1
|
He J, Butson JD, Gu R, Loy ACM, Fan Q, Qu L, Li GK, Gu Q. MXene-Supported Single-Atom Electrocatalysts. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2414674. [PMID: 40150844 PMCID: PMC12061334 DOI: 10.1002/advs.202414674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 02/19/2025] [Indexed: 03/29/2025]
Abstract
MXenes, a novel member of the 2D material family, shows promising potential in stabilizing isolated atoms and maximizing the atom utilization efficiency for catalytic applications. This review focuses on the role of MXenes as support for single-atom catalysts (SACs) for various electrochemical reactions, namely the hydrogen evolution reaction (HER), oxygen evolution reaction (OER), oxygen reduction reaction (ORR), carbon dioxide reduction reaction (CO2RR), and nitrogen reduction reaction (NRR). First, state-of-the-art characterization and synthesis methods of MXenes and MXene-supported SACs are discussed, highlighting how the unique structure and tunable functional groups enhance the catalytic performance of pristine MXenes and contribute to stabilizing SAs. Then, recent studies of MXene-supported SACs in different electrocatalytic areas are examined, including experimental and theoretical studies. Finally, this review discusses the challenges and outlook of the utilization of MXene-supported SACs in the field of electrocatalysis.
Collapse
Affiliation(s)
- Jianan He
- Department of Chemical EngineeringThe University of MelbourneParkvilleVIC3010Australia
| | - Joshua D. Butson
- Department of Chemical EngineeringThe University of MelbourneParkvilleVIC3010Australia
| | - Ruijia Gu
- Department of Chemical EngineeringThe University of MelbourneParkvilleVIC3010Australia
| | - Adrian Chun Minh Loy
- Department of Chemical EngineeringThe University of MelbourneParkvilleVIC3010Australia
| | - Qining Fan
- Department of Chemical EngineeringThe University of MelbourneParkvilleVIC3010Australia
| | - Longbing Qu
- Department of Chemical EngineeringThe University of MelbourneParkvilleVIC3010Australia
| | - Gang Kevin Li
- Department of Chemical EngineeringThe University of MelbourneParkvilleVIC3010Australia
| | - Qinfen Gu
- Department of Chemical EngineeringThe University of MelbourneParkvilleVIC3010Australia
- Australian SynchrotronANSTO800 Blackburn RdClaytonVIC3168Australia
| |
Collapse
|
2
|
Esmaeili A, Keivanimehr F, Mokhtarian M, Habibzadeh S, Abida O, Moghaddamian M. 2D Ni 2P/N-doped graphene heterostructure as a Novel electrocatalyst for hydrogen evolution reaction: A computational study. Heliyon 2024; 10:e27133. [PMID: 38500970 PMCID: PMC10945142 DOI: 10.1016/j.heliyon.2024.e27133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 01/22/2024] [Accepted: 02/23/2024] [Indexed: 03/20/2024] Open
Abstract
The main prerequisite for designing electrocatalysts with favorable performance is to examine the links between electronic structural features and catalytic activity. In this work, Ni2P as a model electrocatalyst and one of the most potent catalysts for hydrogen evolution reaction (HER) was utilized to develop various Ni2P and carbon-based (graphene and N-doped graphene) heterostructures. The characteristics of such structures (Ni2P, graphene, N-doped graphene, Ni2P/graphene, and Ni2P/N-doped graphene), including binding energies, the projected density of states (PDOS), band structure, charge density difference, charge transfer, Hirshfeld charge analysis, and minimum-energy path (MEP) towards HER were calculated and analyzed by density functional theory (DFT) approach. The coupling energy values of hybrid systems were correlated with the magnitude of charge transfer. The main factors driving a promising water-splitting reaction were explained by the data of PDOS, band structures, and charge analysis, including the inherent electronegativity of the N species alongside shifting the Fermi level toward the conductive band. It was also shown that a significant drop occurs in the HER energy barrier on Ni2P/graphene compared to the pristine Ni2P due to N doping on the graphene layer in the Ni2P/N-doped graphene heterostructure.
Collapse
Affiliation(s)
- Amin Esmaeili
- Department of Chemical Engineering, School of Engineering Technology and Industrial Trades, College of the North Atlantic - Qatar, Doha, Qatar
| | - Farhad Keivanimehr
- Surface Reaction and Advanced Energy Materials Laboratory, Chemical Engineering Department, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Maryam Mokhtarian
- Surface Reaction and Advanced Energy Materials Laboratory, Chemical Engineering Department, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Sajjad Habibzadeh
- Surface Reaction and Advanced Energy Materials Laboratory, Chemical Engineering Department, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Otman Abida
- African Sustainable Agriculture Research Institute (ASARI), Mohammed VI Polytechnic University (UM6P), Laayoune, 70000, Morocco
| | | |
Collapse
|
3
|
Bin HS, Hu H, Wang J, Lu L, Muddassir M, Srivastava D, Chauhan R, Wu Y, Wang X, Kumar A. New 5,5-(1,4-Phenylenebis(methyleneoxy)diisophthalic Acid Appended Zn(II) and Cd(II) MOFs as Potent Photocatalysts for Nitrophenols. Molecules 2023; 28:7180. [PMID: 37894661 PMCID: PMC10608887 DOI: 10.3390/molecules28207180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/11/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Metal-organic frameworks (MOFs) are peculiar multimodal materials that find photocatalytic applications for the decomposition of lethal molecules present in the wastewater. In this investigation, two new d10-configuration-based MOFs, [Zn2(L)(H2O)(bbi)] (1) and [Cd2(L)(bbi)] (2) (5,5-(1,4-phenylenebis(methyleneoxy)diisophthalic acid (H2L) and 1,1'-(1,4-butanediyl)bis(imidazole) (bbi)), have been synthesized and characterized. The MOF 1 displayed a (4,6)-connected (3.43.52)(32.44.52.66.7) network topology, while 2 had a (3,10)-connected network with a Schläfli symbol of (410.511.622.72)(43)2. These MOFs have been employed as photocatalysts to photodegrade nitrophenolic compounds, especially p-nitrophenol (PNP). The photocatalysis studies reveal that 1 displayed relatively better photocatalytic performance than 2. Further, the photocatalytic efficacy of 1 has been assessed by altering the initial PNP concentration and photocatalyst dosage, which suggest that at 80 ppm PNP concentration and at its 50 mg concentration the MOF 1 can photo-decompose around 90.01% of PNP in 50 min. Further, radical scavenging experiments reveal that holes present over 1 and ·OH radicals collectively catalyze the photodecomposition of PNP. In addition, utilizing density of states (DOS) calculations and Hirshfeld surface analyses, a plausible photocatalysis mechanism for nitrophenol degradation has been postulated.
Collapse
Affiliation(s)
- Hui-Shi Bin
- School of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong 643000, China (L.L.)
| | - Hai Hu
- School of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong 643000, China (L.L.)
| | - Jun Wang
- School of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong 643000, China (L.L.)
| | - Lu Lu
- School of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong 643000, China (L.L.)
| | - Mohd Muddassir
- Department of Chemistry, College of Sciences, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Devyani Srivastava
- Department of Chemistry, Faculty of Science, University of Lucknow, Lucknow 226007, India;
| | - Ratna Chauhan
- Department of Environmental Science, Savitribai Phule Pune University, Pune 411007, India
| | - Yu Wu
- School of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong 643000, China (L.L.)
| | - Xiaoxiong Wang
- School of Materials and Environmental Engineering, Shenzhen Polytechnic University, Shenzhen 518055, China
| | - Abhinav Kumar
- Department of Chemistry, Faculty of Science, University of Lucknow, Lucknow 226007, India;
| |
Collapse
|
4
|
Chen N, Che S, Liu H, Li G, Ta N, Jiang Chen F, Jiang B, Wu N, Li Z, Yu W, Yang F, Li Y. Multistage interfacial engineering of 3D carbonaceous Ni 2P nanospheres/nanoflowers derived from Ni-BTC metal-organic frameworks for overall water splitting. J Colloid Interface Sci 2023; 638:582-594. [PMID: 36774872 DOI: 10.1016/j.jcis.2023.02.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/27/2023] [Accepted: 02/01/2023] [Indexed: 02/07/2023]
Abstract
The regulation of the multi-dimensional interface plays an important role in optimizing the electron transport and gas mass transfer during catalysis, which is conducive to promoting the electrocatalytic process. Herein, a self-supporting electrode has been developed with the multistage interface within 3D Ni2P@C nanospheres/nanoflowers arrays derived from metal-organic frameworks (MOFs) as template skeletons and precursors. The constructed nanosphere interface protrudes outward to optimize the contact with the electrolyte while the nanoflower lamellar connection promotes rapid electron transfer and exposes more active sites, and accelerates the gas diffusion with the abundant interspace channels. According to theoretical calculation, the synergistic effect between Ni2P and C is conducive to the optimal adsorption and desorption of H*, thus contributing to the improvement of catalytic kinetics. With the optimized growth times assembled onto nickel foam substrates, the Ni2P@C-12 h requires overpotentials of only 69 mV and 205 mV to drive the current density of 10 mA cm-2 towards hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), respectively. And it reveals an ultralow cell voltage of 1.55 V at 10 mA cm-2 to achieve overall water splitting (OWS). In addition, the stability of the Ni2P@C/NF electrocatalyst emerges as prominent long-term stability, which is attributed to the carbonaceous nanosphere anchors on the substrate to minimize the possibility of oxidation of the catalyst surface. This strategy of in situ growth of MOF-derived phosphates provides a general idea for interfacial engineering modification of OWS electrode materials.
Collapse
Affiliation(s)
- Neng Chen
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, Changping 102249, China
| | - Sai Che
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, Changping 102249, China.
| | - Hongchen Liu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, Changping 102249, China
| | - Guohua Li
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, Changping 102249, China
| | - Na Ta
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, Changping 102249, China
| | - Feng Jiang Chen
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, Changping 102249, China
| | - Bo Jiang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, Changping 102249, China
| | - Ni Wu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, Changping 102249, China
| | - Zhengxuan Li
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, Changping 102249, China
| | - Weiqi Yu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, Changping 102249, China
| | - Fan Yang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, Changping 102249, China
| | - Yongfeng Li
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, Changping 102249, China.
| |
Collapse
|
5
|
Ma S, Yang P, Chen J, Wu Z, Li X, Zhang H. NiCu alloys anchored Co3O4 nanowire arrays as efficient hydrogen evolution electrocatalysts in alkaline and neutral media. J Colloid Interface Sci 2023; 642:604-611. [PMID: 37028167 DOI: 10.1016/j.jcis.2023.03.175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/07/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023]
Abstract
Robust and long-lasting non-precious metal electrocatalysts are essential to achieve sustainable hydrogen production. In this work, we synthesized Co3O4@NiCu by electrodepositing NiCu nanoclusters onto Co3O4 nanowire arrays that were formed in situ on nickel foam. The introduction of NiCu nanoclusters altered the inherent electronic structure of Co3O4, significantly increasing the exposure of active sites and enhancing endogenous electrocatalytic activity. Co3O4@NiCu exhibited overpotentials of only 20 and 73 mV, respectively, at 10 mA cm-2 current densities in alkaline and neutral media. These values were equivalent to those of commercial Pt catalysts. Finally, the electron accumulation effect at the Co3O4@NiCu, along with a negative shift in the d-band center, is finally revealed by theoretical calculations. Hydrogen adsorption on consequent electron-rich Cu sites was effectively weakened, leading to a robust catalytic activity for the hydrogen evolution reaction (HER). Overall, this study proposes a practical strategy for creating efficient HER electrocatalysts in both alkaline and neutral media.
Collapse
|
6
|
Shah SSA, Khan NA, Imran M, Rashid M, Tufail MK, Rehman AU, Balkourani G, Sohail M, Najam T, Tsiakaras P. Recent Advances in Transition Metal Tellurides (TMTs) and Phosphides (TMPs) for Hydrogen Evolution Electrocatalysis. MEMBRANES 2023; 13:113. [PMID: 36676920 PMCID: PMC9863077 DOI: 10.3390/membranes13010113] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/03/2023] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
The hydrogen evolution reaction (HER) is a developing and promising technology to deliver clean energy using renewable sources. Presently, electrocatalytic water (H2O) splitting is one of the low-cost, affordable, and reliable industrial-scale effective hydrogen (H2) production methods. Nevertheless, the most active platinum (Pt) metal-based catalysts for the HER are subject to high cost and substandard stability. Therefore, a highly efficient, low-cost, and stable HER electrocatalyst is urgently desired to substitute Pt-based catalysts. Due to their low cost, outstanding stability, low overpotential, strong electronic interactions, excellent conductivity, more active sites, and abundance, transition metal tellurides (TMTs) and transition metal phosphides (TMPs) have emerged as promising electrocatalysts. This brief review focuses on the progress made over the past decade in the use of TMTs and TMPs for efficient green hydrogen production. Combining experimental and theoretical results, a detailed summary of their development is described. This review article aspires to provide the state-of-the-art guidelines and strategies for the design and development of new highly performing electrocatalysts for the upcoming energy conversion and storage electrochemical technologies.
Collapse
Affiliation(s)
- Syed Shoaib Ahmad Shah
- Department of Chemistry, School of Natural Sciences, National University of Sciences and Technology, Islamabad 44000, Pakistan
| | - Naseem Ahmad Khan
- Institute of Chemistry, the Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Muhammad Imran
- Institute of Chemistry, the Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Muhammad Rashid
- Institute of Chemistry, the Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | | | - Aziz ur Rehman
- Institute of Chemistry, the Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Georgia Balkourani
- Laboratory of Alternative Energy Conversion Systems, Department of Mechanical Engineering, School of Engineering, University of Thessaly, Pedion Areos, 38834 Volos, Greece
| | - Manzar Sohail
- Department of Chemistry, School of Natural Sciences, National University of Sciences and Technology, Islamabad 44000, Pakistan
| | - Tayyaba Najam
- Institute of Chemistry, the Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Panagiotis Tsiakaras
- Laboratory of Alternative Energy Conversion Systems, Department of Mechanical Engineering, School of Engineering, University of Thessaly, Pedion Areos, 38834 Volos, Greece
- Laboratory of Electrochemical Devices Based on Solid Oxide Proton Electrolytes, Institute of High Temperature Electrochemistry, RAS, 20 Akademicheskaya Str., Yekaterinburg 620990, Russia
- Laboratory of Materials and Devices for Electrochemical Power Engineering, Institute of Chemical Engineering, Ural Federal University, 19 Mira Str., Yekaterinburg 620002, Russia
| |
Collapse
|
7
|
Ni5P4-NiP2-Ni2P Nanocomposites Tangled with N-Doped Carbon for Enhanced Electrochemical Hydrogen Evolution in Acidic and Alkaline Solutions. Catalysts 2022. [DOI: 10.3390/catal12121650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Heterostructured non-precious metal phosphides have attracted increasing attention in the development of high-performance catalysts for hydrogen evolution reaction (HER), particularly in acidic media. Herein, a catalyst composed of ternary Ni5P4-NiP2-Ni2P nanocomposites and N-doped carbon nanotubes/carbon particulates (Ni5P4-NiP2-Ni2P/NC) was prepared from a Ni-containing hybrid precursor through approaches of a successive carbonization and phosphating reaction. Benefiting from the synergistic effect from three-component nickel phosphides and the support role of porous carbon network, the Ni5P4-NiP2-Ni2P/N-doped carbon catalyst presents the promising HER performance with overpotentials of 168 and 202 mV at the current density of 10 mA cm−2 and Tafel slopes of 69.0 and 74 mV dec−1 in both acidic and alkaline solutions, respectively, which surpasses the Ni2P/N-doped carbon counterpart. This work provides an effective strategy for the preparation and development of highly efficient HER non-precious metal electrocatalysts by creating heterostructure in acidic and alkaline media.
Collapse
|
8
|
Synthesis of New Cobalt(III) Meso-Porphyrin Complex, Photochemical, X-ray Diffraction, and Electrical Properties for Photovoltaic Cells. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248866. [PMID: 36558000 PMCID: PMC9785790 DOI: 10.3390/molecules27248866] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/24/2022] [Accepted: 12/01/2022] [Indexed: 12/15/2022]
Abstract
The present work describes the preparation and characterization of a new cobalt(III) porphyrin coordination compound named (chlorido)(nicotinoylchloride)[meso-tetra(para-chlorophenyl)porphyrinato]cobalt(III) dichloromethane monosolvate with the formula [CoIII(TClPP)Cl(NTC)]·CH2Cl2 (4). The single-crystal X-ray molecular structure of 4 shows very important ruffling and waving distortions of the porphyrin macrocycle. The Soret and Q absorption bands of 4 are very red-shifted as a consequence of the very distorted porphyrin core. This coordination compound was also studied by fluorescence and cyclic voltammetry. The efficiency of our four porphyrinic compounds-the H2TClPP (1) free-base porphyrin, the [CoII(TClPP)] (2) and [CoIII(TClPP)Cl] (3) starting materials, and the new Co(III) metalloporphyrin [CoIII(TClPP)Cl(NTC)]·CH2Cl2 (4)-as catalysts in the photochemical degradation was tested on malachite green (MG) dye. The current voltage of complexes 3 and 4 was also studied. Electrical parameters, including the saturation current density (Js) and barrier height (ϕb), were measured.
Collapse
|
9
|
Syntheses, structures and photocatalytic properties of three Cd(II) coordination polymers induced by the dicarboxylate regulator. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.116192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
10
|
Jin JC, Wang J, Guo J, Yan MH, Wang J, Srivastava D, Kumar A, Sakiyama H, Muddassir M, Pan Y. A 3D rare cubane-like tetramer Cu(II)-based MOF with 4-fold dia topology as an efficient photocatalyst for dye degradation. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
11
|
Syntheses, structures and mechanisms of interactions with DNA of two new 20-core silver(I) complexes with different ligands. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.121297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
12
|
Liu X, Yang H, Diao Y, He Q, Lu C, Singh A, Kumar A, Liu J, Lan Q. Recent advances in the electrochemical applications of Ni-based metal organic frameworks (Ni-MOFs) and their derivatives. CHEMOSPHERE 2022; 307:135729. [PMID: 35931255 DOI: 10.1016/j.chemosphere.2022.135729] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/09/2022] [Accepted: 07/12/2022] [Indexed: 06/15/2023]
Abstract
Nickel-based metal-organic skeletal materials (Ni-MOFs) are a new class of inorganic materials that have aroused attention of investigators during past couple of years. They offer advantages such as high specific surface area, structural diversity, tunable framework etc. This assorted class of materials exhibited catalytic activity and electrochemical properties and display wide range of applications in the fields of electrochemical sensing, electrical energy storage and electrocatalysis. In this context, the presented review focuses on strategies to improve the electrochemical performance and stability of Ni-MOFs through the optimization of synthesis conditions, the construction of composite materials, and the preparation of derivatives of precursors. The review also presents the applications of Ni-MOFs and their derivatives as electrochemical sensors, energy storage devices, and electrocatalysts. In addition, the challenges and further electrochemical development prospects of Ni-MOFs have been discussed.
Collapse
Affiliation(s)
- Xuezhang Liu
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan,523808, China; Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan, 523808, China
| | - Hanping Yang
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan,523808, China; Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan, 523808, China
| | - Yingyao Diao
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan,523808, China; Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan, 523808, China
| | - Qi He
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan,523808, China; Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan, 523808, China
| | - Chengyu Lu
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan, 523808, China.
| | - Ayushi Singh
- Department of Chemistry, Faculty of Science, University of Lucknow, Lucknow 226 007, India
| | - Abhinav Kumar
- Department of Chemistry, Faculty of Science, University of Lucknow, Lucknow 226 007, India.
| | - Jianqiang Liu
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan,523808, China; Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan, 523808, China.
| | - Qian Lan
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan,523808, China; Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan, 523808, China.
| |
Collapse
|
13
|
Chen J, Cheng F, Luo D, Huang J, Ouyang J, Nezamzadeh-Ejhieh A, Khan MS, Liu J, Peng Y. Recent advances in Ti-based MOFs in biomedical applications. Dalton Trans 2022; 51:14817-14832. [PMID: 36124915 DOI: 10.1039/d2dt02470e] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Currently, metal-organic frameworks (MOFs), basically inorganic-organic hybrid materials, have gained tremendous attention due to their vast applications. MOFs have shown enormous applications in almost every research field. However, the area of designing MOF materials for their biological applications is still an emerging field that needs attention. Titanium-based metal-organic framework (Ti-MOF) materials are used in many research areas due to their structural advantages, such as small particle size and large effective surface area. On the other hand, they have also shown unique advantages such as good biocompatibility, excellent catalytic oxidation and photocatalytic properties and ease of functionalization. This study reviews the recent research progress on Ti-MOFs in therapeutic areas such as antibacterial, oncology, anti-inflammation, and bone injury, which will provide new directions for further research in this biomedical field. Therefore, this article will help scientists working in the particular field to enhance their understanding of Ti-based MOFs for functional biomedical applications.
Collapse
Affiliation(s)
- Jinyi Chen
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523808, China. .,Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan, 523808, China
| | - Fan Cheng
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan, 523808, China
| | - Dongwen Luo
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523808, China. .,Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan, 523808, China
| | - Jiefeng Huang
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523808, China. .,Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan, 523808, China
| | - Jie Ouyang
- Department of Breast Surgery, Dongguan Tungwah Hospital, Dongguan, China.
| | | | - M Shahnawaz Khan
- Department of Chemistry, Aligarh Muslim University, Aligarh, 202002, India
| | - Jianqiang Liu
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523808, China. .,Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan, 523808, China
| | - Yanqiong Peng
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523808, China.
| |
Collapse
|
14
|
Zhong XL, Wang J, Shi C, Lu L, Srivastava D, Kumar A, Afzal M, Alarifi A. Photocatalytic applications of a new 3D Mn(II)-based MOF with mab topology. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.121063] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
15
|
Photocatalytic performances and mechanisms of two coordination polymers based on rigid tricarboxylate. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123602] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
16
|
Zhang K, Ma W, Tan G, Cheng Z, Ma Y, Li W, Feng X, Li Z. Interfacial engineering of Ru-doped Co3O4/CoP nanowires heterostructure as efficient bifunctional electrocatalysts for alkaline water splitting. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
17
|
Ding L, Sun Q, Yu Z, Sun L, Jiang R, Hou Y, Huang J, Zhong T, Chen H, Lian C, Fan B. Adjusting the match-degree between electron library and surface-active sites and forming surface polarization in MOF-based photo-cocatalysts for accelerating electron transfer. Catal Sci Technol 2022. [DOI: 10.1039/d2cy01323a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The Ni-CoP supported by a carbon matrix as the cocatalyst is synthesized by precisely controlling the pyrolysis temperature for the metal–organic framework, then loaded onto the CdS host catalyst by means of self-assembly for photocatalytic hydrogen production.
Collapse
Affiliation(s)
- Ling Ding
- MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, Guangxi key Laboratory of Processing for Nonferrous Featured Metals and Materials, School of Resources, Environment and Materials, Nanning 530004, Guangxi, P.R. China
| | - Qianqian Sun
- MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, Guangxi key Laboratory of Processing for Nonferrous Featured Metals and Materials, School of Resources, Environment and Materials, Nanning 530004, Guangxi, P.R. China
| | - Zebin Yu
- MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, Guangxi key Laboratory of Processing for Nonferrous Featured Metals and Materials, School of Resources, Environment and Materials, Nanning 530004, Guangxi, P.R. China
| | - Lei Sun
- School of Chemical Engineering and Technology, Hainan University, Haikou 570228, PR China
| | - Ronghua Jiang
- School of Chemical and Environmental Engineering, Shaoguan University, Shaoguan 512005, P. R. China
| | - Yanping Hou
- MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, Guangxi key Laboratory of Processing for Nonferrous Featured Metals and Materials, School of Resources, Environment and Materials, Nanning 530004, Guangxi, P.R. China
| | - Jun Huang
- College of Civil Engineering & Architecture, Guangxi University, Nanning 530004, P. R. China
| | - Tao Zhong
- MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, Guangxi key Laboratory of Processing for Nonferrous Featured Metals and Materials, School of Resources, Environment and Materials, Nanning 530004, Guangxi, P.R. China
| | - Huajiao Chen
- MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, Guangxi key Laboratory of Processing for Nonferrous Featured Metals and Materials, School of Resources, Environment and Materials, Nanning 530004, Guangxi, P.R. China
| | - CuiFang Lian
- MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, Guangxi key Laboratory of Processing for Nonferrous Featured Metals and Materials, School of Resources, Environment and Materials, Nanning 530004, Guangxi, P.R. China
| | - Ben Fan
- MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, Guangxi key Laboratory of Processing for Nonferrous Featured Metals and Materials, School of Resources, Environment and Materials, Nanning 530004, Guangxi, P.R. China
| |
Collapse
|
18
|
Liu JQ, Kumar A, Srivastava D, Pan Y, Dai Z, Zhang W, Liu Y, Qiu Y, Liu S. Recent advances on bimetallic metal-organic frameworks (BMOFs): Syntheses, applications and challenges. NEW J CHEM 2022. [DOI: 10.1039/d2nj01994a] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bimetallic metal-organic frameworks (MOFs) possess two different metal ions as nodes in their molecular frameworks. They are prepared by either using one-pot syntheses wherein different metals are mixed with suitable...
Collapse
|
19
|
Li R, Zhang H, Hong M, Shi J, Liu X, Feng X. Two Co(II)/Ni(II) complexes based on nitrogenous heterocyclic ligand as high-performance electrocatalyst for hydrogen evolution reaction. Dalton Trans 2022; 51:3970-3976. [DOI: 10.1039/d1dt03814a] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two transition metal complexes {[Co2(bpda)4(H2O)2]⋅4H2O}n(Co-1) and {[Ni(bpda)2(H2O)2]⋅2H2O}(Ni-2) (H2bpda = 2,2 '- bipyridine -4,4' - dicarboxylic acid) have been synthesized by hydrothermal method and characterized. These two compounds can be explored...
Collapse
|
20
|
Xiong M, Wu J, Lu L, Wang J, Zhang W, Guo J, Singh A, Kumar A, Muddassir M. Construction strategies to modulate the photocatalytic efficiency of Cd( ii) MOFs to photodegrade organic dyes. CrystEngComm 2022. [DOI: 10.1039/d2ce01281b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two new tuned 3D Cd(ii) MOFs were synthesized and used as photocatalysts for dye degradation.
Collapse
Affiliation(s)
- Min Xiong
- School of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong, 643000, PR China
| | - Jian Wu
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Minzu University, Nanning, Guangxi 530006, PR China
| | - Lu Lu
- School of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong, 643000, PR China
| | - Jun Wang
- School of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong, 643000, PR China
| | - Wei Zhang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, PR China
| | - Jian Guo
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, PR China
| | - Amita Singh
- Department of Chemistry, Dr. Ram Manohar Lohiya Awadh University, Ayodhya, 224 001, India
| | - Abhinav Kumar
- Department of Chemistry, Faculty of Science, University of Lucknow, Lucknow 226 007, India
| | - Mohd. Muddassir
- Department of Chemistry, College of Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|