1
|
Gamal O, Moselhy WA, Taha M. Highly effective microporous and mesoporous metal-organic frameworks for effective ivermectin adsorption in water treatment and delivery systems. RSC Adv 2025; 15:13924-13939. [PMID: 40309120 PMCID: PMC12041861 DOI: 10.1039/d5ra01662b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2025] [Accepted: 04/22/2025] [Indexed: 05/02/2025] Open
Abstract
Metal-organic frameworks (MOFs) are an emerging class of materials with exceptional porosity and tunable structures, making them highly effective for adsorbing harmful impurities from water. These properties render MOFs particularly suitable for environmental remediation. However, evaluating all available MOFs is impractical due to their vast number. To address this, we employed computational screening using Grand Canonical Monte Carlo (GCMC) simulations on a database of over 14 000 MOFs to identify the most promising candidates for antiparasitic drug (ivermectin, IVM) adsorption, drug delivery, and membrane filtration. The GCMC simulations identified 584 MOFs with potential applications. Among them, 147 MOFs demonstrated strong IVM adsorption capabilities, making them suitable for drug delivery and adsorption applications. The remaining 437 MOFs exhibited properties ideal for membrane filtration, specifically for reverse osmosis and nanofiltration to separate IVM. The loading capacity and isosteric heat of the 147 MOFs at 101.325 kPa and 298 K were calculated and correlated with various structural properties, including largest void diameter, pore-limiting diameter, accessible volume, density, and helium void fraction. Molecular dynamics simulations were performed on the most promising MOFs to understand the IVM loading mechanism.
Collapse
Affiliation(s)
- Ola Gamal
- Environmental Science and Industrial Development Department, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University Beni-Suef Egypt
| | - Walaa A Moselhy
- Toxicology and Forensic Medicine Department, Faculty of Veterinary Medicine, Beni-Suef University Beni-Suef 62511 Egypt
| | - Mohamed Taha
- Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University Beni-Suef Egypt
| |
Collapse
|
2
|
Wolska J, Jenczyk J, Zieliński M, Walkowiak-Kulikowska J, Zioła-Frankowska A, Wolski L. Bifunctional adsorbents based on hyper-cross-linked polymers containing carbonyl and amine species for the efficient removal of diclofenac from water in a broad pH range. ENVIRONMENTAL RESEARCH 2025; 268:120791. [PMID: 39800288 DOI: 10.1016/j.envres.2025.120791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 01/04/2025] [Accepted: 01/07/2025] [Indexed: 01/19/2025]
Abstract
Development of new adsorbents for the efficient removal of organic pollutants from water is one of the most emerging environmental issues. Current studies in this field focus on improving the adsorption capacity of various materials and/or broadening the pH range in which the adsorbents can efficiently remove target pollutants. In this study, we designed bifunctional hyper-cross-linked polymers (HCPs) containing both carbonyl and amine species to investigate the effect of amine functional groups on the efficiency of adsorptive removal of non-steroidal anti-inflammatory drugs (NSAIDs) from water. We revealed that post-synthesis functionalization of carbonyl-rich HCPs with amine species does not have a significant impact on the adsorption capacity of these polymers under strongly acidic conditions (pH < 4; qe ∼ 544 mg/g), but significantly extends the pH range in which bifunctional polymers can adsorb diclofenac. For example, at native pH (pH ∼ 6), bifunctional HCP-based adsorbents exhibited an adsorption capacity approximately 8 times higher than that of pristine materials (qe = 191 vs. 24 mg/g, respectively). Furthermore, it was revealed that the adsorbents designed in this study can efficiently remove diclofenac from complex water matrices and exhibit high stability in several adsorption-desorption cycles. Moreover, we demonstrated that selecting a cross-linker with a longer chain results in a polymer with a lower surface area and smaller average pore size, while enabling higher efficiency in amine incorporation via post-synthesis functionalization. This latter feature was crucial for ensuring the high adsorption capacity of HCP-based adsorbents in the removal of NSAID at neutral pH.
Collapse
Affiliation(s)
- Joanna Wolska
- Faculty of Chemistry, Adam Mickiewicz University, Poznań, Ul. Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland.
| | - Jacek Jenczyk
- NanoBioMedical Centre, Adam Mickiewicz University, Poznań, Ul. Wszechnicy Piastowskiej 3, 61-614, Poznań, Poland
| | - Michał Zieliński
- Faculty of Chemistry, Adam Mickiewicz University, Poznań, Ul. Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland
| | - Justyna Walkowiak-Kulikowska
- Faculty of Chemistry, Adam Mickiewicz University, Poznań, Ul. Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland
| | - Anetta Zioła-Frankowska
- Faculty of Chemistry, Adam Mickiewicz University, Poznań, Ul. Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland
| | - Lukasz Wolski
- Faculty of Chemistry, Adam Mickiewicz University, Poznań, Ul. Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland
| |
Collapse
|
3
|
Lee SC, Kim SB. Synthesis and characterization of Fe(III)-doped beta-cyclodextrin-grafted chitosan cryogel beads for adsorption of diclofenac in aqueous solutions: Adsorption experiments and deep-learning modeling. Int J Biol Macromol 2024; 279:135161. [PMID: 39214200 DOI: 10.1016/j.ijbiomac.2024.135161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/22/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Diclofenac (DCF) is frequently detected in aquatic environments, emphasizing the critical need for its efficient removal globally. Here, we present the synthesis of Fe(III)-doped β-CD-grafted chitosan (Fe/β-CD@CS) cryogel beads designed for adsorbing DCF in aqueous solutions. The beads exhibited an average size of 2.94 ± 0.66 mm and a point of zero charge of 8.03. Adsorption experiments demonstrated that the Langmuir kinetic model provided the most accurate description of the kinetic data, while the Redlich-Peterson isotherm offered the best fit for the equilibrium data. The beads showcased a theoretical maximum adsorption capacity of 712.3 mg/g for DCF, with the adsorption process being identified as exothermic. DCF adsorption on the beads was attributed to hydrogen bonding, metal cation-π interactions, and electrostatic interactions. Reusability tests exhibited that the beads could be regenerated using 0.1 M NaOH. To perform deep learning modeling, adsorption experiments (n = 17), designed utilizing central composite design (CCD), were conducted in duplicate. The CCD framework incorporated input variables such as initial DCF concentration, adsorbent dosage, and solution pH, while the output variable was the DCF removal rate. Utilizing the adsorption data, an artificial neural network (ANN) model was constructed with a topology of 3: 7:10:1, featuring 3 input variables, 7 neurons in the first hidden layer, 10 neurons in the second layer, and 1 output variable. Employing the ANN model data, 3-D response surface plots were generated to elucidate the relationship between input variables and DCF removal rate. Additional adsorption tests were conducted to evaluate the developed ANN model, affirming its reliable predictability for the DCF removal rate. Analysis of the relative importance of the input variables revealed the following order of importance: solution pH (100 %) > adsorbent dosage (75.2 %) > initial DCF concentration (57.7 %).
Collapse
Affiliation(s)
- Seung-Chan Lee
- Water Environmental Systems and Deep Learning Laboratory, Department of Rural Systems Engineering, Seoul National University, Seoul, Republic of Korea
| | - Song-Bae Kim
- Water Environmental Systems and Deep Learning Laboratory, Department of Rural Systems Engineering, Seoul National University, Seoul, Republic of Korea; Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
4
|
Dardeer HM, Gad AN, Mahgoub MY. Promising superabsorbent hydrogel based on carboxymethyl cellulose and polyacrylic acid: synthesis, characterization, and applications in fertilizer engineering. BMC Chem 2024; 18:144. [PMID: 39103926 DOI: 10.1186/s13065-024-01244-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 07/09/2024] [Indexed: 08/07/2024] Open
Abstract
The combination of hydrogel and fertilizer as slow release fertilizer hydrogel (SRFH) has become one of the most promising materials to overcome the shortcomings of conventional fertilizer by decreasing fertilizer loss rate, supplying nutrients sustainably, and lowering the frequency of irrigation. The hydrogel based on carboxymethyl cellulose (CMC) and polyacrylic acid (PAA) (CMC/PAA) was synthesized. All materials, Vinasse, hydrogel (CMC/PAA) and (Vinasse/CMC-PAA) were characterized by FTIR, XRD, and SEM. The formed hydrogel was applied to control the salinity of Vinasse to use it as a cheap and economical fertilizer. The results showed that using the prepared hydrogel with Vinasse (V/CMC-PAA) as a slow-release organic fertilizer decreased the EC value through the first six hours from 1.77 to 0.35 mmohs/cm. Also, using V/CMC-PAA can control and keep the potassium as fertilizer for 50 days. The productivity per feddan from the sugar cane crop increased by about 15%, and the number of irrigations decreased from 5 to 4 times.
Collapse
Affiliation(s)
- Hemat M Dardeer
- Chemistry Department, Faculty of Science, South Valley University, Qena, 83523, Egypt
| | - Ahmed N Gad
- Research and Development Center, Egyptian Sugar & Integrated Industries Company 'ESIIC', Cairo, Egypt
| | - Mohamed Y Mahgoub
- Chemistry Department, Faculty of Science, South Valley University, Qena, 83523, Egypt.
| |
Collapse
|
5
|
Federici Dos Santos D, Moreira WM, de Araújo TP, Martins DCC, Carvalho da Silva Fonseca B, Ostroski IC, de Barros MASD. Novel activated carbon from Magonia pubescens bark: characterization and evaluation of adsorption efficiency. ENVIRONMENTAL TECHNOLOGY 2024; 45:3940-3959. [PMID: 37452562 DOI: 10.1080/09593330.2023.2237659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 07/03/2023] [Indexed: 07/18/2023]
Abstract
In this work, the synthesis of activated carbon from the bark of the Magonia pubescens (known as Tingui) and its efficiency in the removal of diclofenac sodium through batch adsorption tests and physical-chemical characterizations were investigated. The phytotoxicity of this material was also evaluated through germination and root growth of Lactuca sativa seeds. According to the experimental design performed for the synthesis of Tingui carbon, the optimized temperature and residence time for the production of this adsorbent were 550 °C and 120 min, respectively. The equilibrium time was reached in 600 min and the theoretical model that best fitted the kinetic data was the Elovich model. The BET was the best fit for the adsorption isotherm dataThis indicates that the adsorption process of sodium diclofenac by activated carbon can occur by two different mechanisms, monolayer and/or multilayer adsorption, depending on the conditions employed in the process, such as temperature and adsorbate concentration. The thermodynamic study showed that the process was favourable and spontaneous in the temperature range evaluated. Furthermore, the characterizations showed by TG/DTG and FTIR analyses that the temperature throughout the process had a marked impact on the degradation of the organic constituents of the biomass and the appearance of distinct functional groups that contributed to the adsorption process of diclofenac sodium. Finally, the toxicity tests recognized that this adsorbent does not affect the germination of L. sativa species. Thus, this adsorbent may become a novel and viable option to be used in the removal of sodium diclofenac.
Collapse
Affiliation(s)
| | | | - Thiago Peixoto de Araújo
- Department of Chemical Engineering, Federal Technological University of Paraná, Ponta Grossa, Brazil
| | | | | | | | | |
Collapse
|
6
|
Ren J, Li Z, Qu B, Meng L, Bai L, Sun J, Zhang Z, Qu Y, Jing L. Visual Eosin Y-Based Photosensitization Sensing Systems for Ultrasensitive Detection of Diclofenac with Single-Atom Co─N 2O 2 Site-Immobilized g-C 3N 4 Nanosheets. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404392. [PMID: 38838201 DOI: 10.1002/adma.202404392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/16/2024] [Indexed: 06/07/2024]
Abstract
It is highly desired to develop a visual sensing system for ultrasensitive detection of colorless diclofenac (DCF), yet with a significant challenge. Herein, a novel dye-based photosensitization sensing system has been successfully developed for detecting DCF for the first time, in which the used dye eosin Y (DeY) can strongly absorb visible light and then be decolorized obviously by transferring photogenerated electrons to g-C3N4 nanosheets (CN), while the built single-atomic Co─N2O2 sites on CN by boron-oxygen connection can competitively adsorb DCF to impede the photosensitization decoloration of DeY. This system exhibits a broad detection range from 8 ng L-1 to 2 mg L-1 with 535 nm light, an exceptionally low detection limit (3.5 ng L-1), and remarkable selectivity. Through the time-resolved, in situ technologies, and theoretical calculations, the decolorization of DeY is attributed to the disruption of DeY's conjugated structure caused by the triplet excited state electron transfer from DeY to CN, meanwhile, the adsorbed oxygen facilitates the charge transfer process. The preferential adsorption of DCF mainly depends on the strong interactions between the as-constructed single-atom Co and Cl in DCF. This study opens an innovative light-driven sensing system by combining dye and single-atom metal/nanomaterial for visually intuitive detection of environmental pollutants.
Collapse
Affiliation(s)
- Jingyi Ren
- Key Laboratory of Functional Inorganic Materials Chemistry (Ministry of Education), School of Chemistry and Materials Science, International Joint Research Center for Catalytic Technology, Heilongjiang University, Harbin, 150080, P. R. China
| | - Zhuo Li
- Key Laboratory of Functional Inorganic Materials Chemistry (Ministry of Education), School of Chemistry and Materials Science, International Joint Research Center for Catalytic Technology, Heilongjiang University, Harbin, 150080, P. R. China
| | - Binhong Qu
- Key Laboratory of Functional Inorganic Materials Chemistry (Ministry of Education), School of Chemistry and Materials Science, International Joint Research Center for Catalytic Technology, Heilongjiang University, Harbin, 150080, P. R. China
| | - Lingyou Meng
- Key Laboratory of Functional Inorganic Materials Chemistry (Ministry of Education), School of Chemistry and Materials Science, International Joint Research Center for Catalytic Technology, Heilongjiang University, Harbin, 150080, P. R. China
| | - Linlu Bai
- Key Laboratory of Functional Inorganic Materials Chemistry (Ministry of Education), School of Chemistry and Materials Science, International Joint Research Center for Catalytic Technology, Heilongjiang University, Harbin, 150080, P. R. China
| | - Jianhui Sun
- Key Laboratory of Functional Inorganic Materials Chemistry (Ministry of Education), School of Chemistry and Materials Science, International Joint Research Center for Catalytic Technology, Heilongjiang University, Harbin, 150080, P. R. China
| | - Ziqing Zhang
- Key Laboratory of Functional Inorganic Materials Chemistry (Ministry of Education), School of Chemistry and Materials Science, International Joint Research Center for Catalytic Technology, Heilongjiang University, Harbin, 150080, P. R. China
| | - Yang Qu
- Key Laboratory of Functional Inorganic Materials Chemistry (Ministry of Education), School of Chemistry and Materials Science, International Joint Research Center for Catalytic Technology, Heilongjiang University, Harbin, 150080, P. R. China
| | - Liqiang Jing
- Key Laboratory of Functional Inorganic Materials Chemistry (Ministry of Education), School of Chemistry and Materials Science, International Joint Research Center for Catalytic Technology, Heilongjiang University, Harbin, 150080, P. R. China
| |
Collapse
|
7
|
Samy M, Tawfik A, Osman AI, Abodlal RS, El-Dissouky A, Khalil TE, El-Helow E, Alalm MG. Novel Approach to Photocatalytic Removal of Linezolid by Advanced Nano-Biochar/Bismuth Oxychloride Hybrid. ACS OMEGA 2024; 9:30963-30974. [PMID: 39035889 PMCID: PMC11256314 DOI: 10.1021/acsomega.4c04007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/13/2024] [Accepted: 06/18/2024] [Indexed: 07/23/2024]
Abstract
Herein, we introduce an innovative nanohybrid material for advanced wastewater treatment, composed of Corchorus olitorius-derived biochar and bismuth oxychloride (Biochar/Bi12O17Cl2), demonstrated in a solar photoreactor. This work focuses on the efficient degradation of linezolid (LIN), a persistent pharmaceutical pollutant, utilizing the unique (photo)catalytic capabilities of the nanohybrid. Compared with its individual components, the biochar/Bi12O17Cl2 hybrid exhibits a remarkable degradation efficiency of 82.6% for LIN, alongside significant chemical oxygen demand (COD) and total organic carbon (TOC) mineralization rates of 81.3 and 75.8%, respectively. These results were achieved within 3 h under solar irradiation, using an optimal composite dose of 125 mg/L at pH 4.3 ± 0.45, with an initial COD and LIN concentrations of 1605 and 160.8 mg/L and TOC of 594.3 mg/L. The nanohybrid's stability across five cycles of use demonstrates its potential for repeated applications, with degradation efficiencies of 82.6 and 77.9% in the first and fifth cycles, respectively. This indicates the biochar/Bi12O17Cl2 composite's suitability as a sustainable and cost-effective solution for the remediation of heavily contaminated waters. Further, the degradation pathway proposed the degradation of all of the generated intermediates to a single-ring compound. Contributing to the development of next-generation materials for environmental remediation, this research underscores the critical role of nanotechnology in enhancing water quality and ecosystem sustainability and addressing the global imperative for clean water access and environmental preservation.
Collapse
Affiliation(s)
- Mahmoud Samy
- Public
Works Engineering Department, Faculty of Engineering, Mansoura University, Mansoura, Egypt
| | - Ahmed Tawfik
- Department
of Environmental Sciences, College of Life Sciences, Kuwait University, P.O. Box 5969, Safat 13060, Kuwait
| | - Ahmed I. Osman
- School of Chemistry and Chemical Engineering, Queen’s University Belfast, Belfast, Northern Ireland BT7 1NN, U.K.
| | - Ribh S. Abodlal
- Chemistry
Department, Faculty of Science, Alexandria
University, Alexandria, Egypt
| | - Ali El-Dissouky
- Chemistry
Department, Faculty of Science, Alexandria
University, Alexandria, Egypt
| | - Tarek E. Khalil
- Chemistry
Department, Faculty of Science, Alexandria
University, Alexandria, Egypt
| | - Ehab El-Helow
- Department
of Botany and Microbiology, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Mohamed Gar Alalm
- Public
Works Engineering Department, Faculty of Engineering, Mansoura University, Mansoura, Egypt
| |
Collapse
|
8
|
Lin X, Song MH, Li W, Wei W, Wu X, Mao J, Yun YS. Optimized design of quaternary amino-functionalized chitosan fibers for ultra-high diclofenac adsorption from wastewater. CHEMOSPHERE 2024; 357:141970. [PMID: 38608776 DOI: 10.1016/j.chemosphere.2024.141970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/19/2024] [Accepted: 04/08/2024] [Indexed: 04/14/2024]
Abstract
The extraction of non-steroidal anti-inflammatory drugs (NSAIDs) from water bodies is imperative due to the potential harm to humans and the ecosystem caused by NSAID-contaminated water. Quaternary amino-functionalized epichlorohydrin cross-linked chitosan fibers (QECFs), an economical and eco-friendly adsorbent, were successfully prepared using a simple and gentle method for efficient diclofenac (DCF) adsorption. Additionally, the optimized factors for the preparation of QECFs included epichlorohydrin concentration, pH, temperature, and (3-chloro-2-hydroxypropyl) trimethylammonium chloride (CHTAC) concentration. QECFs demonstrated excellent adsorption performance for DCF across a broad pH range of 7-12. The calculated maximum adsorption capacity and the amount of adsorbed DCF per adsorption site were determined to be 987.5 ± 20.1 mg/g and 1.2 ± 0.2, respectively, according to the D-R and Hill isotherm models, at pH 7 within 180 min. This performance surpassed that of previously reported adsorbents. The regeneration of QECFs could be achieved using a 0.5 mol/L NaOH solution within 90 min, with QECFs retaining their original fiber form and experiencing only a 9.18% reduction in adsorption capacity after 5 cycles. The Fourier transform infrared spectrometer and X-ray photoelectron spectroscopy were used to study the characterization of QECFs, the preparation mechanism of QECFs, and the adsorption mechanism of DCF by QECFs. Quaternary ammonium groups (R4N+) were well developed in QECFs through the reaction between amino/hydroxyl groups on chitosan and CHTAC, and approximately 0.98 CHTAC molecule with 0.98 R4N+ group were immobilized on each chitosan monomer. Additionally, these R4N+ on QECFs played a crucial role in the removal of DCF.
Collapse
Affiliation(s)
- Xiaoyu Lin
- School of Environmental Science and Engineering, Key Laboratory of Water and Wastewater Treatment (HUST), MOHURD, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Myung-Hee Song
- School of Chemical Engineering, Jeonbuk National University, Jeonju, Jeonbuk, 561-756, Republic of Korea
| | - Wenhao Li
- School of Environmental Science and Engineering, Key Laboratory of Water and Wastewater Treatment (HUST), MOHURD, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Wei Wei
- School of Geographic Sciences, Key Laboratory for Synergistic Prevention of Water and Soil Environmental Pollution, Xinyang Normal University, Nanhu Road 237, Xinyang, 464000, China
| | - Xiaohui Wu
- School of Environmental Science and Engineering, Key Laboratory of Water and Wastewater Treatment (HUST), MOHURD, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Juan Mao
- School of Environmental Science and Engineering, Key Laboratory of Water and Wastewater Treatment (HUST), MOHURD, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Yeoung-Sang Yun
- School of Chemical Engineering, Jeonbuk National University, Jeonju, Jeonbuk, 561-756, Republic of Korea.
| |
Collapse
|
9
|
Al-Hazmi GAAM, Alayyafi AA, El-Desouky MG, El-Bindary AA. Guava seed activated carbon loaded calcium alginate aerogel for the adsorption of diclofenac sodium: Characterization, isotherm, kinetics, and optimization via Box-Behnken design. Int J Biol Macromol 2024; 262:129995. [PMID: 38325680 DOI: 10.1016/j.ijbiomac.2024.129995] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/17/2024] [Accepted: 02/03/2024] [Indexed: 02/09/2024]
Abstract
This study aimed to develop a novel adsorbent designed for the removal of diclofenac sodium (DS) from water. The synthesized adsorbent, a composite sponge known as guava seeds activated carbon loaded calcium alginate (GSAC@CA aerogel), was created through the combination of powdered activated carbon derived from guava seeds and loaded onto a calcium alginate hydrogel. Characterization through SEM, XRD, FT-IR, BET, and XPS revealed a confirmed surface area of 738.82 m2/g. The investigation delved into assessing the influence of pH, initial DS concentration, and adsorbent dose on the adsorption of DS. Isotherm studies on adsorption suggested that a Langmuir model provided a good fit, indicating a monolayer adsorption process. Kinetic studies revealed a well-fitted pseudo-second-order model, shedding light on the dynamics of the reaction. The chemisorption nature was elucidated by the Dubinin-Radushkevich model, demonstrating an adsorption energy of 22.6 kJ/mol. These results affirm the potential of the GSAC@CA aerogel composite sponge as an efficient adsorbent for removing diclofenac sodium from water. Examination of the impact of temperature on the adsorption process revealed an endothermic behavior, indicating an increase in temperature. The positive change in entropy suggested the spontaneous nature of the reaction. Remarkably, the GSAC@CA aerogel composite sponge exhibited strong adsorption capabilities, achieving a maximum adsorption capacity of 489.97 mg/g. Across five consecutive cycles, the composite consistently demonstrated high-level adsorption, maintaining a removal efficiency of 87.77 %. The adsorption mechanism of diclofenac sodium (DS) on the GSAC@CA aerogel composite sponge was determined to encompass various processes, such as hydrogen bonding, π-π interactions, ion exchange, and electrostatic pore filling. Additionally, the adsorbent demonstrated successful regeneration over three cycles when applied to a real-world sample. The incorporation of the Box-Behnken design (BBD) introduced a strategic aspect to enhance adsorption outcomes, offering valuable insights for optimizing the adsorption process in practical applications.
Collapse
Affiliation(s)
- Gamil A A M Al-Hazmi
- Department of Chemistry, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, Saudi Arabia
| | - AbdulAziz A Alayyafi
- Department of Chemistry, University College in Al-Qunfudhah, Umm Al-Qura University, Saudi Arabia
| | | | - Ashraf A El-Bindary
- Chemistry Department, Faculty of Science, Damietta University, Damietta 34517, Egypt
| |
Collapse
|
10
|
Rajendran HK, Deen MA, Ray JP, Singh A, Narayanasamy S. Harnessing the Chemical Functionality of Metal-Organic Frameworks Toward Removal of Aqueous Pollutants. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:3963-3983. [PMID: 38319923 DOI: 10.1021/acs.langmuir.3c02668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Wastewater treatment has been bestowed with a plethora of materials; among them, metal-organic frameworks (MOFs) are one such kind with exceptional properties. Besides their application in gas adsorption and storage, they are applied in many fields. In orientation toward wastewater treatment, MOFs have been and are being successfully employed to capture a variety of aqueous pollutants, including both organic and inorganic ones. This review sheds light on the postsynthetic modifications (PSMs) performed over MOFs to adsorb and degrade recalcitrant. Modifications performed on the metal nodes and the linkers have been explained with reference to some widely used chemical modifications like alkylation, amination, thiol addition, tandem modifications, and coordinate modifications. The boost in pollutant removal efficacy, reaction rate, adsorption capacity, and selectivity for the modified MOFs is highlighted. The rationale and the robustness of micromotor MOFs, i.e., MOFs with motor activity, and their potential application in the capture of toxic pollutants are also presented for readers. This review also discusses the challenges and future recommendations to be considered in performing PSM over a MOF concerning wastewater treatment.
Collapse
Affiliation(s)
- Harish Kumar Rajendran
- Biochemical and Environmental Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Mohammed Askkar Deen
- Biochemical and Environmental Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Jyoti Prakash Ray
- Biochemical and Environmental Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Anushka Singh
- Biochemical and Environmental Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Selvaraju Narayanasamy
- Biochemical and Environmental Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| |
Collapse
|
11
|
Rehan M, Montaser AS, El-Shahat M, Abdelhameed RM. Decoration of viscose fibers with silver nanoparticle-based titanium-organic framework for use in environmental applications. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:13185-13206. [PMID: 38240971 PMCID: PMC10881727 DOI: 10.1007/s11356-024-31858-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/01/2024] [Indexed: 02/23/2024]
Abstract
To effectively remove pharmaceuticals, nitroaromatic compounds, and dyes from wastewater, an efficient multifunctional material was created based on silver nanoparticles (Ag) and MIL-125-NH2 (MOF) immobilized on viscose fibers (VF) as a support substrate. Firstly, silver nanoparticles (Ag) were immobilized on the surface of viscose fibers (VF) via in situ synthesis using trisodium citrate (TSC) as a reducing agent to create (VF-Ag). Then, VF and VF-Ag were decorated with the titanium metal-organic framework MIL-125-NH2 (MOF) to create VF-MOF and VF-Ag-MOF. The influence of VF-Ag, VF-MOF, and VF-Ag-MOF on the sonocatalytic or sonophotocatalytic degradation of sulfa drugs was investigated. The results show that VF-Ag-MOF showed excellent sonocatalytic and sonophotocatalytic activity towards the degradation of sulfa drugs compared to VF-Ag and VF-MOF. Furthermore, sonophotodegradation showed a dramatic enhancement in the efficiency of degradation of sulfa drugs compared to sonodegradation. The sonophotodegradation degradation percentage of sulfanilamide, sulfadiazine, and sulfamethazine drugs in the presence of VF-Ag-MOF was 65, 90, and 95 after 45 min of ultrasonic and visible light irradiation. The catalytic activity of VF-Ag, VF-MOF, and VF-Ag-MOF was evaluated through the conversion of p-nitrophenol (4-NP) to p-aminophenol (4-AP). The results demonstrate that VF-Ag-MOF had the highest catalytic activity, followed by VF-Ag and VF-MOF. The conversion percentage of 4-NP to 4-AP was 69%. The catalytic or photocatalytic effects of VF-Ag, VF-MOF, and VF-Ag-MOF on the elimination of methylene blue (MB) dye were investigated. The results demonstrate that VF-Ag-MOF showed high efficiency in removing the MB dye through the reduction (65%) or photodegradation (71%) after 60 min. VF-Ag-MOF composites structure-activity relationships represent that doping within silver NPs enhanced the photocatalytic activity of MIL-125-NH2, which could be explained as follows: (i) Due to the formation of a Schottky barrier at the junction between MIL-125-NH2 and Ag NPs, the photogenerated electrons in the conduction band of MIL-125-NH2 were supposed to be quickly transferred to the valence band of the Ag NPs, and subsequently, the electrons were transferred to the conduction band of Ag NPs. This considerable electron transferring process, which is reported as Z scheme heterojunction, can efficiently suppress the recombination of electron/hole pairs in VF-Ag-MIL-125-NH2 composites. (ii) Sufficient separation between the photogenerated charge carriers (holes and electrons) and avoiding their recombination enhanced the photocatalytic activity of composites.
Collapse
Affiliation(s)
- Mohamed Rehan
- Department of Pretreatment and Finishing of Cellulosic-Based Textiles, Textile Research and Technology Institute, National Research Centre, 33 Bohoth Street, Dokki, P.O. Box 12622, Giza, Egypt.
| | - Ahmed S Montaser
- Department of Pretreatment and Finishing of Cellulosic-Based Textiles, Textile Research and Technology Institute, National Research Centre, 33 Bohoth Street, Dokki, P.O. Box 12622, Giza, Egypt
| | - Mahmoud El-Shahat
- Photochemistry Department, Chemical Industries Research Institute, National Research Centre, Scopus Affiliation ID 60014618, 33 EL Buhouth St., Dokki, Giza, 12622, Egypt
| | - Reda M Abdelhameed
- Applied Organic Chemistry Department, Chemical Industries Research Institute, National Research Centre, Scopus Affiliation ID 60014618, 33 EL Buhouth St., Dokki, Giza, 12622, Egypt
| |
Collapse
|
12
|
Zhu L, Feng C, Peng B, Hui X, Bai X, Yu Z. Performance Research of Natural Mica Modified with Zirconium-Based Metal-Organic Frameworks for an Epoxy Resin Anti-Corrosion Coating. Molecules 2023; 28:7106. [PMID: 37894585 PMCID: PMC10609246 DOI: 10.3390/molecules28207106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/04/2023] [Accepted: 09/06/2023] [Indexed: 10/29/2023] Open
Abstract
A new composite material made from mica and a metal-organic framework (MOF) has been developed to improve the anticorrosive capabilities of epoxy resin coatings. The layered mica was loaded with denser and more uniform UIO-66 nanoparticles after modifying the composite with polyethyleneimine (PEI). The composites were used as fillers to prepare epoxy coatings that exhibited long-lasting active (labyrinth effect produced by mica) and passive (pH-sensitive release of corrosion inhibitors) corrosion protection. Settling experiments showed that polyethyleneimine improved the composites' compatibility in epoxy resin. After being immersed in a 3.5 wt.% NaCl solution for 60 days, the adhesion of PMC-UIO@MBT/EP increases to 9.01 MPa, while the water absorption rate only reaches 2.57%. It indicates that the coating has good barrier properties and stability. After being soaked in a 3.5 wt.% NaCl solution for 60 days at pH = 7, PMC-UIO@MBT/EP exhibits high low-frequency impedance (8.30 × 108 Ω), as demonstrated by the electronic impedance spectrum (EIS). In addition, the coating also exhibited the highest low-frequency impedance after 30 days in 3.5 wt.% NaCl solution at pH = 11.
Collapse
Affiliation(s)
- Lijuan Zhu
- Tubular Goods Research Institute, China National Petroleum Corporation, Xi’an 710077, China
- State Key Laboratory for Performance and Structure Safety of Petroleum Tubular Goods and Equipment Materials, Xi’an 710077, China
- Key Laboratory of Petroleum Tubular Goods and Equipment Quality Safety for State Market Regulation, Xi’an 710077, China
| | - Chun Feng
- Tubular Goods Research Institute, China National Petroleum Corporation, Xi’an 710077, China
- State Key Laboratory for Performance and Structure Safety of Petroleum Tubular Goods and Equipment Materials, Xi’an 710077, China
- Key Laboratory of Petroleum Tubular Goods and Equipment Quality Safety for State Market Regulation, Xi’an 710077, China
| | - Bokai Peng
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, China
| | - Xuezhi Hui
- Key Laboratory of Petroleum Tubular Goods and Equipment Quality Safety for State Market Regulation, Xi’an 710077, China
- Petrochina Changqing Oilfield Company, China National Petroleum Corporation, Xi’an 710021, China
| | - Xiaofeng Bai
- Tubular Goods Research Institute, China National Petroleum Corporation, Xi’an 710077, China
- State Key Laboratory for Performance and Structure Safety of Petroleum Tubular Goods and Equipment Materials, Xi’an 710077, China
- Key Laboratory of Petroleum Tubular Goods and Equipment Quality Safety for State Market Regulation, Xi’an 710077, China
| | - Zongxue Yu
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, China
| |
Collapse
|
13
|
Zhang X, Han X, Liu Y, Han R, Wang R, Qu L. Remediation of water tainted with noxious aspirin and fluoride ion using UiO-66-NH 2 loaded peanut shell. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:93877-93891. [PMID: 37525078 DOI: 10.1007/s11356-023-28906-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 07/17/2023] [Indexed: 08/02/2023]
Abstract
One green adsorbent, UiO-66-NH2 modified peanut shell (c-PS-MOF), was prepared in a green synthetic route for improving the capture level of aspirin (ASP) and fluoride ion (F-). The adsorption properties of c-PS-MOF were evaluated by batch experiments and its physicochemical properties were explored by various characterization methods. The results showed that c-PS-MOF exhibited a wide range of pH applications (ASP: 2-10; F-: 3-12) and high salt resistance in the capturing processes of ASP and F-. The unit adsorption capacity of c-PS-MOF was as high as 84.7 mg·g-1 for ASP as pH = 3 and 11.2 mg·g-1 for F- under pH = 6 at 303 K from Langmuir model, respectively. When the solid-liquid ratio was 2 g·L-1, the content of ASP (C0 = 100 mg·L-1) and F- (C0 = 20 mg·L-1) in solution can be reduced to 0.48 mg·L-1 and 1.05 mg·L-1 separately. The recycling of c-PS-MOF can be realized with 5 mmol·L-1 NaOH as eluent. Analysis of simulated water samples showed that c-PS-MOF could be used to remove ASP and F- from actual water. The c-PS-MOF is promising to bind ASP and F- from rivers, lakes, etc.
Collapse
Affiliation(s)
- Xiaoting Zhang
- College of Chemistry, Zhengzhou University, No 100 of Ke Xue Road, Zhengzhou, 450001, People's Republic of China
| | - Xiaoyu Han
- College of Chemistry, Zhengzhou University, No 100 of Ke Xue Road, Zhengzhou, 450001, People's Republic of China
| | - Yang Liu
- College of Chemistry, Zhengzhou University, No 100 of Ke Xue Road, Zhengzhou, 450001, People's Republic of China
| | - Runping Han
- College of Chemistry, Zhengzhou University, No 100 of Ke Xue Road, Zhengzhou, 450001, People's Republic of China.
| | - Rong Wang
- College of Chemistry, Zhengzhou University, No 100 of Ke Xue Road, Zhengzhou, 450001, People's Republic of China
| | - Lingbo Qu
- College of Chemistry, Zhengzhou University, No 100 of Ke Xue Road, Zhengzhou, 450001, People's Republic of China
| |
Collapse
|
14
|
Samy M, Gar Alalm M, Abodlal RS, El-Dissouky A, Khalil MN, El-Helow ER, E Khalil T, Tawfik A. A novel Corchorus olitorius-derived biochar/Bi 12O 17Cl 2 photocatalyst for decontamination of antibiotic wastewater containing tetracycline under natural visible light. Sci Rep 2023; 13:13190. [PMID: 37580319 PMCID: PMC10425469 DOI: 10.1038/s41598-023-38715-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 07/13/2023] [Indexed: 08/16/2023] Open
Abstract
Herein, a novel composite of Corchorus olitorius-derived biochar and Bi12O17Cl2 was fabricated and utilized for the degradation of tetracycline (TC) in a solar photo-oxidation reactor. The morphology, chemical composition, and interaction between the composite components were studied using various analyses. The biochar showed a TC removal of 52.7% and COD mineralization of 59.6% using 150 mg/L of the biochar at a pH of 4.7 ± 0.5, initial TC concentration of 163 mg/L, and initial COD of 1244 mg/L. The degradation efficiency of TC increased to 63% and the mineralization ratio to 64.7% using 150 mg/L of bare Bi12O17Cl2 at a pH of 4.7 ± 0.5, initial TC concentration of 178 mg/L, and COD of 1034 mg/L. In the case of biochar/Bi12O17Cl2 composite, the degradation efficiency of TC and COD mineralization ratio improved to 85.8% and 77.7% due to the potential of biochar to accept electrons which retarded the recombination of electrons and holes. The synthesized composite exhibited high stability over four succeeding cycles. According to the generated intermediates, TC could be degraded to caprylic acid and pentanedioic acid via the frequent attack by the reactive species. The prepared composite is a promising photocatalyst and can be applied in large-scale systems due to its high degradation and mineralization performance in a short time besides its low cost and stability.
Collapse
Affiliation(s)
- Mahmoud Samy
- Public Works Engineering Department, Faculty of Engineering, Mansoura University, Mansoura, 35516, Egypt
| | - Mohamed Gar Alalm
- Public Works Engineering Department, Faculty of Engineering, Mansoura University, Mansoura, 35516, Egypt
| | - Ribh S Abodlal
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Ali El-Dissouky
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Mohamed N Khalil
- Water Pollution Research Department, National Research Centre, P.O. Box 12622, Giza, Egypt
| | - Ehab R El-Helow
- Department of Botany and Microbiology, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Tarek E Khalil
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Ahmed Tawfik
- Water Pollution Research Department, National Research Centre, P.O. Box 12622, Giza, Egypt.
| |
Collapse
|
15
|
Prasetya N, Wöll C. Removal of diclofenac by adsorption process studied in free-base porphyrin Zr-metal organic frameworks (Zr-MOFs). RSC Adv 2023; 13:22998-23009. [PMID: 37529358 PMCID: PMC10388161 DOI: 10.1039/d3ra03527a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/24/2023] [Indexed: 08/03/2023] Open
Abstract
As the world population continues to grow, there is also a rising concern regarding water pollution since this condition could negatively impact the supply of clean water. One of the most recent concerns is related to the pollution that comes from various pharmaceuticals, in particular non-steroidal anti-inflammatory drugs (NSAIDs) since they have been industrially produced at large scale and can be easily purchased as an over-the-counter medicine. Diclofenac is one of the most popular NSAIDs because of its high-effectiveness, which leads to its excessive consumption. Consequently, its presence in water bodies is also continuously increasing. An adsorption process could then be employed as a highly effective method to address this issue. In comparison to other conventional adsorbents such as activated carbon, the use of metal-organic frameworks (MOFs) as an alternative adsorbent is very attractive since it can offer various advantages such as tailorability and high adsorption capacity. In this study, the performance of three water-stable, free-base porphyrin MOFs assembled using zirconia-based nodes, namely MOF-525, MOF-545, and NU-902, for diclofenac adsorption was thoroughly investigated. Interestingly, although all three free-base porphyrin MOFs are assembled using the same building block and have a similar specific surface area (based on the experimental argon physisorption and calculation based on non-localized density functional theory), their diclofenac adsorption capacity is substantially different from one another. It is found that the highest diclofenac adsorption capacity is shown by MOF-525, which has maximum capacity around 792 mg g-1. This is then followed by MOF-545 and NU-902 that have adsorption capacities around 591 and 486 mg g-1, respectively. Some possible adsorption mechanisms are then thoroughly discussed that might contribute to this phenomenon. Lastly, their performance is also compared with other MOFs that are also studied for this purpose to show their performance superiority not only in terms of adsorption capacity but also their affinity towards the diclofenac molecule, which might be useful as an adsorption performance indicator in the real condition where the contaminant concentration is considerably low.
Collapse
Affiliation(s)
- Nicholaus Prasetya
- Institute of Functional Interface (IFG), Karlsruhe Institute of Technology Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopolshafen Germany
| | - Christof Wöll
- Institute of Functional Interface (IFG), Karlsruhe Institute of Technology Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopolshafen Germany
| |
Collapse
|
16
|
Yu S, Xu K, Wang Z, Zhang Z, Zhang Z. Bibliometric and visualized analysis of metal-organic frameworks in biomedical application. Front Bioeng Biotechnol 2023; 11:1190654. [PMID: 37234479 PMCID: PMC10206306 DOI: 10.3389/fbioe.2023.1190654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
Background: Metal-organic frameworks (MOFs) are hybrid materials composed of metal ions or clusters and organic ligands that spontaneously assemble via coordination bonds to create intramolecular pores, which have recently been widely used in biomedicine due to their porosity, structural, and functional diversity. They are used in biomedical applications, including biosensing, drug delivery, bioimaging, and antimicrobial activities. Our study aims to provide scholars with a comprehensive overview of the research situations, trends, and hotspots in biomedical applications of MOFs through a bibliometric analysis of publications from 2002 to 2022. Methods: On 19 January 2023, the Web of Science Core Collection was searched to review and analyze MOFs applications in the biomedical field. A total of 3,408 studies published between 2002 and 2022 were retrieved and examined, with information such as publication year, country/region, institution, author, journal, references, and keywords. Research hotspots were extracted and analyzed using the Bibliometrix R-package, VOSviewer, and CiteSpace. Results: We showed that researchers from 72 countries published articles on MOFs in biomedical applications, with China producing the most publications. The Chinese Academy of Science was the most prolific contributor to these publications among 2,209 institutions that made contributions. Reference co-citation analysis classifies references into 8 clusters: synergistic cancer therapy, efficient photodynamic therapy, metal-organic framework encapsulation, selective fluorescence, luminescent probes, drug delivery, enhanced photodynamic therapy, and metal-organic framework-based nanozymes. Keyword co-occurrence analysis divided keywords into 6 clusters: biosensors, photodynamic therapy, drug delivery, cancer therapy and bioimaging, nanoparticles, and antibacterial applications. Research frontier keywords were represented by chemodynamic therapy (2020-2022) and hydrogen peroxide (2020-2022). Conclusion: Using bibliometric methods and manual review, this review provides a systematic overview of research on MOFs in biomedical applications, filling an existing gap. The burst keyword analysis revealed that chemodynamic therapy and hydrogen peroxide are the prominent research frontiers and hot spots. MOFs can catalyze Fenton or Fenton-like reactions to generate hydroxyl radicals, making them promising materials for chemodynamic therapy. MOF-based biosensors can detect hydrogen peroxide in various biological samples for diagnosing diseases. MOFs have a wide range of research prospects for biomedical applications.
Collapse
Affiliation(s)
- Sanyang Yu
- The VIP Department, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Kaihao Xu
- The VIP Department, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Zhenhua Wang
- Department of Physiology, School of Life Sciences, China Medical University, Shenyang, China
| | - Zhichang Zhang
- Department of Computer, School of Intelligent Medicine, China Medical University, Shenyang, China
| | - Zhongti Zhang
- The VIP Department, School and Hospital of Stomatology, China Medical University, Shenyang, China
| |
Collapse
|
17
|
Lin Z, Jin Y, Chen Y, Li Y, Chen J, Zhuang X, Mo P, Liu H, Chen P, Lv W, Liu G. Leaf-like ionic covalent organic framework for the highly efficient and selective removal of non-steroidal anti-inflammatory drugs: Adsorption performance and mechanism insights. J Colloid Interface Sci 2023; 645:943-955. [PMID: 37182326 DOI: 10.1016/j.jcis.2023.05.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/14/2023] [Accepted: 05/04/2023] [Indexed: 05/16/2023]
Abstract
In recent years, ionic covalent organic frameworks (iCOFs) have become popular for the removal of contaminants from water. Herein, we employed 2-hydroxybenzene-1,3,5-tricarbaldehyde (TFP) and 1,3-diaminoguanidine monohydrochloride (DgCl) to develop a novel leaf-like iCOF (TFP-DgCl) for the highly efficient and selective removal of non-steroidal anti-inflammatory drugs (NSAIDs). The uniformly distributed adsorption sites, suitable pore sizes, and functional groups (hydroxyl groups, guanidinium groups, and aromatic groups) of the TFP-DgCl endowed it with powerful and selective adsorption capacities for NSAIDs. Remarkably, the optimal leaf-like TFP-DgCl demonstrated an excellent maximum adsorption capacity (1100.08 mg/g) for diclofenac sodium (DCF), to the best of our knowledge, the largest adsorption capacity ever achieved for DCF. Further testing under varying environmental conditions such as pH, different types of anions, and multi-component systems confirmed the practical suitability of the TFP-DgCl. Moreover, the prepared TFP-DgCl exhibited exceptional reusability and stability through six adsorption-desorption cycles. Finally, the adsorption mechanisms of NSAIDs on leaf-like TFP-DgCl were confirmed as electrostatic interactions, hydrogen bonding, and π-π interactions. This work significantly supplements to our understanding of iCOFs and provides new insights into the removal of NSAIDs from wastewater.
Collapse
Affiliation(s)
- Zili Lin
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Yuhan Jin
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Yongxian Chen
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Yulin Li
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Jiayi Chen
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Xiaoqin Zhuang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Peiying Mo
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Haijin Liu
- Key Laboratory for Yellow River and Huaihe River Water Environment and Pollution Control, School of Environment, Henan Normal University, Xinxiang 453007, China
| | - Ping Chen
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Wenying Lv
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| | - Guoguang Liu
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
18
|
Samy M, Gar Alalm M, Khalil MN, Ezeldean E, El-Dissouky A, Nasr M, Tawfik A. Treatment of hazardous landfill leachate containing 1,4 dioxane by biochar-based photocatalysts in a solar photo-oxidation reactor. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 332:117402. [PMID: 36731416 DOI: 10.1016/j.jenvman.2023.117402] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/24/2023] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
This study investigates a combined photocatalytic and adsorption system to maximize the removal of 1,4 dioxane from hazardous landfill leachate (HLL). The production of transformation products was also investigated to obtain a comprehensive evaluation of the treatment system. Copper/iron doped zinc oxide (Cu-Fe-ZnO) was introduced to biochar to form a hybrid materials and used to treat HLL contaminated with 1,4 dioxane of 355.0 ± 11.7 mg/L. The Cu-Fe-ZnO/biochar removed 93.1 ± 8.7% of 1,4 dioxane at a dose of 0.6 g/L within 90 min, as compared with only 42.7 ± 3.3% by 1.2 g/L of bare biochar within 210 min. The Cu-Fe-ZnO/biochar degraded 1,4 dioxane into ethylene glycol, glycolic acid, and formic acid. The 1,4 dioxane removal mechanisms were investigated using the density functional theory, demonstrating that doping of ZnO with metal atoms (Cu-Fe) narrowed the bandgap from 3.307 eV to 2.736 eV. The enhanced photocatalytic activity of ZnO was also supported by the role of biochar in increasing the reactive species and adsorbing the pollutant molecules. The high degradation efficiency of 1,4 dioxane using small catalyst doses with short reaction times would reduce the treatment cost and improve the system's applicability for treating HLL and industrial effluents.
Collapse
Affiliation(s)
- Mahmoud Samy
- Public Works Engineering Department, Faculty of Engineering, Mansoura University, Mansoura, 35516, Egypt
| | - Mohamed Gar Alalm
- Public Works Engineering Department, Faculty of Engineering, Mansoura University, Mansoura, 35516, Egypt
| | - Mohamed N Khalil
- National Research Centre, Water Pollution Research Department, Dokki, Giza, 12622, Egypt
| | - Eman Ezeldean
- Department of Environmental Sciences, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - A El-Dissouky
- Department of Chemistry, Faculty of Science, Alexandria University, P.O. Box 426, Alexandria, 21321, Egypt
| | - Mahmoud Nasr
- Sanitary Engineering Department, Faculty of Engineering, Alexandria University, Alexandria, 21544, Egypt
| | - Ahmed Tawfik
- National Research Centre, Water Pollution Research Department, Dokki, Giza, 12622, Egypt.
| |
Collapse
|
19
|
Al-Qahtani SD, Ibarhiam S, Sallam S, Almotairy ARZ, Al-Bonayan AM, Munshi AM, El-Metwaly NM. Magnetic sodium alginate grafted with waste carbonaceous material for diclofenac sodium removal: optimization of operational parameters and process mechanism. RSC Adv 2023; 13:6466-6480. [PMID: 36860528 PMCID: PMC9969960 DOI: 10.1039/d3ra00495c] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 02/17/2023] [Indexed: 03/02/2023] Open
Abstract
As their manufacturing and consumption have increased, pharmaceutical chemicals have increasingly been found in wastewater. It is necessary to look into more effective methods, including adsorption, because current therapies can't completely eliminate these micro contaminants. This investigation aims to assess the diclofenac sodium (DS) adsorption onto an Fe3O4@TAC@SA polymer in a static system. Through Box-Behnken design (BBD), system optimization was carried out, and the ideal conditions - adsorbent mass of 0.01 g and agitation speed of 200 rpm - were chosen. The adsorbent was created utilizing X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FT-IR), allowing us to gain a comprehensive understanding of its properties. The analysis of the adsorption process revealed that the external mass transference was the primary rate-controlling step, and the Pseudo-Second-Order model demonstrated the best correlation to kinetic experimental results. An endothermic, spontaneous adsorption process took place. The removal capacity was 858 mg g-1, which is a respectable result when compared to other adsorbents that have been utilized in the past to remove DS. Ion exchange, π-π interactions, electrostatic pore filling and hydrogen bonding all play a role in the adsorption of DS on the Fe3O4@TAC@SA polymer. After careful examination of the adsorbent towards a true sample, it was determined to be highly efficient after three regenerative cycles.
Collapse
Affiliation(s)
- Salhah D Al-Qahtani
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University P.O. Box 84428 Riyadh 11671 Saudi Arabia
| | - Saham Ibarhiam
- Department of Chemistry, College of Science, University of Tabuk 71474 Tabuk Saudi Arabia
| | - Sahar Sallam
- Department of Chemistry, Faculty of Science, Jazan University, Jazan P. O. 45142 Saudi Arabia
| | - Awatif R Z Almotairy
- Department of Chemistry, Faculty of Science, Taibah University Yanbu 30799 Saudi Arabia
| | - Ameena M Al-Bonayan
- Department of Chemistry, Faculty of Science, Mansoura University El-Gomhoria Street 35516 Egypt
| | - Alaa M Munshi
- Department of Chemistry, Faculty of Science, Mansoura University El-Gomhoria Street 35516 Egypt
| | - Nashwa M El-Metwaly
- Department of Chemistry, Faculty of Applied Science, Umm Al Qura University Makkah 24230 Saudi Arabia
- Department of Chemistry, Faculty of Science, Mansoura University El-Gomhoria Street 35516 Egypt
| |
Collapse
|
20
|
Abdel Aziz YS, Sanad MMS, Abdelhameed RM, Zaki AH. In-situ construction of Zr-based metal-organic framework core-shell heterostructure for photocatalytic degradation of organic pollutants. Front Chem 2023; 10:1102920. [PMID: 36688034 PMCID: PMC9845943 DOI: 10.3389/fchem.2022.1102920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 12/12/2022] [Indexed: 01/05/2023] Open
Abstract
Photocatalysis is an eco-friendly promising approach to the degradation of textile dyes. The majority of reported studies involved remediation of dyes with an initial concentration ≤50 mg/L, which was away from the existing values in textile wastewater. Herein, a simple solvothermal route was utilized to synthesize CoFe2O4@UiO-66 core-shell heterojunction photocatalyst for the first time. The photocatalytic performance of the as-synthesized catalysts was assessed through the photodegradation of methylene blue (MB) and methyl orange (MO) dyes at an initial concentration (100 mg/L). Under simulated solar irradiation, improved photocatalytic performance was accomplished by as-obtained CoFe2O4@UiO-66 heterojunction compared to bare UiO-66 and CoFe2O4. The overall removal efficiency of dyes (100 mg/L) over CoFe2O4@UiO-66 (50 mg/L) reached >60% within 180 min. The optical and photoelectrochemical measurements showed an enhanced visible light absorption capacity as well as effective interfacial charge separation and transfer over CoFe2O4@UiO-66, emphasizing the successful construction of heterojunction. The degradation mechanism was further explored, which revealed the contribution of holes (h+), superoxide (•O2 -), and hydroxyl (•OH) radicals in the degradation process, however, h+ were the predominant reactive species. This work might open up new insights for designing MOF-based core-shell heterostructured photocatalysts for the remediation of industrial organic pollutants.
Collapse
Affiliation(s)
| | | | - Reda M. Abdelhameed
- Applied Organic Chemistry Department, Chemical Industries Research Institute, National Research Centre, Giza, Egypt
| | - Ayman H. Zaki
- Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni Suef, Egypt
- International Center for Materials Nanoarchitechtonics (WPI-MANA), National Institute for Materials Science, Tsukuba, Japan
| |
Collapse
|
21
|
Metal-organic frameworks for the adsorptive removal of pharmaceutically active compounds (PhACs): Comparison to activated carbon. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
22
|
Abadian S, Shayesteh H, Rahbar-Kelishami A. Effective adsorption of diclofenac sodium from aqueous solution using cationic surfactant modified Cuminum cyminum agri-waste: kinetic, equilibrium, and thermodynamic studies. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2023; 25:840-850. [PMID: 36006042 DOI: 10.1080/15226514.2022.2113367] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The occurrence of pharmaceutical pollutants in aqueous media has increased where significant research is being conducted to eliminate these toxic compounds. In the present study, Tetradecyltrimethylammonium bromide (TTAB) modified Cuminum cyminum agri-waste (CCW) was prepared to investigate the removal of diclofenac sodium (DCF) from aqueous solution in the batch process for the first time. Physical and chemical characterizations of as-prepared adsorbent were conducted using field emission scanning electron microscopy, Fourier-transform infrared spectroscopy, N2 adsorption-desorption, and point of zero charge analysis. Besides, the effect of the main parameters that affect the adsorption process, i.e., adsorbent dosage (0.25-6 g/L), contact time (0-300 min), initial DCF concentration (10-500 mg/L), and pH of the solution, were investigated. Furthermore, the resulted data were analyzed using various kinetic and isotherm models. The Pseudo-second-order model with R2 = 0.9981 showed the highest agreement with kinetic behavior. Also, the maximum adsorption capacity of DCF is 93.65 mg/g, according to the Langmuir isotherm. In acidic media, the adsorption capacity reached the highest value (44.69 mg/g). As a result, this study revealed that the agri-waste material could be modified and, as a low-cost adsorbent, have promising adsorption potential to remove pharmaceutical contaminants from the aqueous solution.
Collapse
Affiliation(s)
- Sara Abadian
- School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology (IUST), Tehran, Iran
| | - Hadi Shayesteh
- School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology (IUST), Tehran, Iran
| | - Ahmad Rahbar-Kelishami
- School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology (IUST), Tehran, Iran
| |
Collapse
|
23
|
kheradmand A, Negarestani M, Kazemi S, Shayesteh H, Javanshir S, Ghiasinejad H, Jamshidi E. Design and preparation magnetic bio-surfactant rhamnolipid-layered double hydroxide nanocomposite as an efficient and recyclable adsorbent for the removal of Rifampin from aqueous solution. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
24
|
Li HZ, Yang C, Qian HL, Yan XP. Room-temperature synthesis of ionic covalent organic frameworks for efficient removal of diclofenac sodium from aqueous solution. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
25
|
Synthesis of defective MOF-801 via an environmentally benign approach for diclofenac removal from water streams. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
26
|
Song Q, Shan X, Bu L, Dai A, Jiang D, Wang W, Shiigi H, Chen Z. An electrochemiluminescence resonance energy aptasensor based on Ag3PO4-UiO-66 for ultrasensitive detection of diethylstilbestrol. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
27
|
Zhao H, Zhao Y, Zhao X, Liu D. Introduction of alkyl and sulfonic groups in Ti-metal-organic framework for boosting removal of metformin hydrochloride. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
28
|
Zhou J, Zhou Q, Chu C. Dyes-modified metal − organic frameworks composite as a sensitive, reversible and ratiometric fluorescent probe for the rapid detection of malachite green. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
29
|
Hayoun B, Escudero-Curiel S, Bourouina M, Bourouina-Bacha S, Angeles Sanromán M, Pazos M. Preparation and characterization of high performance hydrochar for efficient adsorption of drugs mixture. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118797] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
30
|
Kareem SA, Dere I, Gungula DT, Andrew FP, Saddiq AM, Adebayo EF, Tame VT, Kefas HM, Joseph J, Patrick DO. Synthesis and Characterization of Slow-Release Fertilizer Hydrogel Based on Hydroxy Propyl Methyl Cellulose, Polyvinyl Alcohol, Glycerol and Blended Paper. Gels 2021; 7:262. [PMID: 34940322 PMCID: PMC8700842 DOI: 10.3390/gels7040262] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/07/2021] [Accepted: 12/07/2021] [Indexed: 01/16/2023] Open
Abstract
In this study, biodegradable slow-release fertilizer (SRF) hydrogels were synthesized from hydroxyl propyl methyl cellulose (HPMC), polyvinyl alcohol (PVA), glycerol and urea (SRF1) and HPMC, PVA, glycerol, urea and blended paper (SRF2). The fertilizer hydrogels were characterized by SEM, XRD and FTIR. The swelling capacity of the hydrogels in both distilled and tap water as well as their water retention capacity in sandy soil were evaluated. The hydrogels had good swelling capacity with maximum swelling ratio of 17.2 g/g and 15.6 g/g for SRF1 and SRF2 in distilled, and 14.4 g/g and 15.2 g/g in tap water, respectively. The water retention capacity of the hydrogels in sandy soil exhibited higher water retention when compared with soil without the (SRFs). The soil with the hydrogels was found to have higher water retention than the soil without the hydrogels. The slow-release profile of the hydrogels was also evaluated. The result suggested that the prepared fertilizer hydrogels has a good controlled release capacity. The blended paper component in SRF2 was observed to aid effective release of urea, with about 87.01% release in soil at 44 days compared to the pure urea which was about 97% release within 4 days. The addition of blended paper as a second layer matrix was found to help improve the release properties of the fertilizer. The swelling kinetic of the hydrogel followed Schott's second order model. The release kinetics of urea in water was best described by Kormeye Peppas, suggesting urea release to be by diffusion via the pores and channels of the SRF, which can be controlled by changing the swelling of the SRF. However, the release mechanism in soil is best described by first order kinetic model, suggesting that the release rate in soil is depended on concentration and probably on diffusion rate via the pores and channels of the SRF.
Collapse
Affiliation(s)
- Semiu A. Kareem
- Department of Chemical Engineering, Modibbo Adama University, Yola 652101, Nigeria; (I.D.); (H.M.K.); (D.O.P.)
| | - Idayatu Dere
- Department of Chemical Engineering, Modibbo Adama University, Yola 652101, Nigeria; (I.D.); (H.M.K.); (D.O.P.)
| | - Daniel T. Gungula
- Department of Crop Production and Horticulture, Modibbo Adama University, Yola 652101, Nigeria; (D.T.G.); (V.T.T.)
| | | | | | - Elizabeth F. Adebayo
- Department of Agricultural Economics and Extension, Modibbo Adama University, Yola 652101, Nigeria;
| | - Vadlya T. Tame
- Department of Crop Production and Horticulture, Modibbo Adama University, Yola 652101, Nigeria; (D.T.G.); (V.T.T.)
| | - Haruna M. Kefas
- Department of Chemical Engineering, Modibbo Adama University, Yola 652101, Nigeria; (I.D.); (H.M.K.); (D.O.P.)
| | - Japari Joseph
- Department of Chemistry, Modibbo Adama University, Yola 652101, Nigeria;
| | - David O. Patrick
- Department of Chemical Engineering, Modibbo Adama University, Yola 652101, Nigeria; (I.D.); (H.M.K.); (D.O.P.)
| |
Collapse
|