1
|
Zhang Y, Wu S, Sun T, Li Q, Fan G. Ultrafast joule-heating-assisted O, N dual-doping of unfunctionalized carbon enhances Ru nanoparticle-catalyzed hydrogen production. J Colloid Interface Sci 2025; 681:71-81. [PMID: 39591857 DOI: 10.1016/j.jcis.2024.11.141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 11/14/2024] [Accepted: 11/18/2024] [Indexed: 11/28/2024]
Abstract
The development of a rapid and convenient strategy to regulate the surface microenvironment of inert carbon supports, along with the physicochemical properties of their supported metal nanoparticles, is essential for enhancing catalytic performance. In this study, we describe a straightforward and efficient solid-state microwave method that utilizes a household microwave oven to achieve the co-doping of oxygen and nitrogen in unfunctionalized carbon black (ONCB) using urea as a nitrogen source. The microwave solid-state treatment of commercial carbon black (CB) with urea not only introduces a significant number of heteroatomic functional groups but also substantially increases the pore size and pore volume of the matrix. These enhancements facilitate the uniform growth and dispersion of ultrafine Ru nanoparticles on the surface of ONCB. Consequently, the Ru/ONCB catalyst provides abundant catalytic active sites and mass transfer channels, thereby improving catalytic performance for hydrogen evolution from ammonia borane hydrolysis (ABH). The turnover frequency of Ru/ONCB for ABH reaches 4529 ± 238 min-1 (determined based on Ru dispersion), surpassing a range of analogues and many previously reported carbon-supported Ru catalysts. This study presents a simple and rapid strategy to regulate the surface microenvironment of unfunctionalized carbon support, thereby enhancing the catalytic performance of its supported metal nanoparticles for catalytic hydrogen generation.
Collapse
Affiliation(s)
- Yihan Zhang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Song Wu
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Ting Sun
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Qianggen Li
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China.
| | - Guangyin Fan
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China.
| |
Collapse
|
2
|
Song S, Wu S, He Y, Zhang Y, Fan G, Long Y, Song S. Boron/nitrogen-trapping and regulative electronic states around Ru nanoparticles towards bifunctional hydrogen production. J Colloid Interface Sci 2024; 672:675-687. [PMID: 38865881 DOI: 10.1016/j.jcis.2024.06.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 06/14/2024]
Abstract
Developing a straightforward and general strategy to regulate the surface microenvironment of a carbon matrix enriched with N/B motifs for efficient atomic utilization and electronic state of metal sites in bifunctional hydrogen production via ammonia-borane hydrolysis (ABH) and water electrolysis is a persistent challenge. Herein, we present a simple, green, and universal approach to fabricate B/N co-doped porous carbons using ammonia-borane (AB) as a triple functional agent, eliminating the need for hazardous and explosive functional agents and complicated procedures. The pyrolysis of AB induces the regulation of the surface microenvironment of the carbon matrix, leading to the formation of abundant surface functional groups, defects, and pore structures. This regulation enhances the efficiency of atom utilization and the electronic state of the active component, resulting in improved bifunctional hydrogen evolution. Among the catalysts, B/N co-doped vulcan carbon (Ru/BNC) with 2.1 wt% Ru loading demonstrates the highest performance in catalytic hydrogen production from ABH, achieving an ultrahigh turnover frequency of 1854 min-1 (depending on the dispersion of Ru). Furthermore, this catalyst shows remarkable electrochemical activity for hydrogen evolution in alkaline water electrolysis with a low overpotential of 31 mV at 10 mA cm-2. The present study provides a simple, green, and universal method to regulate the surface microenvironment of various carbons with B/N modulators, thereby adjusting the atomic utilization and electronic state of active metals for enhanced bifunctional hydrogen evolution.
Collapse
Affiliation(s)
- Shaoxian Song
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Song Wu
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Yating He
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Yiwen Zhang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Guangyin Fan
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China.
| | - Yan Long
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China.
| | - Shuyan Song
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| |
Collapse
|
3
|
Xu W, Li W, Liu M, Guo X, Wen H, Li B. P-bridged Fe-X-Co coupled sites in hollow carbon spheres for efficient hydrogen generation. J Colloid Interface Sci 2024; 660:792-799. [PMID: 38277836 DOI: 10.1016/j.jcis.2024.01.145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/14/2024] [Accepted: 01/21/2024] [Indexed: 01/28/2024]
Abstract
Non-precious metals have shown attractive catalytic prospects in hydrogen production from ammonia borane hydrolysis. However, the sluggish reaction kinetics in the hydrolysis process remains a challenge. Herein, P-bridged Fe-X-Co coupled sites in hollow carbon spheres (Fe-CoP@C) has been synthesized through in situ template solvothermal and subsequent surface-phosphorization. Benefiting from the optimized electronic structure induced by Fe doping to enhance the specific activity of Co sites, bimetallic synergy and hollow structure, the as-prepared Fe-CoP@C exhibits superior performances with a turnover frequency (TOF) of 183.5 min-1, and stability of over 5 cycles for ammonia borane hydrolysis, comparable to noble metal catalysts. Theoretical calculations reveal that the P-bridged Fe-X-Co coupled sites on the Fe-CoP@C catalyst surfaces is beneficial to adsorb reactant molecules and reduce their reaction barrier. This strategy of constructing hollow P-bridged bimetallic coupled sites may open new avenues for non-precious metal catalysis.
Collapse
Affiliation(s)
- Wenjing Xu
- Research Center of Functional Materials, School of Science, Jiaozuo Normal College, Jiaozuo, Henan 454000, PR China.
| | - Wei Li
- Research Center of Functional Materials, School of Science, Jiaozuo Normal College, Jiaozuo, Henan 454000, PR China
| | - Mei Liu
- Research Center of Functional Materials, School of Science, Jiaozuo Normal College, Jiaozuo, Henan 454000, PR China
| | - Xianji Guo
- Research Center of Green Catalysis, College of Chemistry, Zhengzhou University, Zhengzhou 450001, PR China
| | - Hao Wen
- Research Center of Green Catalysis, College of Chemistry, Zhengzhou University, Zhengzhou 450001, PR China
| | - Baojun Li
- Research Center of Green Catalysis, College of Chemistry, Zhengzhou University, Zhengzhou 450001, PR China.
| |
Collapse
|
4
|
Jiang J, Wei W, Ren Z, Luo Y, Wang X, Xu Y, Chang M, Ai L. Facile construction of robust Ru-Co 3O 4 Mott-Schottky catalyst enabling efficient dehydrogenation of ammonia borane for hydrogen generation. J Colloid Interface Sci 2023; 646:25-33. [PMID: 37182256 DOI: 10.1016/j.jcis.2023.04.181] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 04/23/2023] [Accepted: 04/30/2023] [Indexed: 05/16/2023]
Abstract
Developing efficient catalysts for the dehydrogenation of ammonia borane (AB) is important for the safe storage and controlled release of hydrogen, but it is a challenging task. In this study, we designed a robust Ru-Co3O4 catalyst using the Mott-Schottky effect to induce favorable charge rearrangement. The self-created electron-rich Co3O4 and electron-deficient Ru sites at heterointerfaces are indispensable for the activation of the B-H bond in NH3BH3 and the OH bond in H2O, respectively. The synergistic electronic interaction between the electron-rich Co3O4 and electron-deficient Ru sites at the heterointerfaces resulted in an optimal Ru-Co3O4 heterostructure that exhibited outstanding catalytic activity for the hydrolysis of AB in the presence of NaOH. The heterostructure had an extremely high hydrogen generation rate (HGR) of 12238 mL min-1 gcat-1 and an expected high turnover frequency (TOF) of 755 molH2 molRu-1 min-1 at 298 K. The activation energy needed for the hydrolysis was low (36.65 kJ mol-1). This study opens up a new avenue for the rational design of high-performance catalysts for AB dehydrogenation based on the Mott-Schottky effect.
Collapse
Affiliation(s)
- Jing Jiang
- College of Materials Science and Engineering, Chongqing Jiaotong University, Chongqing 400074, China.
| | - Wei Wei
- College of Materials Science and Engineering, Chongqing Jiaotong University, Chongqing 400074, China
| | - Zhen Ren
- College of Materials Science and Engineering, Chongqing Jiaotong University, Chongqing 400074, China
| | - Yang Luo
- College of Materials Science and Engineering, Chongqing Jiaotong University, Chongqing 400074, China
| | - Xinzhi Wang
- College of Materials Science and Engineering, Chongqing Jiaotong University, Chongqing 400074, China
| | - Ying Xu
- College of Materials Science and Engineering, Chongqing Jiaotong University, Chongqing 400074, China
| | - Mingming Chang
- College of Materials Science and Engineering, Chongqing Jiaotong University, Chongqing 400074, China
| | - Lunhong Ai
- College of Materials Science and Engineering, Chongqing Jiaotong University, Chongqing 400074, China.
| |
Collapse
|
5
|
Guan S, Liu Y, Zhang H, Shen R, Wen H, Kang N, Zhou J, Liu B, Fan Y, Jiang J, Li B. Recent Advances and Perspectives on Supported Catalysts for Heterogeneous Hydrogen Production from Ammonia Borane. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023:e2300726. [PMID: 37118857 PMCID: PMC10375177 DOI: 10.1002/advs.202300726] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/19/2023] [Indexed: 06/19/2023]
Abstract
Ammonia borane (AB), a liquid hydrogen storage material, has attracted increasing attention for hydrogen utilization because of its high hydrogen content. However, the slow kinetics of AB hydrolysis and the indefinite catalytic mechanism remain significant problems for its large-scale practical application. Thus, the development of efficient AB hydrolysis catalysts and the determination of their catalytic mechanisms are significant and urgent. A summary of the preparation process and structural characteristics of various supported catalysts is presented in this paper, including graphite, metal-organic frameworks (MOFs), metal oxides, carbon nitride (CN), molybdenum carbide (MoC), carbon nanotubes (CNTs), boron nitride (h-BN), zeolites, carbon dots (CDs), and metal carbide and nitride (MXene). In addition, the relationship between the electronic structure and catalytic performance is discussed to ascertain the actual active sites in the catalytic process. The mechanism of AB hydrolysis catalysis is systematically discussed, and possible catalytic paths are summarized to provide theoretical considerations for the designing of efficient AB hydrolysis catalysts. Furthermore, three methods for stimulating AB from dehydrogenation by-products and the design of possible hydrogen product-regeneration systems are summarized. Finally, the remaining challenges and future research directions for the effective development of AB catalysts are discussed.
Collapse
Affiliation(s)
- Shuyan Guan
- College of Science, Henan Agricultural University, 95 Wenhua Road, Zhengzhou, 450002, P. R. China
- Research Center of Green Catalysis, College of Chemistry, School of Physics and Microelectronics, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Coal Green Conversion, Henan Polytechnic University, 2001 Century Avenue, Jiaozuo, 454000, P. R. China
| | - Yanyan Liu
- College of Science, Henan Agricultural University, 95 Wenhua Road, Zhengzhou, 450002, P. R. China
- Research Center of Green Catalysis, College of Chemistry, School of Physics and Microelectronics, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Lab for Biomass Chemical Utilization, Key and Open Lab on Forest Chemical Engineering, SFA, 16 Suojinwucun, Nanjing, 210042, P. R. China
| | - Huanhuan Zhang
- Research Center of Green Catalysis, College of Chemistry, School of Physics and Microelectronics, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Coal Green Conversion, Henan Polytechnic University, 2001 Century Avenue, Jiaozuo, 454000, P. R. China
| | - Ruofan Shen
- Research Center of Green Catalysis, College of Chemistry, School of Physics and Microelectronics, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
| | - Hao Wen
- Research Center of Green Catalysis, College of Chemistry, School of Physics and Microelectronics, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
| | - Naixin Kang
- ISM, UMR CNRS N° 5255, Univ. Bordeaux, Talence Cedex, 33405, France
| | - Jingjing Zhou
- College of Science, Henan Agricultural University, 95 Wenhua Road, Zhengzhou, 450002, P. R. China
| | - Baozhong Liu
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Coal Green Conversion, Henan Polytechnic University, 2001 Century Avenue, Jiaozuo, 454000, P. R. China
| | - Yanping Fan
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Coal Green Conversion, Henan Polytechnic University, 2001 Century Avenue, Jiaozuo, 454000, P. R. China
| | - Jianchun Jiang
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Lab for Biomass Chemical Utilization, Key and Open Lab on Forest Chemical Engineering, SFA, 16 Suojinwucun, Nanjing, 210042, P. R. China
| | - Baojun Li
- College of Science, Henan Agricultural University, 95 Wenhua Road, Zhengzhou, 450002, P. R. China
- Research Center of Green Catalysis, College of Chemistry, School of Physics and Microelectronics, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Coal Green Conversion, Henan Polytechnic University, 2001 Century Avenue, Jiaozuo, 454000, P. R. China
| |
Collapse
|
6
|
Wei YW, Yang G, Xu XX, Liu YY, Li BJ, Wang YZ, Zhao YX. Ultrafine Pt nanoparticles anchored on core-shell structured zeolite-carbon for efficient catalysis of hydrogen generation. RSC Adv 2023; 13:7673-7681. [PMID: 36908540 PMCID: PMC9993129 DOI: 10.1039/d3ra00358b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 02/07/2023] [Indexed: 03/10/2023] Open
Abstract
Ammonia borane (AB) is a potential hydrogen storage material with high-efficiency hydrolytic dehydrogenation under a suitable catalyst. Noble metal catalysts have drawn a lot of attention. In this study, a carbon-coated zeolite was obtained by calcination at high temperatures using glucose as a carbon source. Pt nanoparticles were fixed on a core-shell composite support by a simple chemical reduction method. A series of catalysts were prepared with different synthesis parameters. The results show that PSC-2 has excellent catalytic performance for hydrolytic dehydrogenation of AB in alkaline solution at room temperature, and the turnover frequency (TOF) is 593 min-1. The excellent catalytic performance is attributed to the carbon layer on the zeolite surface which inhibits the aggregation or deformation of metals in the catalytic reaction. The metal-support interaction activates the water and accelerates the rate-limiting step of hydrolysis. The activation energy (E a = 44 kJ mol-1) was calculated based on the reaction temperature. In addition, the kinetics of AB hydrolysis was studied, and the effects of catalyst concentration, AB concentration and NaOH concentration on AB hydrolysis rate were further investigated. The high-efficiency catalyst prepared in this work provides a new strategy for the development of chemical hydrogen production in the field of catalysis.
Collapse
Affiliation(s)
- Yue-Wei Wei
- School of Chemistry and Chemical Engineering, Shanxi University Taiyuan 030006 China
- Engineering Research Center of Ministry of Education for Fine Chemicals, Shanxi University Taiyuan 030006 China
- Tobacco College of Henan Agricultural University Zhengzhou 450002 China
| | - Guang Yang
- Tobacco College of Henan Agricultural University Zhengzhou 450002 China
| | - Xi-Xi Xu
- Tobacco College of Henan Agricultural University Zhengzhou 450002 China
| | - Yan-Yan Liu
- College of Science, Henan Agricultural University Zhengzhou 450002 China
| | - Bao-Jun Li
- Research Center of Green Catalysis, College of Chemistry, Zhengzhou University Zhengzhou 450001 China
| | - Yong-Zhao Wang
- School of Chemistry and Chemical Engineering, Shanxi University Taiyuan 030006 China
- Engineering Research Center of Ministry of Education for Fine Chemicals, Shanxi University Taiyuan 030006 China
| | - Yong-Xiang Zhao
- School of Chemistry and Chemical Engineering, Shanxi University Taiyuan 030006 China
- Engineering Research Center of Ministry of Education for Fine Chemicals, Shanxi University Taiyuan 030006 China
| |
Collapse
|
7
|
A review on hydrogen production from ammonia borane: Experimental and theoretical studies. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
8
|
Tian Y, Zeng C, Yang S, Luo Y, Ai L, Jiang J. Co-vacancy rich Co3O4 catalyst enables efficient hydrogen generation from the hydrolysis of ammonia borane. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
9
|
Li Y, Meng J, Zhu Y, Yang Y, Zhang X, Zheng X. Ultrafine Ru nanoparticles confined in graphene-doped porous g-C3N4 for effectively boosting ammonia borane hydrolysis. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129513] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
10
|
Solid-state mechanochemical synthesis of Rh/Al2O3 catalysts for effective hydrolysis of ammonia borane. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
11
|
Akbayrak S, Özkar S. Palladium Nanoparticles Supported on Cobalt(II,III) Oxide Nanocatalyst: High Reusability and Outstanding Catalytic Activity in Hydrolytic Dehydrogenation of Ammonia Borane. J Colloid Interface Sci 2022; 626:752-758. [DOI: 10.1016/j.jcis.2022.06.135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/03/2022] [Accepted: 06/25/2022] [Indexed: 01/17/2023]
|
12
|
Akbulut D, Özkar S. A review of the catalytic conversion of glycerol to lactic acid in the presence of aqueous base. RSC Adv 2022; 12:18864-18883. [PMID: 35873329 PMCID: PMC9240816 DOI: 10.1039/d2ra03085c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 06/14/2022] [Indexed: 11/21/2022] Open
Abstract
Lactic acid is a high-value-added chemical with large production, which is used in many industries including the production of pyruvic and acrylic acids. Lactic acid is largely obtained from the oxidation of glycerol, which is a prevalent by-product of biodiesel production. However, the oxidation of glycerol to lactic acid requires harsh reaction conditions such as high temperature and pressure as well as the use of a hefty strong base. In the presence of suitable catalysts, the production of lactic acid from glycerol can be achieved under mild conditions with 1 equivalent base per mole of glycerol. Herein, we review the reports of the catalytic conversion of glycerol to lactic acid in an aqueous alkaline medium considering the reaction conditions, catalytic activity for glycerol conversion and selectivity for lactic acid. We start first with the reports on the use of homogeneous catalysts that have high catalytic activity but miserable recovery. Next, we discuss the employment of colloidal metal(0) nanoparticles as catalysts in glycerol oxidation. The papers on the use of supported metal(0) nanoparticles are reviewed according to the type of support. We then review the polymetallic and metal/metal oxide nanocatalysts used for the conversion of glycerol to lactic acid in an alkaline medium. The catalysts tested for glycerol conversion to lactic acid without any additional bases are also discussed to emphasize the importance of a strong base for catalytic performance. The proposed mechanisms of glycerol oxidation to lactic acid in the presence or absence of catalysts as well as for the formation of side products are discussed. The available experimental kinetics data are shown to fit the mechanism with the formation of glyceraldehyde from glycerol alkoxide as the rate-determining step.
Collapse
Affiliation(s)
- Doğan Akbulut
- Department of Chemistry, Middle East Technical University Ankara Turkey
| | - Saim Özkar
- Department of Chemistry, Middle East Technical University Ankara Turkey
| |
Collapse
|
13
|
Gu B, Sun T, Wang Y, Long Y, Fu J, Fan G. Maximizing hydrogen production by AB hydrolysis with Pt@cobalt oxide/N, O-rich carbon and alkaline ultrasonic irradiation. Inorg Chem Front 2022. [DOI: 10.1039/d1qi01629f] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Non-precious metal oxide/carbon hybrid has been identified as a promising platform to stabilized precious metals for ammonia borane (AB) hydrolysis to produce hydrogen, whereas their facile and environmental-friendly synthesis remains...
Collapse
|
14
|
Enhanced catalytic performance of cobalt ferrite by a facile reductive treatment for H2 release from ammonia borane. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117697] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
15
|
Xu H, Yu W, Zhang J, Zhou Z, Zhang H, Ge H, Wang G, Qin Y. Rhodium nanoparticles confined in titania nanotubes for efficient Hydrogen evolution from Ammonia Borane. J Colloid Interface Sci 2021; 609:755-763. [PMID: 34823851 DOI: 10.1016/j.jcis.2021.11.078] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/14/2021] [Accepted: 11/15/2021] [Indexed: 12/17/2022]
Abstract
Designing efficient catalysts for hydrogen evolution from hydrolysis of ammonia borane (AB) have attracted considerable attention. Rhodium (Rh) based catalysts with rational design present remarkable catalytic performance for the reaction. Herein, we report the confined Rh@TiO2 catalysts synthesized by atomic layer deposition combining with the sacrificial template approach, in which the Rh nanoparticles are uniformly confined on the inner surface of the porous titania nanotubes. The optimized catalysts show high catalytic activity with a turnover frequency value of 334.1 molH2·molRh-1·min-1 and better durability. Mechanistic investigation demonstrates that the cleavage of OH bands in water should be the rate determining step, and the appropriate concentration of NaOH can further enhance the hydrogen evolution activity. The catalysts can also achieve the hydrogenation of various organic substrates using AB as the hydrogen source. In addition, our present strategy is general and can be extended to the synthesis of other confined catalysts for various catalytic reactions.
Collapse
Affiliation(s)
- Hao Xu
- Interdisciplinary Research Center of Biology & Catalysis, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China; School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China; State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Wenlong Yu
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jiankang Zhang
- Interdisciplinary Research Center of Biology & Catalysis, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Zhan Zhou
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, China
| | - Hongxia Zhang
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Huibin Ge
- Interdisciplinary Research Center of Biology & Catalysis, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Guangjian Wang
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yong Qin
- Interdisciplinary Research Center of Biology & Catalysis, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China; State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
| |
Collapse
|
16
|
Cong W, Li Q, Bing L, Wang F, Han D, Wang G. In situ growth of hierarchical SAPO-34 loaded with Pt for evolution hydrogen production from hydrolysis of AB. J Taiwan Inst Chem Eng 2021. [DOI: 10.1016/j.jtice.2021.08.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
17
|
Akbayrak S, Özkar S. Magnetically Isolable Pt 0/Co 3O 4 Nanocatalysts: Outstanding Catalytic Activity and High Reusability in Hydrolytic Dehydrogenation of Ammonia Borane. ACS APPLIED MATERIALS & INTERFACES 2021; 13:34341-34348. [PMID: 34255473 DOI: 10.1021/acsami.1c08362] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The development of a new platinum nanocatalyst to maximize the catalytic efficiency of the precious noble metal catalyst in releasing hydrogen from ammonia borane (AB) is reported. Platinum(0) nanoparticles are impregnated on a reducible cobalt(II,III) oxide surface, forming magnetically isolable Pt0/Co3O4 nanocatalysts, which have (i) superb catalytic activity providing a record turnover frequency (TOF) of 4366 min-1 for hydrogen evolution from the hydrolysis of AB at room temperature and (ii) excellent reusability, retaining the complete catalytic activity even after the 10th run of hydrolysis reaction. The outstanding activity and stability of the catalyst can be ascribed to the strong interaction between the platinum(0) nanoparticles and reducible cobalt oxide, which is supported by the results of XPS analysis. Pt0/Co3O4 exhibits the highest TOF among the reported platinum-nanocatalysts developed for hydrogen generation from the hydrolysis of AB.
Collapse
Affiliation(s)
- Serdar Akbayrak
- Department of Chemistry, Middle East Technical University, 06800 Ankara, Turkey
- Department of Chemistry, Sinop University, 57000 Sinop, Turkey
- Department of Basic Sciences, Faculty of Engineering, Necmettin Erbakan University, 42090 Konya, Turkey
| | - Saim Özkar
- Department of Chemistry, Middle East Technical University, 06800 Ankara, Turkey
| |
Collapse
|
18
|
Özkar S. A review on platinum(0) nanocatalysts for hydrogen generation from the hydrolysis of ammonia borane. Dalton Trans 2021; 50:12349-12364. [PMID: 34259283 DOI: 10.1039/d1dt01709h] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review reports a survey on the progress in developing highly efficient platinum nanocatalysts for the hydrolytic dehydrogenation of ammonia borane (AB). After a short prelude emphasizing the importance of increasing the atom efficiency of high cost, precious platinum nanoparticles (NPs) which are known to be one of the highest activity catalysts for hydrogen generation from the hydrolysis of AB, this article reviews all the available reports on the use of platinum-based catalysts for this hydrolysis reaction covering (i) early tested platinum catalysts, (ii) platinum(0) NPs supported on oxides, (iii) platinum(0) NPs supported on carbonaceous materials, (iv) supported platinum single-atom catalysts, (v) bimetallic- and (vi) multimetallic-platinum NP nanocatalysts, and (vii) magnetically separable platinum-based catalysts. All the reported results are tabulated along with the important parameters used in the platinum-catalyzed hydrolysis of AB. In the section "Concluding remarks and a look towards the future" a discussion is devoted to the approaches for making high cost, precious platinum catalysts as efficient as possible, ultimately lowering the cost, including the suggestions for the future research in this field.
Collapse
Affiliation(s)
- Saim Özkar
- Department of Chemistry, Middle East Technical University, Ankara, Turkey.
| |
Collapse
|