Chongqing Jiaotong University, Chongqing 400074, China
| | - Yang Luo
- College of Materials Science and Engineering, Chongqing Jiaotong University, Chongqing 400074, China
| | - Xinzhi Wang
- College of Materials Science and Engineering, Chongqing Jiaotong University, Chongqing 400074, China
| | - Ying Xu
- College of Materials Science and Engineering, Chongqing Jiaotong University, Chongqing 400074, China
| | - Mingming Chang
- College of Materials Science and Engineering, Chongqing Jiaotong University, Chongqing 400074, China
| | - Lunhong Ai
- College of Materials Science and Engineering, Chongqing Jiaotong University, Chongqing 400074, China.
| |
Collapse
|
8
|
Guan S, Liu Y, Zhang H, Shen R, Wen H, Kang N, Zhou J, Liu B, Fan Y, Jiang J, Li B. Recent Advances and Perspectives on Supported Catalysts for Heterogeneous Hydrogen Production from Ammonia Borane. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023:e2300726. [PMID: 37118857 PMCID: PMC10375177 DOI: 10.1002/advs.202300726] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/19/2023] [Indexed: 06/19/2023]
Abstract
Ammonia borane (AB), a liquid hydrogen storage material, has attracted increasing attention for hydrogen utilization because of its high hydrogen content. However, the slow kinetics of AB hydrolysis and the indefinite catalytic mechanism remain significant problems for its large-scale practical application. Thus, the development of efficient AB hydrolysis catalysts and the determination of their catalytic mechanisms are significant and urgent. A summary of the preparation process and structural characteristics of various supported catalysts is presented in this paper, including graphite, metal-organic frameworks (MOFs), metal oxides, carbon nitride (CN), molybdenum carbide (MoC), carbon nanotubes (CNTs), boron nitride (h-BN), zeolites, carbon dots (CDs), and metal carbide and nitride (MXene). In addition, the relationship between the electronic structure and catalytic performance is discussed to ascertain the actual active sites in the catalytic process. The mechanism of AB hydrolysis catalysis is systematically discussed, and possible catalytic paths are summarized to provide theoretical considerations for the designing of efficient AB hydrolysis catalysts. Furthermore, three methods for stimulating AB from dehydrogenation by-products and the design of possible hydrogen product-regeneration systems are summarized. Finally, the remaining challenges and future research directions for the effective development of AB catalysts are discussed.
Collapse
Affiliation(s)
- Shuyan Guan
- College of Science, Henan Agricultural University, 95 Wenhua Road, Zhengzhou, 450002, P. R. China
- Research Center of Green Catalysis, College of Chemistry, School of Physics and Microelectronics, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Coal Green Conversion, Henan Polytechnic University, 2001 Century Avenue, Jiaozuo, 454000, P. R. China
| | - Yanyan Liu
- College of Science, Henan Agricultural University, 95 Wenhua Road, Zhengzhou, 450002, P. R. China
- Research Center of Green Catalysis, College of Chemistry, School of Physics and Microelectronics, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Lab for Biomass Chemical Utilization, Key and Open Lab on Forest Chemical Engineering, SFA, 16 Suojinwucun, Nanjing, 210042, P. R. China
| | - Huanhuan Zhang
- Research Center of Green Catalysis, College of Chemistry, School of Physics and Microelectronics, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Coal Green Conversion, Henan Polytechnic University, 2001 Century Avenue, Jiaozuo, 454000, P. R. China
| | - Ruofan Shen
- Research Center of Green Catalysis, College of Chemistry, School of Physics and Microelectronics, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
| | - Hao Wen
- Research Center of Green Catalysis, College of Chemistry, School of Physics and Microelectronics, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
| | - Naixin Kang
- ISM, UMR CNRS N° 5255, Univ. Bordeaux, Talence Cedex, 33405, France
| | - Jingjing Zhou
- College of Science, Henan Agricultural University, 95 Wenhua Road, Zhengzhou, 450002, P. R. China
| | - Baozhong Liu
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Coal Green Conversion, Henan Polytechnic University, 2001 Century Avenue, Jiaozuo, 454000, P. R. China
| | - Yanping Fan
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Coal Green Conversion, Henan Polytechnic University, 2001 Century Avenue, Jiaozuo, 454000, P. R. China
| | - Jianchun Jiang
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Lab for Biomass Chemical Utilization, Key and Open Lab on Forest Chemical Engineering, SFA, 16 Suojinwucun, Nanjing, 210042, P. R. China
| | - Baojun Li
- College of Science, Henan Agricultural University, 95 Wenhua Road, Zhengzhou, 450002, P. R. China
- Research Center of Green Catalysis, College of Chemistry, School of Physics and Microelectronics, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Coal Green Conversion, Henan Polytechnic University, 2001 Century Avenue, Jiaozuo, 454000, P. R. China
| |
Collapse
|
9
|
Fiorio JL, Garcia MA, Gothe ML, Galvan D, Troise PC, Conte-Junior CA, Vidinha P, Camargo PH, Rossi LM. Recent advances in the use of nitrogen-doped carbon materials for the design of noble metal catalysts. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
|
10
|
A review on hydrogen production from ammonia borane: Experimental and theoretical studies. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
11
|
Du X, Liu H, Su M, Tai Y, Pan B, Guo N, Zhang J. Efficient catalytic performance of Ru nanoparticles for hydrogen generation from NH3BH3: The dual role of Mo oxide. CATAL COMMUN 2023. [DOI: 10.1016/j.catcom.2023.106616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
|
12
|
Li Y, Meng J, Zhu Y, Yang Y, Zhang X, Zheng X. Ultrafine Ru nanoparticles confined in graphene-doped porous g-C3N4 for effectively boosting ammonia borane hydrolysis. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129513] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
13
|
Akbayrak S, Özkar S. Palladium Nanoparticles Supported on Cobalt(II,III) Oxide Nanocatalyst: High Reusability and Outstanding Catalytic Activity in Hydrolytic Dehydrogenation of Ammonia Borane. J Colloid Interface Sci 2022; 626:752-758. [DOI: 10.1016/j.jcis.2022.06.135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/03/2022] [Accepted: 06/25/2022] [Indexed: 01/17/2023]
|
14
|
Wang S, Guo A, Peng Y, Wang Y, Long Y, Fan G. Alkaline ultrasonic irradiation-mediated boosted H 2 production over O/N-rich porous carbon anchored Ru nanoclusters. J Colloid Interface Sci 2022; 612:57-65. [PMID: 34974258 DOI: 10.1016/j.jcis.2021.12.127] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/19/2021] [Accepted: 12/20/2021] [Indexed: 12/19/2022]
Abstract
Developing efficient catalytic systems to boost hydrogen evolution from hydrolytic dehydrogenation of ammonia borane (AB) is of broad interest but remains a formidable challenge since the widespread usages of hydrogen have been considered as sustainable solutions to ensure future energy security. Herein, we developed an alkaline ultrasonic irradiation-mediated catalytic system with O/N-rich porous carbon supported Ru nanoclusters (NCs) (Ru/ONPC) to considerably boost the catalytic activity for hydrogen production from the hydrolytic dehydrogenation of AB. The uniformly distributed sub-2.0 nm Ru NCs on the ONPC were demonstrated to be efficient catalysts to boost hydrogen generation from the hydrolytic dehydrogenation of AB with the synergistic effect between ultrasonic irradiation and alkaline additive without any additional heating. An ultrahigh turnover frequency (TOF) of 4004 min-1 was achieved in the developed catalytic system, which was significantly higher than that of ultrasound-mediated AB hydrolysis without alkali (TOF: 485 min-1) and alkaline AB hydrolysis (TOF: 1747 min-1) without ultrasound mixing. The alkaline ultrasonic irradiation was beneficial for the cleavage of the OH bonds in the attacked H2O molecules catalyzed by the Ru/ONPC and thus considerably boost the catalytic hydrogen generation from AB. This study provides a tractable and ecofriendly pathway to promote the activity toward AB hydrolysis to release hydrogen.
Collapse
Affiliation(s)
- Siming Wang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - An Guo
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Yumei Peng
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Yi Wang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Yan Long
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Guangyin Fan
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China.
| |
Collapse
|
15
|
|
16
|
He Y, Wu J, Wang Y, Long Y, Fan G. Synergistic catalytic hydrolysis of ammonia borane to release hydrogen over AgCo@CN. NEW J CHEM 2022. [DOI: 10.1039/d1nj05902e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Synergistic catalytic AB hydrolysis to generate hydrogen was achieved over AgCo@CN synthesized by auto-reduction between Co@CN and a Ag precursor.
Collapse
Affiliation(s)
- Yating He
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Jie Wu
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Yi Wang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Yan Long
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Guangyin Fan
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| |
Collapse
|
17
|
Gu B, Sun T, Wang Y, Long Y, Fu J, Fan G. Maximizing hydrogen production by AB hydrolysis with Pt@cobalt oxide/N, O-rich carbon and alkaline ultrasonic irradiation. Inorg Chem Front 2022. [DOI: 10.1039/d1qi01629f] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Non-precious metal oxide/carbon hybrid has been identified as a promising platform to stabilized precious metals for ammonia borane (AB) hydrolysis to produce hydrogen, whereas their facile and environmental-friendly synthesis remains...
Collapse
|
18
|
Xu H, Yu W, Zhang J, Zhou Z, Zhang H, Ge H, Wang G, Qin Y. Rhodium nanoparticles confined in titania nanotubes for efficient Hydrogen evolution from Ammonia Borane. J Colloid Interface Sci 2021; 609:755-763. [PMID: 34823851 DOI: 10.1016/j.jcis.2021.11.078] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/14/2021] [Accepted: 11/15/2021] [Indexed: 12/17/2022]
Abstract
Designing efficient catalysts for hydrogen evolution from hydrolysis of ammonia borane (AB) have attracted considerable attention. Rhodium (Rh) based catalysts with rational design present remarkable catalytic performance for the reaction. Herein, we report the confined Rh@TiO2 catalysts synthesized by atomic layer deposition combining with the sacrificial template approach, in which the Rh nanoparticles are uniformly confined on the inner surface of the porous titania nanotubes. The optimized catalysts show high catalytic activity with a turnover frequency value of 334.1 molH2·molRh-1·min-1 and better durability. Mechanistic investigation demonstrates that the cleavage of OH bands in water should be the rate determining step, and the appropriate concentration of NaOH can further enhance the hydrogen evolution activity. The catalysts can also achieve the hydrogenation of various organic substrates using AB as the hydrogen source. In addition, our present strategy is general and can be extended to the synthesis of other confined catalysts for various catalytic reactions.
Collapse
Affiliation(s)
- Hao Xu
- Interdisciplinary Research Center of Biology & Catalysis, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China; School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China; State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Wenlong Yu
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jiankang Zhang
- Interdisciplinary Research Center of Biology & Catalysis, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Zhan Zhou
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, China
| | - Hongxia Zhang
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Huibin Ge
- Interdisciplinary Research Center of Biology & Catalysis, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Guangjian Wang
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yong Qin
- Interdisciplinary Research Center of Biology & Catalysis, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China; State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
| |
Collapse
|
19
|
Chen W, Lv G, Fu J, Ren H, Shen J, Cao J, Liu X. Demonstration of Controlled Hydrogen Release Using Rh@GQDs during Hydrolysis of NH 3BH 3. ACS APPLIED MATERIALS & INTERFACES 2021; 13:50017-50026. [PMID: 34652125 DOI: 10.1021/acsami.1c15660] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Achieving the controlled release of H2 through an effective approach still faces many challenges. Herein, high-quality graphene quantum dots (GQDs) are synthesized from a new precursor, 1,2,4-trihydroxy benzene, and a multifunctional platform of Rh@GQDs is further developed for the controlled H2 evolution upon the hydrolysis of NH3BH3 (AB). More importantly, the designing concepts of multistep and stepless speed controls have been introduced in the domains of both H2 evolution for the first time. Through a novel designing protocol, the rate of H2 evolution can be freely regulated and constantly varied on demand by means of chelation between Zn2+ and ethylene diamine tetraacetic acid (EDTA). The density functional theory calculation indicates that Zn2+ has the priority to be adsorbed onto Rh(100) due to its larger adsorption energy (107.98 kcal·mol-1) than that of AB (36.36 kcal·mol-1). A controlling mechanism is presented such that Zn2+ will cover the active sites of the nanocatalyst to prevent the H2 evolution, and EDTA can chelate Zn2+ to reactivate the nanocatalyst for the production of H2, greatly facilitating use of this strategy in other catalytic reactions. Moreover, it is demonstrated that the protocol is equally valid for diverse hydrogen storage materials. Therefore, this work not only establishes whole new concepts for the controlled production of H2 but also explains their mechanism, thus remarkably advancing the utilization of H2 energy and significantly enlightening the controlled process of catalysis.
Collapse
Affiliation(s)
- Weifeng Chen
- Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, College of Materials and Chemical Engineering, China Three Gorges University, Yichang City 443002 Hubei Province, People's Republic of China
| | - Guo Lv
- Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, College of Materials and Chemical Engineering, China Three Gorges University, Yichang City 443002 Hubei Province, People's Republic of China
| | - Jinrun Fu
- Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, College of Materials and Chemical Engineering, China Three Gorges University, Yichang City 443002 Hubei Province, People's Republic of China
| | - Haiyan Ren
- Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, College of Materials and Chemical Engineering, China Three Gorges University, Yichang City 443002 Hubei Province, People's Republic of China
| | - Jialu Shen
- Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, College of Materials and Chemical Engineering, China Three Gorges University, Yichang City 443002 Hubei Province, People's Republic of China
| | - Jie Cao
- Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, College of Materials and Chemical Engineering, China Three Gorges University, Yichang City 443002 Hubei Province, People's Republic of China
| | - Xiang Liu
- Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, College of Materials and Chemical Engineering, China Three Gorges University, Yichang City 443002 Hubei Province, People's Republic of China
| |
Collapse
|
20
|
Cong W, Li Q, Bing L, Wang F, Han D, Wang G. In situ growth of hierarchical SAPO-34 loaded with Pt for evolution hydrogen production from hydrolysis of AB. J Taiwan Inst Chem Eng 2021. [DOI: 10.1016/j.jtice.2021.08.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
21
|
Liu J, Li P, Jiang R, Zheng X, Liu P. Ru Nanoparticles Immobilized on Chitosan as Effective Catalysts for Boosting NH
3
BH
3
Hydrolysis. ChemCatChem 2021. [DOI: 10.1002/cctc.202100781] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Jiaxin Liu
- Green Catalysis Center College of Chemistry Zhengzhou University Zhengzhou 450001 P. R. China
| | - Peiyun Li
- Green Catalysis Center College of Chemistry Zhengzhou University Zhengzhou 450001 P. R. China
| | - Renfeng Jiang
- Green Catalysis Center College of Chemistry Zhengzhou University Zhengzhou 450001 P. R. China
| | - Xiucheng Zheng
- Green Catalysis Center College of Chemistry Zhengzhou University Zhengzhou 450001 P. R. China
| | - Pu Liu
- Green Catalysis Center College of Chemistry Zhengzhou University Zhengzhou 450001 P. R. China
| |
Collapse
|
22
|
Slot TK, Oulego P, Sofer Z, Bai Y, Rothenberg G, Raveendran Shiju N. Ruthenium on Alkali‐Exfoliated Ti
3
(Al
0.8
Sn
0.2
)C
2
MAX Phase Catalyses Reduction of 4‐Nitroaniline with Ammonia Borane. ChemCatChem 2021. [DOI: 10.1002/cctc.202100158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Thierry K. Slot
- Van't Hoff Institute for Molecular Sciences University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
| | - Paula Oulego
- Department of Chemical and Environmental Engineering University of Oviedo c/Julián Clavería 8 33006 Oviedo Asturias Spain
| | - Zdeněk Sofer
- Department of Inorganic Chemistry University of Chemistry and Technology Prague Technická 5 166 28 Prague 6 Czech Republic
| | - Yuelei Bai
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments and Center for Composite Materials and Structures Harbin Institute of Technology Harbin 150080 P. R. China
| | - Gadi Rothenberg
- Van't Hoff Institute for Molecular Sciences University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
| | - N. Raveendran Shiju
- Van't Hoff Institute for Molecular Sciences University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
| |
Collapse
|
23
|
Özkar S. A review on platinum(0) nanocatalysts for hydrogen generation from the hydrolysis of ammonia borane. Dalton Trans 2021; 50:12349-12364. [PMID: 34259283 DOI: 10.1039/d1dt01709h] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review reports a survey on the progress in developing highly efficient platinum nanocatalysts for the hydrolytic dehydrogenation of ammonia borane (AB). After a short prelude emphasizing the importance of increasing the atom efficiency of high cost, precious platinum nanoparticles (NPs) which are known to be one of the highest activity catalysts for hydrogen generation from the hydrolysis of AB, this article reviews all the available reports on the use of platinum-based catalysts for this hydrolysis reaction covering (i) early tested platinum catalysts, (ii) platinum(0) NPs supported on oxides, (iii) platinum(0) NPs supported on carbonaceous materials, (iv) supported platinum single-atom catalysts, (v) bimetallic- and (vi) multimetallic-platinum NP nanocatalysts, and (vii) magnetically separable platinum-based catalysts. All the reported results are tabulated along with the important parameters used in the platinum-catalyzed hydrolysis of AB. In the section "Concluding remarks and a look towards the future" a discussion is devoted to the approaches for making high cost, precious platinum catalysts as efficient as possible, ultimately lowering the cost, including the suggestions for the future research in this field.
Collapse
Affiliation(s)
- Saim Özkar
- Department of Chemistry, Middle East Technical University, Ankara, Turkey.
| |
Collapse
|
24
|
Yang Z, Yang D, Wang Y, Long Y, Huang W, Fan G. Strong electrostatic adsorption-engaged fabrication of sub-3.0 nm PtRu alloy nanoparticles as synergistic electrocatalysts toward hydrogen evolution. NANOSCALE 2021; 13:10044-10050. [PMID: 34038495 DOI: 10.1039/d1nr00936b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Alloying of Pt with Ru to form ultrafine and well-defined PtRu alloy nanoparticles (NPs) for synergistically electrocatalytic hydrogen evolution is highly desirable but remains a synthetic challenge. Here, we report a strong electrostatic adsorption (SEA)-assisted fabrication of ultrafine and homogeneously distributed PtRu alloy NPs using ethylenediaminetetraacetic acid tetrasodium-derived carbon (EC) as a matrix. The O, N-rich EC with a hierarchically macro/meso/microporous structure and the SEA-assisted formation of the [Ru(bpy)3][PtCl6] complex ensure the successful generation of ultrasmall PtRu alloy NPs (2.93 nm in diameter) with high dispersion. The optimal PtRu/EC-700 delivers excellent electrocatalytic properties with an ultralow overpotential (η10 = 18 mV), robust durability and good long-term stability for the alkaline hydrogen evolution reaction (HER). The ultrasmall PtRu alloy NPs with rich surface sites, the synergistic catalysis effect between Pt and Ru and the hierarchically macro/meso/microporous structure of O, N-rich EC cooperatively enhance the HER performance of PtRu/EC-700. This study provides an easy but effective way to construct metal alloy NPs with an ultrafine size and high dispersity for catalytic applications.
Collapse
Affiliation(s)
- Zhipeng Yang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China.
| | | | | | | | | | | |
Collapse
|
25
|
He Y, Wang Z, Mao M, Li Q, Fan G. Synergism of ultrafine RuCo alloy nanoparticles on graphite carbon nitride for an efficient ammonia borane hydrolysis. NEW J CHEM 2021. [DOI: 10.1039/d1nj02805g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Synergism of ultrafine RuCo alloy nanoparticles on graphite carbon nitride were achieved for an efficient ammonia borane hydrolysis.
Collapse
Affiliation(s)
- Yating He
- College of Chemistry and Materials Science
- Sichuan Normal University
- Chengdu 610068
- China
| | - Ziqian Wang
- College of Chemistry and Materials Science
- Sichuan Normal University
- Chengdu 610068
- China
| | - Mingyue Mao
- College of Chemistry and Materials Science
- Sichuan Normal University
- Chengdu 610068
- China
| | - Qianggen Li
- College of Chemistry and Materials Science
- Sichuan Normal University
- Chengdu 610068
- China
| | - Guangyin Fan
- College of Chemistry and Materials Science
- Sichuan Normal University
- Chengdu 610068
- China
| |
Collapse
|