1
|
Zhu ZS, Wang Y, Duan X, Wang P, Zhong S, Ren S, Xu X, Gao B, Vongsvivut JP, Wang S. Atomic-Level Engineered Cobalt Catalysts for Fenton-Like Reactions: Synergy of Single Atom Metal Sites and Nonmetal-Bonded Functionalities. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401454. [PMID: 38685794 DOI: 10.1002/adma.202401454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/12/2024] [Indexed: 05/02/2024]
Abstract
Single atom catalysts (SACs) are atomic-level-engineered materials with high intrinsic activity. Catalytic centers of SACs are typically the transition metal (TM)-nonmetal coordination sites, while the functions of coexisting non-TM-bonded functionalities are usually overlooked in catalysis. Herein, the scalable preparation of carbon-supported cobalt-anchored SACs (CoCN) with controlled Co─N sites and free functional N species is reported. The role of metal- and nonmetal-bonded functionalities in the SACs for peroxymonosulfate (PMS)-driven Fenton-like reactions is first systematically studied, revealing their contribution to performance improvement and pathway steering. Experiments and computations demonstrate that the Co─N3C coordination plays a vital role in the formation of a surface-confined PMS* complex to trigger the electron transfer pathway and promote kinetics because of the optimized electronic state of Co centers, while the nonmetal-coordinated graphitic N sites act as preferable pollutant adsorption sites and additional PMS activation sites to accelerate electron transfer. Synergistically, CoCN exhibits ultrahigh activity in PMS activation for p-hydroxybenzoic acid oxidation, achieving complete degradation within 10 min with an ultrahigh turnover frequency of 0.38 min-1, surpassing most reported materials. These findings offer new insights into the versatile functions of N species in SACs and inspire rational design of high-performance catalysts in complicated heterogeneous systems.
Collapse
Affiliation(s)
- Zhong-Shuai Zhu
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Yantao Wang
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA, 5005, Australia
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Xiaoguang Duan
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Pengtang Wang
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Shuang Zhong
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Shiying Ren
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Xing Xu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, P. R. China
| | - Baoyu Gao
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, P. R. China
| | - Jitraporn Pimm Vongsvivut
- Infrared Microspectroscopy (IRM) Beamline, ANSTO Australian Synchrotron, Clayton, VIC, 3168, Australia
| | - Shaobin Wang
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA, 5005, Australia
| |
Collapse
|
2
|
Lv W, Cao H, Guan Y, Wu M, Liu H, Guo X, Yao T, Chen P, Sheng L, Wu J. Mediating peroxymonosulfate activation path in Fenton-like reaction via doping different metal atoms into g-C 3N 5. J Colloid Interface Sci 2024; 674:416-427. [PMID: 38943909 DOI: 10.1016/j.jcis.2024.06.160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/20/2024] [Accepted: 06/22/2024] [Indexed: 07/01/2024]
Abstract
Peroxymonosulfate (PMS) could be activated by either radical path or non-radical path, how to rationally mediate these two routines was an important unresolved issue. This work has introduced a simple way to address this problem via metal atom doping. It was found that Fe-doped nitrogen-rich graphitic carbon nitride (Fe-C3N5) exhibited high activity towards PMS activation for tetracycline degradation, and the degradation rate was 3.14 times higher than that of Co-doped nitrogen-rich graphitic carbon nitride (Co-C3N5). Radical trapping experiment revealed the contributions of reactive species over two catalysts were different. Electron paramagnetic resonance analysis further uncovered the non-radical activation path played a dominated role on Fe-C3N5 surface, while the radical activation path was the main routine on Co-C3N5 surface. Density functional theory calculations, X-ray photoelectron spectroscopy analysis, and electrochemical experiments provided convincing evidence to support these views. This study supplied a novel method to mediate PMS activation path via changing the doped metal atom in g-C3N5 skeleton, and it allowed us to better optimize the PMS activation efficiency.
Collapse
Affiliation(s)
- Wenwen Lv
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin, China
| | - Huijun Cao
- State Key Lab Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| | - Yina Guan
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin, China
| | - Maoquan Wu
- State Key Lab Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| | - Hongyan Liu
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin, China
| | - Xu Guo
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin, China
| | - Tongjie Yao
- State Key Lab Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| | - Peng Chen
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin, China
| | - Li Sheng
- State Key Lab Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China.
| | - Jie Wu
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin, China.
| |
Collapse
|
3
|
Li YX, Lin W, Han YH, Wang YQ, Wang T, Zhang H, Zhang Y, Wang SS. Biodegradation of p-hydroxybenzoic acid in Herbaspirillum aquaticum KLS-1 isolated from tailing soil: Characterization and molecular mechanism. JOURNAL OF HAZARDOUS MATERIALS 2023; 456:131669. [PMID: 37236108 DOI: 10.1016/j.jhazmat.2023.131669] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/09/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023]
Abstract
The wide distribution of p-hydroxybenzoic acid (PHBA) in the environments has attracted great concerns due to its potential risks to organisms. Bioremediation is considered a green way to remove PHBA from environment. Here, a new PHBA-degrading bacterium Herbaspirillum aquaticum KLS-1was isolated and its PHBA degradation mechanisms were fully evaluated. Results showed that strain KLS-1 could utilize PHBA as the sole carbon source and completely degrade 500 mg/L PHBA within 18 h. The optimal conditions for bacterial growth and PHBA degradation were pH values of 6.0-8.0, temperatures of 30 °C-35 °C, shaking speed of 180 rpm, Mg2+ concentration of 2.0 mM and Fe2+ concentration of 1.0 mM. Draft genome sequencing and functional gene annotations identified three operons (i.e., pobRA, pcaRHGBD and pcaRIJ) and several free genes possibly participating in PHBA degradation. The key genes pobA, ubiA, fadA, ligK and ubiG involved in the regulation of protocatechuate and ubiquinone (UQ) metabolisms were successfully amplified in strain KLS-1 at mRNA level. Our data suggested that PHBA could be degraded by strain KLS-1 via the protocatechuate ortho-/meta-cleavage pathway and UQ biosynthesis pathway. This study has provided a new PHBA-degrading bacterium for potential bioremediation of PHBA pollution.
Collapse
Affiliation(s)
- Yi-Xi Li
- College of Environmental and Resource Science, Fujian Normal University, Fuzhou 350117, Fujian, China; Fujian Key Laboratory of Pollution Control and Resource Reuse, Fuzhou 350117, Fujian, China
| | - Wei Lin
- College of Life Science, Fujian Normal University, Fuzhou 350117, Fujian, China
| | - Yong-He Han
- College of Environmental and Resource Science, Fujian Normal University, Fuzhou 350117, Fujian, China; Fujian Key Laboratory of Pollution Control and Resource Reuse, Fuzhou 350117, Fujian, China.
| | - Yao-Qiang Wang
- College of Environmental and Resource Science, Fujian Normal University, Fuzhou 350117, Fujian, China; Fujian Key Laboratory of Pollution Control and Resource Reuse, Fuzhou 350117, Fujian, China
| | - Tao Wang
- College of Environmental and Resource Science, Fujian Normal University, Fuzhou 350117, Fujian, China; Fujian Key Laboratory of Pollution Control and Resource Reuse, Fuzhou 350117, Fujian, China
| | - Hong Zhang
- College of Environmental and Resource Science, Fujian Normal University, Fuzhou 350117, Fujian, China; Fujian Key Laboratory of Pollution Control and Resource Reuse, Fuzhou 350117, Fujian, China
| | - Yong Zhang
- College of Environmental and Resource Science, Fujian Normal University, Fuzhou 350117, Fujian, China; Fujian Key Laboratory of Pollution Control and Resource Reuse, Fuzhou 350117, Fujian, China
| | - Shan-Shan Wang
- College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China.
| |
Collapse
|
4
|
Song W, Xiao X, Wang G, Dong X, Zhang X. Highly efficient peroxymonosulfate activation on Fe-N-C catalyst via the collaboration of low-coordinated Fe-N structure and Fe nanoparticles for enhanced organic pollutant degradation. JOURNAL OF HAZARDOUS MATERIALS 2023; 455:131596. [PMID: 37167867 DOI: 10.1016/j.jhazmat.2023.131596] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/01/2023] [Accepted: 05/06/2023] [Indexed: 05/13/2023]
Abstract
Supporting Fe catalysts on N doped carbon (Fe-N-C) renders a promising way towards peroxymonosulfate (PMS) activation for water decontamination, but constructing high-efficiency Fe-N-C remains challenging due to the insufficient understanding of the structure-performance relationship. Herein, the N doped carbon nanotube supported Fe catalysts (Fe-NCNT) were prepared towards PMS activation for organic pollutants removal, in which the Fe-N coordination number and Fe species were tuned through changing the pyrolysis temperature to study their roles in PMS activation. Results showed increasing the pyrolysis temperature converted the Fe-N4 structure in Fe-NCNT to low-coordinated Fe-N3 structure and produced Fe nanoparticles (FeNP, encapsulated in carbon). The Fe-NCNT with Fe-N3 and FeNP exhibited a remarkably high specific activity (0.119 L min-1 m-2), which was 1.8 times higher than that of Fe-NCNT with only Fe-N4 and obviously outperformed those of the state-of-the-art PMS activators. The low-coordinated structure and FeNP promoted the PMS reduction on Fe2+ of Fe-Nx for •OH and SO4•- production, which served as major oxidants for pollutants degradation. The experimental results and theoretical calculation corroborated the low-coordinated structure and FeNP jointly enhanced the PMS adsorption and electron density on Fe center, which accelerated electron transfer from Fe center to PMS for radical production.
Collapse
Affiliation(s)
- Wen Song
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Xinyu Xiao
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Guanlong Wang
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China.
| | - Xiaoli Dong
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Xiufang Zhang
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
5
|
Hirani RAK, Wu H, Asif AH, Rafique N, Shi L, Zhang S, Wu Z, Zhang LC, Wang S, Yin Y, Saunders M, Sun H. Cobalt oxide functionalized ceramic membrane for 4-hydroxybenzoic acid degradation via peroxymonosulfate activation. JOURNAL OF HAZARDOUS MATERIALS 2023; 448:130874. [PMID: 36716559 DOI: 10.1016/j.jhazmat.2023.130874] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/18/2022] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
Membrane separation and sulfate radicals-based advanced oxidation processes (SR-AOPs) can be combined as an efficient technique for the elimination of organic pollutants. The immobilization of metal oxide catalysts on ceramic membranes can enrich the membrane separation technology with catalytic oxidation avoiding recovering suspended catalysts. Herein, nanostructured Co3O4 ceramic catalytic membranes with different Co loadings were fabricated via a simple ball-milling and calcination process. Uniform distribution of Co3O4 nanoparticles in the membrane provided sufficient active sites for catalytic oxidation of 4-hydroxybenzoic acid (HBA). Mechanistic studies were conducted to determine the reactive radicals and showed that both SO4•- and •OH were present in the catalytic process while SO4•- plays the dominant role. The anti-fouling performance of the composite Co@Al2O3 membranes was also evaluated, showing that a great flux recovery was achieved with the addition of PMS for the fouling caused by humic acid (HA).
Collapse
Affiliation(s)
| | - Hong Wu
- School of Science, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA 6027, Australia
| | - Abdul Hannan Asif
- School of Science, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA 6027, Australia
| | - Nasir Rafique
- School of Science, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA 6027, Australia
| | - Lei Shi
- College of Materials Science and Engineering, Nanjing Forestry University, 210037 Nanjing, China
| | - Shu Zhang
- College of Materials Science and Engineering, Nanjing Forestry University, 210037 Nanjing, China
| | - Zhentao Wu
- Aston Institute of Materials Research, School of Engineering and Applied Science, Aston University, B4 7ET Birmingham, UK
| | - Lai-Chang Zhang
- School of Engineering, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA 6027, Australia
| | - Shaobin Wang
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Yu Yin
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China
| | - Martin Saunders
- Centre for Microscopy, Characterisation and Analysis (CMCA), University of Western Australia, Perth, WA 6009, Australia
| | - Hongqi Sun
- School of Science, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA 6027, Australia.
| |
Collapse
|
6
|
Pang Y, Chen D, Kong L, Yuvaraja G, Mehmood S. Reply to the comments on "Facilely synthesized cobalt doped hydroxyapatite as hydroxyl promoted peroxymonosulfate activator for degradation of Rhodamine B" by Zuo et al. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130572. [PMID: 37055978 DOI: 10.1016/j.jhazmat.2022.130572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 12/06/2022] [Indexed: 06/19/2023]
Abstract
In a Co-HAP/PMS system, catalytic degradation process of RhB was accompanied by the gradual leaching of cobalt ion. The results of additional experiments showed that leached cobalt ion indeed contributed to active PMS for RhB degradation, which was not addressed in the previous study. The finding of the contribution from leached cobalt ion to PMS activation was reported due to the valuable comments of Zuo et al., what will be concerned in the future work. Importantly, Co-HAP still showed a significant contribution to PMS activation for RhB degradation at the initial stage. Fortunately, the release of Co2+ from Co-HAP was slow, the secondary pollution could not be addressed due to the slightly release of Co2+ ion that the Co2+ concentration is lower than the standard of the discharge wastewater. Furthermore, the mechanism of non-radical reaction in the Co-HAP/PMS system was reported to confirm the heterogeneous catalysis of a Co-HAP/PMS system.
Collapse
Affiliation(s)
- Yixiong Pang
- Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Diyun Chen
- Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China.
| | - Lingjun Kong
- Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China; Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China.
| | - Gutha Yuvaraja
- Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Sajid Mehmood
- Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
7
|
Wang J, Wang M, Kang J, Tang Y, Xu Z, Dong Q, Ma T, Zhu J. Sulfamethoxazole degradation by Ni2+ doped Fe2O3 on a nickel foam in peroxymonosulfate assisting photoelectrochemical oxidation system: Performance, mechanism and degradation pathway. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
|
8
|
Synergistic activation of peroxymonosulfate by nickel-cobalt hexacyanoferrate derived hybrid metal oxides for efficient sulfamethoxazole degradation. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2022.130343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
9
|
Zhang B, Yuan X, Lv H, Che J, Wang S, Shang P. Biophysical mechanisms underlying the effects of static magnetic fields on biological systems. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2023; 177:14-23. [PMID: 36240898 DOI: 10.1016/j.pbiomolbio.2022.09.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 08/09/2022] [Accepted: 09/08/2022] [Indexed: 02/04/2023]
Abstract
With the widespread use of static magnetic fields (SMFs) in medicine, it is imperative to explore the biological effects of SMFs and the mechanisms underlying their effects on biological systems. The presence of magnetic materials within cells and organisms could affect various biological metabolism and processes, including stress responses, proliferation, and structural alignment. SMFs were generally found to be safe at the organ and organism levels. However. human subjects exposed to strong SMFs have reported side effects. In this review, we combined the magnetic properties of biological samples to illustrate the mechanism of action of SMFs on biological systems from a biophysical point of view. We suggest that the mechanisms of action of SMFs on biological systems mainly include the induction of electric fields and currents, generation of magnetic effects, and influence of electron spins. An electrolyte flowing in a static magnetic field generates an induced current and an electric field. Magnetomechanical effects include orientation effects upon subjecting biological samples to SMFs and movement of biological samples in strong field gradients. SMFs are thought to affect biochemical reaction rates and yields by influencing electron spin. This paper helps people how can harness the favorable biological effects of SMFs.
Collapse
Affiliation(s)
- Bin Zhang
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, 518057, China; School of Life Science, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China; Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environmental Biophysics, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Xichen Yuan
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, 518057, China; School of Life Science, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China; Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environmental Biophysics, Northwestern Polytechnical University, Xi'an, 710072, China; Yangtze River Delta Research Institute of Northwestern Polytechnical University, Taicang, 215400, China
| | - Huanhuan Lv
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, 518057, China; School of Life Science, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China; Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environmental Biophysics, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Jingmin Che
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, 518057, China; School of Life Science, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China; Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environmental Biophysics, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Shenghang Wang
- School of Life Science, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China; Department of Spine Surgery, Affiliated Longhua People's Hospital, Southern Medical University, Shenzhen, 518057, China
| | - Peng Shang
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, 518057, China; Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environmental Biophysics, Northwestern Polytechnical University, Xi'an, 710072, China.
| |
Collapse
|
10
|
Li C, Lin Y, Li X, Li Z, Luo P, Jin Y, Li Z. Effect of Co-doping concentration on α-Fe2O3/Graphene as anode materials for lithium ion batteries. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
11
|
Comparison of the activation efficiency of peroxymonosulfate on carbon nanotubes modified by carbon nitride vs nitrogen-doping for nonradical degradation of p-hydroxybenzoic acid. CATAL COMMUN 2022. [DOI: 10.1016/j.catcom.2022.106506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
12
|
Versatile heterojunction of gold nanoparticles modified phosphorus doped carbon nitride for enhanced photo-electrocatalytic sensing and degradation of 4-chlorophenol. J Colloid Interface Sci 2022; 632:117-128. [DOI: 10.1016/j.jcis.2022.11.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 11/10/2022] [Accepted: 11/10/2022] [Indexed: 11/17/2022]
|
13
|
Michalke J, Faust K, Bögl T, Bartling S, Rockstroh N, Topf C. Mild and Efficient Heterogeneous Hydrogenation of Nitroarenes Facilitated by a Pyrolytically Activated Dinuclear Ni(II)-Ce(III) Diimine Complex. Int J Mol Sci 2022; 23:ijms23158742. [PMID: 35955876 PMCID: PMC9369285 DOI: 10.3390/ijms23158742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 07/29/2022] [Accepted: 08/03/2022] [Indexed: 12/04/2022] Open
Abstract
We communicate the assembly of a solid, Ce-promoted Ni-based composite that was applied as catalyst for the hydrogenation of nitroarenes to afford the corresponding organic amines. The catalytically active material described herein was obtained through pyrolysis of a SiO2-pellet-supported bimetallic Ni-Ce complex that was readily synthesized prior to use from a MeO-functionalized salen congener, Ni(OAc)2·4 H2O, and Ce(NO3)3·6 H2O. Rewardingly, the requisite ligand for the pertinent solution phase precursor was accessible upon straightforward and time-saving imine condensation of ortho-vanillin with 1,3-diamino-2,2′-dimethylpropane. The introduced catalytic protocol is operationally simple in that the whole reaction set-up is quickly put together on the bench without the need of cumbersome handling in a glovebox or related containment systems. Moreover, the advantageous geometry and compact-sized nature of the used pellets renders the catalyst separation and recycling exceptionally easy.
Collapse
Affiliation(s)
- Jessica Michalke
- Institute of Catalysis (INCA), Johannes Kepler University (JKU), Altenbergerstraße 69, 4040 Linz, Austria
- Institute of Inorganic Chemistry, Johannes Kepler University (JKU), Altenbergerstraße 69, 4040 Linz, Austria
| | - Kirill Faust
- Institute of Catalysis (INCA), Johannes Kepler University (JKU), Altenbergerstraße 69, 4040 Linz, Austria
| | - Thomas Bögl
- Department of Analytical Chemistry, Johannes Kepler University (JKU), Altenbergerstraße 69, 4040 Linz, Austria
| | - Stephan Bartling
- Leibniz Institute for Catalysis, University of Rostock (LIKAT Rostock), Albert-Einstein-Straße 29a, 18059 Rostock, Germany
| | - Nils Rockstroh
- Leibniz Institute for Catalysis, University of Rostock (LIKAT Rostock), Albert-Einstein-Straße 29a, 18059 Rostock, Germany
| | - Christoph Topf
- Institute of Catalysis (INCA), Johannes Kepler University (JKU), Altenbergerstraße 69, 4040 Linz, Austria
- Correspondence:
| |
Collapse
|
14
|
Nguyen TB, Thai VA, Chen CW, Huang C, Doong RA, Chen L, Dong CD. N-doping modified zeolitic imidazole Framework-67 (ZIF-67) for enhanced peroxymonosulfate activation to remove ciprofloxacin from aqueous solution. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120719] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
15
|
Li H, Yuan N, Qian J, Pan B. Mn 2O 3 as an Electron Shuttle between Peroxymonosulfate and Organic Pollutants: The Dominant Role of Surface Reactive Mn(IV) Species. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:4498-4506. [PMID: 35297618 DOI: 10.1021/acs.est.1c08790] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The environmentally benign Mn oxides play a crucial role in the transformation of organic contaminants, either through catalytically decomposing oxidants, e.g., peroxymonosulfate (PMS), or through directly oxidizing the target pollutants. Because of their dual roles and the complex surface chemical reactions, the mechanism involved in Mn oxide-catalyzed PMS activation processes remains obscure. Here, we clearly elucidate the mechanism involved in the Mn2O3 catalyzed PMS activation process by means of separating the PMS activation and the pollutant oxidation process. Mn2O3 acts as a shuttle that mediates the electron transfer from organic substrates to PMS, accompanied by the redox cycle of surface Mn(IV)/Mn(III). Multiple experimental results indicate that PMS is bound to the surface of Mn2O3 to form an inner-sphere complex, which then decomposes to form long-lived surface reactive Mn(IV) species, without the generation of sulfate radicals (SO4•-) and hydroxyl radicals (HO•). The surface reactive Mn(IV) species are proposed to be responsible for the degradation of organic contaminants (e.g., phenol) and the formation of singlet oxygen (1O2), followed by the regeneration of the surface Mn(III) sites on Mn2O3. This study advances the fundamental understanding of the underlying mechanism involved in transition metal oxide-catalyzed PMS activation processes.
Collapse
Affiliation(s)
- Hongchao Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing 210094, China
| | - Na Yuan
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing 210094, China
| | - Jieshu Qian
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing 210094, China
- Research Center for Environmental Nanotechnology (ReCENT), State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Bingcai Pan
- Research Center for Environmental Nanotechnology (ReCENT), State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| |
Collapse
|
16
|
Fan X, Song H, Xu X, Lu X, Wang Y, Duan X. Subchronic Oral Toxicity of Sodium p-Hydroxybenzoate in Sprague-Dawley Rats. Front Pharmacol 2022; 13:843368. [PMID: 35355716 PMCID: PMC8959674 DOI: 10.3389/fphar.2022.843368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 02/03/2022] [Indexed: 11/23/2022] Open
Abstract
p-Hydroxybenzoic acid (p-HBA), which exists extensively in plants, is well known for its anti-inflammatory effects, but various adverse side effects have also been reported. Previous research has found that acid translated to its sodium salt improves the safety profile of compounds. Therefore, we hypothesized that p-HBA translated to sodium p-hydroxybenzoate would improve its safety profile. In the present study, we evaluated the toxicity of sodium p-hydroxybenzoate after 90 days of repeated oral toxicity experiments according to OECD guidelines in male and female Sprague–Dawley rats. Sodium p-hydroxybenzoate was administered orally to SD rats at doses of 0, 125, 250, and 500 mg/kg body weight (BW)/day for 90 days. All animals survived to the end of the study, and no sodium p-hydroxybenzoate treatment-associated mortality or clinical changes were observed during the study period. Sodium p-hydroxybenzoate did not promote any clinical signs of toxicologically relevant effects, including changes in body weight, food intake and urinalysis parameters, in male or female SD rats. Dose-related alterations in hematological parameters, organ weights and histopathological findings in hepatic tissue were examined in animals of both sexes in the 500 mg/kg BW/day group. Based on the study, the no-observed-adverse-effect level (NOAEL) for sodium p-hydroxybenzoate was determined to be 250 mg/kg BW/day in both male and female rats.
Collapse
Affiliation(s)
- Xiaoli Fan
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
| | - Hengzhi Song
- College of Pharmacy, Guilin Medical University, Guilin, China
| | - Xiaotian Xu
- College of Pharmacy, Guilin Medical University, Guilin, China
| | - Xi Lu
- College of Pharmacy, Guilin Medical University, Guilin, China
| | - Yuhui Wang
- College of Pharmacy, Guilin Medical University, Guilin, China
| | - Xiaoqun Duan
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China.,College of Pharmacy, Guilin Medical University, Guilin, China
| |
Collapse
|
17
|
Li M, Han N, Zhang X, Wang S, Jiang M, Bokhari A, Zhang W, Race M, Shen Z, Chen R, Mubashir M, Khoo KS, Teo SS, Show PL. Perovskite oxide for emerging photo(electro)catalysis in energy and environment. ENVIRONMENTAL RESEARCH 2022; 205:112544. [PMID: 34902376 DOI: 10.1016/j.envres.2021.112544] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/24/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
Using solar energy to catalyse photo-driven processes to address the energy crisis and environmental pollution plays a role in the path to a sustainable society. Many oxide-based materials, especially perovskite oxides, have been widely investigated as catalysts for photocatalysis in energy and environment because of the low-cost and earth-abundant and good performance. At this stage, there is a need to present a scientific-based evaluation of the technologies developed so far and identify the most sustainable technologies and the existing limitations and opportunities for their commercialisation. This work comprehensively investigated the outcomes using various scientometric indices on perovskite oxide-based photo(electro)catalysts for water splitting, nitrogen fixation, carbon dioxide conversion, organic pollutant degradation, current trends and advances in the field. According to the results achieved, efforts in both energy and environment based on perovskite oxides have been initiated in the 1990s and accelerated since the 2010s. China and the United States were identified as the most contributing countries. Based on the results achieved in this study, the main milestones and current trends in the development of this field have been identified. The aim of this research is to provide useful guidelines for the further investigation of perovskite oxide-based catalysts for photoelectrocatalysis and photocatalysis both in energy and environment on the applications such as water splitting, nitrogen fixation, carbon dioxide conversion, and wastewater treatment.
Collapse
Affiliation(s)
- Ming Li
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun, 130118, China; College of New Energy and Environmental Engineering, Nanchang Institute of Technology, Nanchang Economic and Technological Development Zone, Nanchang, 330044, China
| | - Ning Han
- Department of Materials Engineering, KU Leuven, Kasteelpark Arenberg 44, Leuven, 3001, Belgium.
| | - Xi Zhang
- Department of Chemical Engineering, KU Leuven, J. De Nayerlaan 5, B-2860, Sint-Katelijne-Waver, Belgium
| | - Shuo Wang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, Fujian, China
| | - Man Jiang
- School of Resources and Environmental Engineering, Shandong University of Technology, Zibo, 255000, PR China
| | - Awais Bokhari
- Sustainable Process Integration Laboratory, SPIL, NETME Centre, Faculty of Mechanical Engineering, Brno University of Technology, VUT Brno, Technická 2896/2, 616 00, Brno, Czech Republic; Department of Chemical Engineering, COMSATS University Islamabad (CUI), Lahore Campus, Punjab, 54000, Pakistan
| | - Wei Zhang
- Department of Materials Engineering, KU Leuven, Kasteelpark Arenberg 44, Leuven, 3001, Belgium
| | - Marco Race
- Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Via di Biasio 43, 03043, Cassino, Italy
| | - Zhangfeng Shen
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, 314001, China
| | - Ruofei Chen
- School of Energy Science and Engineering, Central South University, Changsha, 410083, Hunan, China; School of Electro-mechanical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, Guangdong, China
| | - Muhammad Mubashir
- Department of Petroleum Engineering, School of Engineering, Asia Pacific University of Technology and Innovation, 57000 Kuala Lumpur, Malaysia
| | - Kuan Shiong Khoo
- Faculty of Applied Sciences, UCSI University, UCSI Heights, 56000, Cheras, Kuala Lumpur, Malaysia
| | - Swee Sen Teo
- Department of Biotechnology, Faculty of Applied Sciences, UCSI University, UCSI Heights, 56000, Cheras, Kuala Lumpur, Malaysia
| | - Pau Loke Show
- Department of Chemical and Environmental Engineering, Faculty Science and Engineering, University of Nottingham, Malaysia, 43500, Semenyih, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
18
|
Generation of Cobalt-Containing Nanoparticles on Carbon via Pyrolysis of a Cobalt Corrole and Its Application in the Hydrogenation of Nitroarenes. Catalysts 2021. [DOI: 10.3390/catal12010011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
We report on the manufacture of a state-of-the-art heterogeneous non-noble metal catalyst, which is based on a molecularly well-defined phosphine-tagged cobalt corrole complex. This precursor compound is readily synthesized from convenient starting materials while the active material is obtained through wet-impregnation of the pertinent metalliferous macrocycle onto carbon black followed by controlled pyrolysis of the loaded carrier material under an inert gas atmosphere. Thus, the obtained composite was then applied in the heterogeneous hydrogenation of various nitroarenes to yield a vast array of valuable aniline derivatives that were conveniently isolated as their hydrochloride salts. The introduced catalytic protocol is robust and user-friendly with the entire assembly of the reaction set-up enabling the conduction of the experiments on the laboratory bench without any protection from air.
Collapse
|