1
|
Kim J, Mayorga-Burrezo P, Song SJ, Mayorga-Martinez CC, Medina-Sánchez M, Pané S, Pumera M. Advanced materials for micro/nanorobotics. Chem Soc Rev 2024; 53:9190-9253. [PMID: 39139002 DOI: 10.1039/d3cs00777d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Autonomous micro/nanorobots capable of performing programmed missions are at the forefront of next-generation micromachinery. These small robotic systems are predominantly constructed using functional components sourced from micro- and nanoscale materials; therefore, combining them with various advanced materials represents a pivotal direction toward achieving a higher level of intelligence and multifunctionality. This review provides a comprehensive overview of advanced materials for innovative micro/nanorobotics, focusing on the five families of materials that have witnessed the most rapid advancements over the last decade: two-dimensional materials, metal-organic frameworks, semiconductors, polymers, and biological cells. Their unique physicochemical, mechanical, optical, and biological properties have been integrated into micro/nanorobots to achieve greater maneuverability, programmability, intelligence, and multifunctionality in collective behaviors. The design and fabrication methods for hybrid robotic systems are discussed based on the material categories. In addition, their promising potential for powering motion and/or (multi-)functionality is described and the fundamental principles underlying them are explained. Finally, their extensive use in a variety of applications, including environmental remediation, (bio)sensing, therapeutics, etc., and remaining challenges and perspectives for future research are discussed.
Collapse
Affiliation(s)
- Jeonghyo Kim
- Advanced Nanorobots & Multiscale Robotics Laboratory, Faculty of Electrical Engineering and Computer Science, VSB - Technical University of Ostrava, 17. listopadu 2172/15, Ostrava 70800, Czech Republic.
| | - Paula Mayorga-Burrezo
- Future Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, Purkyňova 123, Brno 61200, Czech Republic
| | - Su-Jin Song
- Advanced Nanorobots & Multiscale Robotics Laboratory, Faculty of Electrical Engineering and Computer Science, VSB - Technical University of Ostrava, 17. listopadu 2172/15, Ostrava 70800, Czech Republic.
| | - Carmen C Mayorga-Martinez
- Advanced Nanorobots & Multiscale Robotics Laboratory, Faculty of Electrical Engineering and Computer Science, VSB - Technical University of Ostrava, 17. listopadu 2172/15, Ostrava 70800, Czech Republic.
| | - Mariana Medina-Sánchez
- CIC nanoGUNE BRTA, Tolosa Hiribidea 76, San Sebastián, 20018, Spain
- IKERBASQUE, Basque Foundation for Science, Plaza Euskadi, 5, Bilbao, 48009, Spain
- Micro- and NanoBiomedical Engineering Group (MNBE), Institute for Emerging Electronic Technologies, Leibniz Institute for Solid State and Materials Research (IFW), 01069, Dresden, Germany
- Chair of Micro- and Nano-Biosystems, Center for Molecular Bioengineering (B CUBE), Dresden University of Technology, 01062, Dresden, Germany
| | - Salvador Pané
- Multi-Scale Robotics Lab, Institute of Robotics and Intelligent Systems, ETH Zürich, Tannenstrasse 3, CH-8092 Zürich, Switzerland
| | - Martin Pumera
- Advanced Nanorobots & Multiscale Robotics Laboratory, Faculty of Electrical Engineering and Computer Science, VSB - Technical University of Ostrava, 17. listopadu 2172/15, Ostrava 70800, Czech Republic.
- Future Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, Purkyňova 123, Brno 61200, Czech Republic
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
- Department of Medical Research, China Medical University Hospital, China Medical University, No. 91 Hsueh-Shih Road, Taichung, Taiwan
| |
Collapse
|
2
|
El‐Naggar K, Yang Y, Tian W, Zhang H, Sun H, Wang S. Metal-Organic Framework-Based Micro-/Nanomotors for Wastewater Remediation. SMALL SCIENCE 2024; 4:2400110. [PMID: 40212073 PMCID: PMC11935036 DOI: 10.1002/smsc.202400110] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 05/21/2024] [Indexed: 04/13/2025] Open
Abstract
Micro-/nanomotors (MNMs) in water remediation have garnered significant attention over the past two decades. More recently, metal-organic framework-based micro-/nanomotors (MOF-MNMs) have been applied for environmental remediation; however, a comprehensive summary of research in this research area is yet to be reported. Herein, a review is presented to cover the recent advances in MOF-MNMs and their various applications in wastewater remediation. The review presents a comprehensive introduction to MNMs, including different propulsion approaches, fabrication, and functionalization strategies, in addition to the unique features of MOF-MNMs. The conception and various synthetic routes of MOF-MNMs are extensively covered and the implementation of MOF-MNMs in water-related applications, including adsorption, degradation, sensing, and disinfection of different pollutants, is in depth discussed. Meanwhile, the propulsion and mechanism of action behind each MOF-MNM are systematically studied. Finally, the review provides insights into the challenges and perspectives to build more effective MOF-MNMs to cover versatile applications for wastewater treatment.
Collapse
Affiliation(s)
- Karim El‐Naggar
- School of Chemical EngineeringThe University of AdelaideNorth TerraceAdelaideSA5005Australia
- Department of ChemistryFaculty of ScienceAin Shams UniversityAbbassiaCairo11566Egypt
| | - Yangyang Yang
- Institute of Green Chemistry and Chemical TechnologySchool of Chemistry & Chemical EngineeringJiangsu UniversityZhenjiang212013China
| | - Wenjie Tian
- School of Chemical EngineeringThe University of AdelaideNorth TerraceAdelaideSA5005Australia
| | - Huayang Zhang
- School of Chemical EngineeringThe University of AdelaideNorth TerraceAdelaideSA5005Australia
| | - Hongqi Sun
- School of Molecular SciencesFaculty of ScienceThe University of Western AustraliaPerthWA6009Australia
| | - Shaobin Wang
- School of Chemical EngineeringThe University of AdelaideNorth TerraceAdelaideSA5005Australia
| |
Collapse
|
3
|
Kichatov B, Korshunov A, Sudakov V, Gubernov V, Golubkov A, Kolobov A, Kiverin A, Chikishev L. Motion of magnetic motors across liquid-liquid interface. J Colloid Interface Sci 2023; 652:1456-1466. [PMID: 37659314 DOI: 10.1016/j.jcis.2023.08.138] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/01/2023] [Accepted: 08/21/2023] [Indexed: 09/04/2023]
Abstract
HYPOTHESIS In a number of applications related to chemical engineering and drug delivery, magnetic nanoparticles should move through a liquid-liquid interface in the presence of surfactant molecules. However, due to the action of capillary forces, this is not always possible. The mechanism of particle motion through the interface essentially depends on the intensity of the Marangoni flow, which is induced on the interface during its deformation. EXPERIMENTS In this paper we study the motion of nanoparticles Fe3O4 through the water-tridecane interface under the action of a nonuniform magnetic field when using different surfactants. FINDINGS If the linear size of the magnetic motor turns out to be less than a certain critical value, then it is not able to move between phases due to the action of capillary forces on the interface. Depending on the type and concentration of the surfactant used, various mechanisms for the motor motion through the liquid-liquid interface can be carried out. In one of them, a liquid phase is transferred through the interface along with a movable motor, while in the other, it is not.
Collapse
Affiliation(s)
- Boris Kichatov
- Lebedev Physical Institute, Russian Academy of Sciences, 119991 Moscow, Russia.
| | - Alexey Korshunov
- Lebedev Physical Institute, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Vladimir Sudakov
- Lebedev Physical Institute, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Vladimir Gubernov
- Lebedev Physical Institute, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Alexandr Golubkov
- Lebedev Physical Institute, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Andrey Kolobov
- Lebedev Physical Institute, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Alexey Kiverin
- Joint Institute for High Temperatures, Russian Academy of Sciences, 125412 Moscow, Russia
| | - Leonid Chikishev
- Kutateladze Institute of Thermophysics, Russian Academy of Sciences, 630090 Novosibirsk, Russia
| |
Collapse
|
4
|
Rayaroth MP, Aravind UK, Boczkaj G, Aravindakumar CT. Singlet oxygen in the removal of organic pollutants: An updated review on the degradation pathways based on mass spectrometry and DFT calculations. CHEMOSPHERE 2023; 345:140203. [PMID: 37734498 DOI: 10.1016/j.chemosphere.2023.140203] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 09/23/2023]
Abstract
The degradation of pollutants by a non-radical pathway involving singlet oxygen (1O2) is highly relevant in advanced oxidation processes. Photosensitizers, modified photocatalysts, and activated persulfates can generate highly selective 1O2 in the medium. The selective reaction of 1O2 with organic pollutants results in the evolution of different intermediate products. While these products can be identified using mass spectrometry (MS) techniques, predicting a proper degradation mechanism in a 1O2-based process is still challenging. Earlier studies utilized MS techniques in the identification of intermediate products and the mechanism was proposed with the support of theoretical calculations. Although some reviews have been reported on the generation of 1O2 and its environmental applications, a proper review of the degradation mechanism by 1O2 is not yet available. Hence, we reviewed the possible degradation pathways of organic contaminants in 1O2-mediated oxidation with the support of density functional theory (DFT). The Fukui function (FF, f-, f+, and f0), HOMO-LUMO energies, and Gibbs free energies obtained using DFT were used to identify the active site in the molecule and the degradation mechanism, respectively. Electrophilic addition, outer sphere type single electron transfer (SET), and addition to the hetero atoms are the key mechanisms involved in the degradation of organic contaminants by 1O2. Since environmental matrices contain several contaminants, it is difficult to experiment with all contaminants to identify their intermediate products. Therefore, the DFT studies are useful for predicting the intermediate compounds during the oxidative removal of the contaminants, especially for complex composition wastewater.
Collapse
Affiliation(s)
- Manoj P Rayaroth
- Bigelow Laboratory for Ocean Sciences, 60 Bigelow Dr, East Boothbay, ME, 04544, USA.
| | - Usha K Aravind
- School of Environmental Studies, Cochin University of Science & Technology (CUSAT), Kochi 682022, Kerala, India
| | - Grzegorz Boczkaj
- Gdansk University of Technology, Faculty of Civil and Environmental Engineering, Department of Sanitary Engineering, 80-233, Gdansk, G. Narutowicza 11/12 Str, Poland; EkoTech Center, Gdansk University of Technology, G. Narutowicza St. 11/12, 80-233 Gdansk, Poland
| | - Charuvila T Aravindakumar
- School of Environmental Sciences, Mahatma Gandhi University, Kottayam 686560, Kerala, India; Inter University Instrumentation Centre (IUIC), Mahatma Gandhi University (MGU), Kottayam 686560, Kerala, India.
| |
Collapse
|
5
|
Wang H, Jing Y, Yu J, Ma B, Sui M, Zhu Y, Dai L, Yu S, Li M, Wang L. Micro/nanorobots for remediation of water resources and aquatic life. Front Bioeng Biotechnol 2023; 11:1312074. [PMID: 38026904 PMCID: PMC10666170 DOI: 10.3389/fbioe.2023.1312074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023] Open
Abstract
Nowadays, global water scarcity is becoming a pressing issue, and the discharge of various pollutants leads to the biological pollution of water bodies, which further leads to the poisoning of living organisms. Consequently, traditional water treatment methods are proving inadequate in addressing the growing demands of various industries. As an effective and eco-friendly water treatment method, micro/nanorobots is making significant advancements. Based on researches conducted between 2019 and 2023 in the field of water pollution using micro/nanorobots, this paper comprehensively reviews the development of micro/nanorobots in water pollution control from multiple perspectives, including propulsion methods, decontamination mechanisms, experimental techniques, and water monitoring. Furthermore, this paper highlights current challenges and provides insights into the future development of the industry, providing guidance on biological water pollution control.
Collapse
Affiliation(s)
- Haocheng Wang
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, China
| | - Yizhan Jing
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, China
| | - Jiuzheng Yu
- Oil & Gas Technology Research Institute, PetroChina Changqing Oilfield Company, Xi’an, China
| | - Bo Ma
- State Engineering Laboratory of Exploration and Development of Low-Permeability Oil & Gas Field, Xi’an, China
| | - Mingyang Sui
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, China
| | - Yanhe Zhu
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, China
| | - Lizhou Dai
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, China
| | - Shimin Yu
- College of Engineering, Ocean University of China, Qingdao, China
| | - Mu Li
- Department of Pharmacy, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Lin Wang
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, China
| |
Collapse
|
6
|
Ren J, Chen Z, Ma E, Wang W, Zheng S, Wang H. Dual-source powered nanomotors coupled with dual-targeting ligands for efficient capture and detection of CTCs in whole blood and in vivo tumor imaging. Colloids Surf B Biointerfaces 2023; 231:113568. [PMID: 37826963 DOI: 10.1016/j.colsurfb.2023.113568] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/02/2023] [Accepted: 09/26/2023] [Indexed: 10/14/2023]
Abstract
Circulating tumor cells (CTCs) are important biomarkers in cancer diagnosis. However, the specific labeling of CTCs with high capture efficiency in whole blood remains a problem. Herein, a dual-source-driven nanomotor coupled with dual-targeting ligands (CD@NM) was designed for efficient capture, specific imaging and quantitative detection of CTCs. In both water and biological fluid, CD@NMs moved autonomously under the propulsion of a magnetic field and H2O2 solution, which improved the capture efficiency of CTCs to 97.50 ± 2.38%. More importantly, specific labeling of CTCs was achieved by fluorescence quenching and recovery of fluorescent carbon dots modified on the CD@NMs. As a result, the CD@NMs exhibited efficient CTC capture, specific CTC imaging and recognition in whole blood. CD@NMs were also successfully deployed in the specific imaging of tumor tissues in vivo. On this basis, CD@NMs are expected to provide a new platform for tumor diagnosis both in vitro and in vivo.
Collapse
Affiliation(s)
- Jiaoyu Ren
- School of Chemical Engineering & Technology, China University of Mining and Technology, Xuzhou, Jiangsu 221116, PR China
| | - Zekun Chen
- School of Chemical Engineering & Technology, China University of Mining and Technology, Xuzhou, Jiangsu 221116, PR China
| | - Enhui Ma
- School of Chemical Engineering & Technology, China University of Mining and Technology, Xuzhou, Jiangsu 221116, PR China
| | - Wenjun Wang
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, Jiangsu 221116, PR China
| | - Shaohui Zheng
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, Jiangsu 221116, PR China.
| | - Hong Wang
- School of Chemical Engineering & Technology, China University of Mining and Technology, Xuzhou, Jiangsu 221116, PR China.
| |
Collapse
|
7
|
Zhao L, Chen H, Tang Y, Li P, Zhu X, Liu J, Liu M, Zhang Y, Yao S. Ag 2S QDs integration with MnO 2 nanosheets for the sensitive detection of Cr (VI) via the redox reaction induced photoelectrochemical variation. Anal Chim Acta 2023; 1270:341471. [PMID: 37311614 DOI: 10.1016/j.aca.2023.341471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/30/2023] [Accepted: 06/01/2023] [Indexed: 06/15/2023]
Abstract
The heavy metal Cr (VI) will remain, accumulate, and migrate after entering the environment or ecosystem, causing serious harm to the environment. Here, a photoelectrochemical sensor was developed for Cr (VI), utilizing the Ag2S quantum dots (QDs) and MnO2 nanosheets as photoactive components. By introducing Ag2S QDs with a narrow gap, a staggered energy level match is created which effectively prevents the carrier recombination in MnO2 nanosheets, resulting in an enhanced photocurrent response. In the presence of the electron donor, l-ascorbic acid (AA), the photocurrent of the Ag2S QDs and MnO2 nanosheets modified photoelectrode is further enhanced. As AA has the ability to convert Cr (VI) to Cr (Ⅲ), the photocurrent may decline due to the decrease in the electron donors when Cr (VI) is added. This phenomenon can be utilized for the sensitive detection of Cr (VI) over a wider linear range (100 pM-30 μM) with a lower detection limit of 6.46 pM (S/N = 3). This work using the strategy that the targets induced the variations of the electron donor shows the advantages of good sensitivity and nice selectivity. The sensor holds many advantages such as simple fabrication process, economical material expense, and consistent photocurrent signals. It also holds significant potential for environmental monitoring and serves as a practical photoelectric sensing approach for detecting Cr (VI).
Collapse
Affiliation(s)
- Lili Zhao
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, PR China
| | - Haoyu Chen
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, PR China
| | - Ying Tang
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, PR China
| | - Peipei Li
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, PR China
| | - Xiaohua Zhu
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, PR China
| | - Jingyi Liu
- State Environmental Protection Key Laboratory of Monitoring for Heavy Metal Pollutants, PR China
| | - Meiling Liu
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, PR China.
| | - Youyu Zhang
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, PR China
| | - Shouzhuo Yao
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, PR China
| |
Collapse
|
8
|
Zheng C, Song X, Gan Q, Lin J. High-efficiency removal of organic pollutants by visible-light-driven tubular heterogeneous micromotors through a photocatalytic Fenton process. J Colloid Interface Sci 2023; 630:121-133. [DOI: 10.1016/j.jcis.2022.10.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/15/2022] [Accepted: 10/05/2022] [Indexed: 11/07/2022]
|
9
|
Gas generation due to photocatalysis as a method to reduce the resistance force in the process of motors motion at the air-liquid interface. J Colloid Interface Sci 2022; 627:774-782. [PMID: 35901558 DOI: 10.1016/j.jcis.2022.07.073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/07/2022] [Accepted: 07/12/2022] [Indexed: 11/20/2022]
Abstract
HYPOTHESIS The problem of the development of miniature motors able to move on the air-liquid interface at low Reynolds numbers is a crucial challenge due to dominating role of viscous force. To solve this problem the chemical generation of gas can be used. Generated gas pushes liquid out from the surfer surface, so the resistance force is reduced. EXPERIMENTS Surfer composed of TiO2 nanoparticles and ferromagnetic cobalt microparticles moves at the interface of an aqueous solution of hydrogen peroxide under the action of magnetic force. After irradiation with UV or visible light, the gas cavern is formed at the surfer surface due to photo-catalytic decomposition of hydrogen peroxide. As a result, the area of surfer contact with liquid is reduced. FINDINGS The resistance force acting on the surfer is reduced due to the liquid pushing out from the surfer surface. This effect is strengthened with the increase in the intensity of gas generation. The resistance force is increased when increasing the liquid viscosity or using a surfactant. The proposed method allows control of the velocity of the motors in a rather wide range by changing the gradient of the magnetic field and parameters of light.
Collapse
|
10
|
Gao T, Lin J, Xu L, Guan J. Self-Adaptive Flask-like Nanomotors Based on Fe 3O 4 Nanoparticles to a Physiological pH. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2049. [PMID: 35745388 PMCID: PMC9229371 DOI: 10.3390/nano12122049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 05/26/2022] [Accepted: 06/10/2022] [Indexed: 11/16/2022]
Abstract
In living bodies, pH values, which are precisely regulated and closely associated with diseased cells, can act as an efficient biologically intrinsic indicator for future intelligent biomedicine microsystems. In this work, we have developed flask-like carbonaceous nanomotors (FCNMs), via loading Fe3O4 nanoparticles (NPs) into a cavity, which exhibit a self-adaptive feature to a specific physiological pH by virtue of the pH-dependent dual enzyme-like activities of Fe3O4 NPs. Specifically, the peroxidase-like activity of Fe3O4 NPs in an acidic pH range, and the catalase-like activity in a near neutral and alkaline pH range, determine the products in the motion system (•OH, ions and O2), whose diffusions from the inner to the outside of the flask result in fluid movement providing the driving force for the movement of the FCNMs. Correspondingly, changes of the product concentrations and species in the physiological pH range (4.4-7.4) result, firstly, in velocity decrease and, then, with increase in pH, increase of the FCNMs occurs. Thanks to the non-linear velocity responsiveness, the FCNMs show intriguing pH taxis towards 6.8 (generally corresponding to the physiological pH in tumor microenvironments), where a maximum velocity appears. Furthermore, the superparamagnetic feature of the Fe3O4 NPs simultaneously endows the FCNMs with the abilities to be magnetic-oriented and easily separated. This work could significantly increase the possibility of nanomotors for targeted therapy of tumors and next-generation biotechnological applications.
Collapse
Affiliation(s)
| | | | - Leilei Xu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China; (T.G.); (J.L.)
| | - Jianguo Guan
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China; (T.G.); (J.L.)
| |
Collapse
|
11
|
Li X, Chen L, Cui D, Jiang W, Han L, Niu N. Preparation and application of Janus nanoparticles: Recent development and prospects. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214318] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
12
|
McGlasson A, Bradley LC. Investigating Time-Dependent Active Motion of Janus Micromotors using Dynamic Light Scattering. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2104926. [PMID: 34655162 DOI: 10.1002/smll.202104926] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/17/2021] [Indexed: 06/13/2023]
Abstract
Advances in fabrication methods have positioned Janus micromotors (JMs) as candidates for use as autonomous devices in applications across diverse fields, spanning drug delivery to environmental remediation. While the design of most micromotors is straightforward, the non-steady state active motion exhibited by these systems is complex and difficult to characterize. Traditionally, JM active motion is characterized using optical microscopy single particle tracking for systems confined in 2D. Dynamic light scattering (DLS) offers an alternative high-throughput method for characterizing the 3D active motion in bulk JM dispersions with additional capabilities to quantify time-dependent behavior for a broader range of JM sizes. Here, the active motion of spherical JMs is examined by DLS and it is demonstrated that the method enables decoupling of the translational and rotational diffusion. Systematic studies quantifying the time-dependent diffusive properties as a function of fuel concentration, JM concentration, and time after fuel addition are presented. The analyses presented in this work position DLS to facilitate future advances of JM systems by serving as a fast-screening characterization method for active motion.
Collapse
Affiliation(s)
- Alex McGlasson
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Laura C Bradley
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| |
Collapse
|
13
|
Shivalkar S, Gautam PK, Verma A, Maurya K, Sk MP, Samanta SK, Sahoo AK. Autonomous magnetic microbots for environmental remediation developed by organic waste derived carbon dots. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 297:113322. [PMID: 34325370 DOI: 10.1016/j.jenvman.2021.113322] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/14/2021] [Accepted: 07/16/2021] [Indexed: 06/13/2023]
Abstract
Biodegradable precursors for micro/nanobots development are key requirements for several sustainable applications. In this regard, we propose an innovative solution for water purification at minimum cost and efforts where organic waste is used for the treatment of organic pollutants. Herein, catalytic magnetic microbots were developed by functionalizing iron oxide nanoparticles with carbon dots (C-Dots), which were synthesized by using household waste such as potato peels as precursors. The speed of these autonomously propelling bots indeed is found very promising for large distance swimming even in viscous medium by using hydrogen peroxide as fuel. These microbots catalytically propel and degrade toxic polar as well as sparingly water-soluble industrial dyes without any external agitation. The degradation of dyes was confirmed by mass-spectra analysis. Furthermore, these microbots can efficiently degrade a mixture of dyes and reused without compromising its performance significantly. Additionally, rate constant (K) and activation energy (Ea) were also determined to establish the catalytic nature of the bots. The present microbots acted as nanozyme owing to its synergistic catalytic activity of Fe3O4 and C-Dots for degradation of mixture of toxic dyes, essential for large scale water treatment.
Collapse
Affiliation(s)
- Saurabh Shivalkar
- Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Prayagraj, UP, India
| | - Pavan Kumar Gautam
- Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Prayagraj, UP, India
| | - Arushi Verma
- Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Prayagraj, UP, India
| | - Krishna Maurya
- Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Prayagraj, UP, India
| | - Md Palashuddin Sk
- Department of Chemistry, Aligarh Muslim University, Aligarh, UP, India.
| | - Sintu Kumar Samanta
- Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Prayagraj, UP, India.
| | - Amaresh Kumar Sahoo
- Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Prayagraj, UP, India.
| |
Collapse
|