1
|
Wang Y, Li H, Zhai B, Li X, Niu P, Odent J, Wang S, Li L. Highly Crystalline Poly(heptazine imide)-Based Carbonaceous Anodes for Ultralong Lifespan and Low-Temperature Sodium-Ion Batteries. ACS NANO 2024; 18:3456-3467. [PMID: 38227835 DOI: 10.1021/acsnano.3c10779] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Carbon nitrides with layered structures and scalable syntheses have emerged as potential anode choices for the commercialization of sodium-ion batteries. However, the low crystallinity of materials synthesized through traditional thermal condensation leads to insufficient conductivity and poor cycling stability, which significantly hamper their practical applications. Herein, a facile salt-covering method was proposed for the synthesis of highly ordered crystalline C3N4-based all-carbon nanocomposites. The sealing environment created by this strategy leads to the formation of poly(heptazine imide) (PHI), the crystalline phase of C3N4, with extended π-conjugation and a fully condensed nanosheet structure. Meanwhile, theoretical calculations reveal the high crystallinity of C3N4 significantly reduces the energy barrier for electron transition and enables the generation of efficient charge transfer channels at the heterogeneous interface between carbon and C3N4. Accordingly, such nanocomposites present ultrastable cycling performances over 5000 cycles, with a high reversible capacity of 245.1 mAh g-1 at 2 A g-1 delivered. More importantly, they also exhibit an outstanding low-temperature capacity of 196.6 mAh g-1 at -20 °C. This work offers opportunities for the energy storage use of C3N4 and provides some clues for developing long-life and high-capacity anodes operated under extreme conditions.
Collapse
Affiliation(s)
- Ying Wang
- School of Metallurgy, Northeastern University, Shenyang 110819, P. R. China
- State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819, Liaoning, P. R. China
- Foshan Graduate School of Innovation, Northeastern University, Foshan 528311, Guangdong, P. R. China
| | - Hongguan Li
- School of Metallurgy, Northeastern University, Shenyang 110819, P. R. China
- State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819, Liaoning, P. R. China
- Foshan Graduate School of Innovation, Northeastern University, Foshan 528311, Guangdong, P. R. China
| | - Boyin Zhai
- Department of Chemistry, College of Science, Northeastern University, Shenyang 110819, Liaoning, P. R. China
| | - Xinglong Li
- Department of Chemistry, College of Science, Northeastern University, Shenyang 110819, Liaoning, P. R. China
| | - Ping Niu
- School of Metallurgy, Northeastern University, Shenyang 110819, P. R. China
- State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819, Liaoning, P. R. China
- Foshan Graduate School of Innovation, Northeastern University, Foshan 528311, Guangdong, P. R. China
| | - Jérémy Odent
- Laboratory of Polymeric and Composite Materials (LPCM), Center of Innovation and Research in Materials and Polymers (CIRMAP), University of Mons (UMONS), Place du Parc 20, 7000 Mons, Belgium
| | - Shulan Wang
- Department of Chemistry, College of Science, Northeastern University, Shenyang 110819, Liaoning, P. R. China
| | - Li Li
- School of Metallurgy, Northeastern University, Shenyang 110819, P. R. China
- State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819, Liaoning, P. R. China
- Foshan Graduate School of Innovation, Northeastern University, Foshan 528311, Guangdong, P. R. China
| |
Collapse
|
2
|
Tomer VK, Malik R, Tjong J, Sain M. State and future implementation perspectives of porous carbon-based hybridized matrices for lithium sulfur battery. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
3
|
Zhou J, Wang Y, Feng B, Sun Y, Wang J. Mesoporous polyvalent Ni-Mn-Co-O composite nanowire arrays towards integrated anodes boosting high-properties lithium storage. Dalton Trans 2023; 52:3526-3536. [PMID: 36847189 DOI: 10.1039/d3dt00211j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Ternary transition metal oxides (TMOs) are potentially promising anode materials for lithium storage with high power and energy density. Designing appropriate electrode structures is an effective strategy to sufficiently exhibit the advantages of TMOs for lithium storage. Here, we present the synthetic process and electrochemical properties of carbon-coated mesoporous Ni-Mn-Co-O (NMCO) nanowire arrays (NWAs) grown on Ni foam as an integrated electrode for lithium-ion batteries (LIBs). The electrochemical measurements show that the carbon-coated NMCO integrated electrode exhibits high capacity and cycling properties. In addition, we have also developed an all one-dimensional (1D) structural full cell using an LiMn2O4 nanorod cathode and an NMCO/Ni NWAs@C-550 anode, which exhibits relatively outstanding cycling properties.
Collapse
Affiliation(s)
- Junxiang Zhou
- Shaanxi Key Laboratory of Artificially-Structured Functional Materials and Devices, Air Force Engineering University Department of Basic Sciences, Xi'an 710051, China.
| | - Yudeng Wang
- Shaanxi Key Laboratory of Artificially-Structured Functional Materials and Devices, Air Force Engineering University Department of Basic Sciences, Xi'an 710051, China.
| | - Bo Feng
- Shaanxi Key Laboratory of Artificially-Structured Functional Materials and Devices, Air Force Engineering University Department of Basic Sciences, Xi'an 710051, China.
| | - Yong Sun
- Shaanxi Key Laboratory of Artificially-Structured Functional Materials and Devices, Air Force Engineering University Department of Basic Sciences, Xi'an 710051, China.
| | - Jiafu Wang
- Shaanxi Key Laboratory of Artificially-Structured Functional Materials and Devices, Air Force Engineering University Department of Basic Sciences, Xi'an 710051, China.
| |
Collapse
|
4
|
Khan J, Sun Y, Han L. A Comprehensive Review on Graphitic Carbon Nitride for Carbon Dioxide Photoreduction. SMALL METHODS 2022; 6:e2201013. [PMID: 36336653 DOI: 10.1002/smtd.202201013] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/10/2022] [Indexed: 06/16/2023]
Abstract
Inspired by natural photosynthesis, harnessing the wide range of natural solar energy and utilizing appropriate semiconductor-based catalysts to convert carbon dioxide into beneficial energy species, for example, CO, CH4 , HCOOH, and CH3 COH have been shown to be a sustainable and more environmentally friendly approach. Graphitic carbon nitride (g-C3 N4 ) has been regarded as a highly effective photocatalyst for the CO2 reduction reaction, owing to its cost-effectiveness, high thermal and chemical stability, visible light absorption capability, and low toxicity. However, weaker electrical conductivity, fast recombination rate, smaller visible light absorption window, and reduced surface area make this catalytic material unsuitable for commercial photocatalytic applications. Therefore, certain procedures, including elemental doping, structural modulation, functional group adjustment of g-C3 N4 , the addition of metal complex motif, and others, may be used to improve its photocatalytic activity towards effective CO2 reduction. This review has investigated the scientific community's perspectives on synthetic pathways and material optimization approaches used to increase the selectivity and efficiency of the g-C3 N4 -based hybrid structures, as well as their benefits and drawbacks on photocatalytic CO2 reduction. Finally, the review concludes a comparative discussion and presents a promising picture of the future scope of the improvements.
Collapse
Affiliation(s)
- Javid Khan
- College of Materials Science and Engineering, Hunan Joint International Laboratory of Adv. Mater. and Technology for Clean Energy, Hunan University, Changsha, 410082, China
| | - Yanyan Sun
- School of Materials Science and Engineering, Central South University, Changsha, Hunan, 410083, China
| | - Lei Han
- College of Materials Science and Engineering, Hunan Joint International Laboratory of Adv. Mater. and Technology for Clean Energy, Hunan University, Changsha, 410082, China
| |
Collapse
|
5
|
He ZX, Yu HT, He F, Xie Y, Yuan L, Yi TF. Improving the interfacial stability, conductivity, and electrochemical performance of Li2MoO3@g-C3N4 composite as a promising cathode for lithium-ion battery. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.11.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|