1
|
Gao S, Li R, Zhu Q, Gao D, Guo Q, Wang L, Hu X, Song J. Facile Fabrication of Novel S-scheme Ag 3PO 4/g-C 3N 4/Zeolite Photocatalyst for Boosting Photocatalytic Tetracycline Degradation and Hydrogen Production. Chemistry 2025; 31:e202403442. [PMID: 39641563 DOI: 10.1002/chem.202403442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 11/21/2024] [Accepted: 12/04/2024] [Indexed: 12/07/2024]
Abstract
This study presents a novel ternary Ag3PO4/g-C3N4/zeolite composite for photocatalytic H2 production and TC degradation through S-scheme electron transport. The S-scheme Ag3PO4/g-C3N4 heterojunction was successfully constructed on zeolite surface through calcination and precipitation processes. The results indicated that Ag3PO4/g-C3N4/zeolite-50 % presented dramatically enhanced photocatalytic TC degradation performance, and the TC degradation efficiency was up to 92.86 % in 180 min under visible light. The corresponding reaction rate constant was 0.01205 min-1 which was 2.18 and 7.48 times greater than those of pure Ag3PO4 (0.00554 min-1) and g-C3N4 (0.00161 min-1), respectively. Meanwhile, the highest H2 production rate (2748.6 μmol g-1 h-1) was achieved over Ag3PO4/g-C3N4/zeolite-50 % under simulated solar light which was around 26.5 and 5.6 times higher than that of g-C3N4 and Ag3PO4, respectively. The enhanced photocatalytic activity of the ternary composite was mainly due to the synergistic effect of S-scheme Ag3PO4/g-C3N4 heterojunction and zeolite support which endowed the composite with excellent adsorption activity, enhanced light response ability, and efficient separation of photoinduced carriers. TC degradation mechanism and pathways were proposed based on quenching experiment and HPLC-MS results. Overall, this study proposes a promising strategy for significantly improving photocatalytic activity and applying in photocatalytic pollutant degradation and hydrogen production.
Collapse
Affiliation(s)
- Sihang Gao
- College of Energy and Mining Engineering, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Rui Li
- College of Energy and Mining Engineering, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Qiuli Zhu
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Dengzheng Gao
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Qingbin Guo
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Li Wang
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Xiaolong Hu
- College of Energy and Mining Engineering, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Junying Song
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, China
| |
Collapse
|
2
|
Ahmed Mubarak M, Mohamed R, Ahmed Rizk S, Samir Darwish A, Abuzalat O, Eid M. Ali M. Competent CuS QDs@Fe MIL101 heterojunction for Sunlight-driven degradation of pharmaceutical contaminants from wastewater. ENVIRONMENTAL NANOTECHNOLOGY, MONITORING & MANAGEMENT 2024; 22:101013. [DOI: 10.1016/j.enmm.2024.101013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2024]
|
3
|
Zhang X, Xiong S, Sathiyaseelan A, Zhang L, Lu Y, Chen Y, Jin T, Wang MH. Recent advances in photocatalytic nanomaterials for environmental remediation: Strategies, mechanisms, and future directions. CHEMOSPHERE 2024; 364:143142. [PMID: 39168377 DOI: 10.1016/j.chemosphere.2024.143142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/13/2024] [Accepted: 08/19/2024] [Indexed: 08/23/2024]
Abstract
Innovative and efficient strategies are urgently needed for wastewater treatment and environmental remediation. The photocatalytic degradation properties of photo-responsive nanomaterials (NMs) have become a prime candidate due to their low negative impact and photo-adjustability. Photocatalytic NMs vary in their degradation of different pollutants depending on the type of synthetic material, excitation light source, and physicochemical properties. Essentially, photocatalytic NMs excited by light produce reactive oxygen species (ROS) or metal ions that can degrade complex structure pollutants. Therefore, this review summarises the recent advances of photocatalytic NMs in the environmental application within the last 3 years, focusing on the development schemes, structural analyses, photocatalytic mechanisms, and the degradation effects of dyes, antibiotics, pesticides, phenolic compounds, metals, hormones, and other contaminants. The limitations and future directions are also explained. This review hopes to provide a possible pathway for the subsequent development of novel and efficient photocatalytic NMs to cope with complex and variable polluted environments.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| | - Sirui Xiong
- College of Food Science and Engineering, Yanbian University, Yanji, Jilin, 133002, China.
| | - Anbazhagan Sathiyaseelan
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| | - Lina Zhang
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| | - Yuting Lu
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| | - Yuting Chen
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| | - Tieyan Jin
- College of Food Science and Engineering, Yanbian University, Yanji, Jilin, 133002, China.
| | - Myeong-Hyeon Wang
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| |
Collapse
|
4
|
Mu W, Wang L, Chang C. Photocatalytic adsorption/degradation of tetracycline by S-scheme BiOI/BiOIO 3 p-n heterojunction from dissociation of BiOIO 3in-situ solvothermal process. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 356:120630. [PMID: 38527386 DOI: 10.1016/j.jenvman.2024.120630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 02/10/2024] [Accepted: 03/10/2024] [Indexed: 03/27/2024]
Abstract
The pollution of tetracycline (TC) had attracted more and more attention due to its unprecedented use and potential hazards. The S-scheme BiOI/BiOIO3 p-n heterojunction was successfully fabricated by in-situ solvothermal treatment of BiOIO3, and was used for the removal of TC from aqueous solutions. The results demonstrated that the construction of S-scheme p-n heterojunction could significantly improve the removal of TC by photocatalytic adsorption/degradation synergism. The removal rate of TC was significantly enhanced after solvothermal modification. The three main reasons for the enhanced removal efficiency were as follows: first, the light absorption range of the BiOIO3 was enhanced by solvothermal treatment; secondly, the construction of the heterojunction was beneficial to the valid separation and migration of the photo-generated carriers; finally, the adsorption of TC enhanced the speed of TC reaching the semiconductor interface and reacting with active species. Trapping tests were conducted to reveal that •O2- and 1O2 are the main reactive species for TC degradation. The nine degradation products were identified by the high performance liquid chromatography-mass spectrometry (HPLC-MS), and the three reaction pathways were deduced. A possible S-scheme p-n heterojunction photocatalytic mechanism was presented on the basis of band structures and active species capturing experiment.
Collapse
Affiliation(s)
- Weina Mu
- School of Chemical Engineering, Changchun University of Technology, Changchun, 130012, China; College of Environmental and Chemical Engineering, Dalian University, Dalian, 116622, China
| | - Lijuan Wang
- School of Chemical Engineering, Changchun University of Technology, Changchun, 130012, China.
| | - Chun Chang
- College of Environmental and Chemical Engineering, Dalian University, Dalian, 116622, China.
| |
Collapse
|
5
|
Graimed BH, Jabbar ZH, Alsunbuli MM, Ammar SH, G Taher A. Decoration of 0D Bi 3NbO 7 nanoparticles onto 2D BiOIO 3 nanosheets as visible-light responsive S-scheme photocatalyst for photo-oxidation of antibiotics in wastewater. ENVIRONMENTAL RESEARCH 2024; 243:117854. [PMID: 38065389 DOI: 10.1016/j.envres.2023.117854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/16/2023] [Accepted: 11/30/2023] [Indexed: 02/06/2024]
Abstract
In this work, a new S-type hybrid composed of 2D BiOIO3 and 0D Bi3NbO7 was proposed and hybridized by a facile self-assembly strategy. The developed nanomaterials were characterized and identified by a series of sophisticated analyses, like XRD, SEM, EIS, XPS, PL, UPS, EDS, BET, M-S, TEM, HRTEM, and DRS. The photocatalytic behavior of BiOIO3/Bi3NbO7 was examined and optimized against amoxicillin (AMX) and other types of antibiotics under a variety of environmental conditions, such as visible light (150 W LED), direct sunlight, pH (3-11), catalyst dosages (20-80 mg), humic acid (0-24 mg/L), AMX concentration (10-40 mg/L), and different inorganic ions (0.05 M). The optimized BiOIO3/Bi3NbO7 hybrid attained exceptional AMX degradation activity (96.5%) under visible light (60 min), with a reaction constant of up to 0.04559 min-1, exceeding bare BiOIO3 and Bi3NbO7 by 5.57 and 5.3 folds, respectively. The obtained BiOIO3/Bi3NbO7 hybrid unclosed expanded light utilization behavior compared with neat catalysts, which originates from the powerful incorporation between BiOIO3 and Bi3NbO7 in the S-type system. The radical investigations confirmed the superiority of BiOIO3/Bi3NbO7 in generating both •OH and •O2- during the photoreaction. The novel Bi3NbO7-based heterojunction afforded robust photostability in five treatment cycles and simple charge transfer activity in the S-type route, boosting the photo-mechanism for antibiotic degradation in an efficient manner. The building of the S-scheme heterojunction between BiOIO3 and Bi3NbO7 stimulates the utilization of holes by the recombination process and promotes the overall stability of the composite. Our study introduces a new class of semiconductor heterojunctions that may contribute to the development potential of the photocatalysis sector in wastewater treatment.
Collapse
Affiliation(s)
- Bassim H Graimed
- Environmental Engineering Department, College of Engineering, University of Baghdad, Baghdad, Iraq
| | - Zaid H Jabbar
- Building and Construction Techniques Engineering Department, Al-Mustaqbal University College, 51001 Hillah, Babylon, Iraq.
| | - Maye M Alsunbuli
- Architecture Engineering Department, College of Engineering, University of Baghdad, Baghdad, Iraq
| | - Saad H Ammar
- Department of Chemical Engineering, College of Engineering, Al-Nahrain University, Jadriya, Baghdad, Iraq; College of Engineering, University of Warith Al-Anbiyaa, Karbala, Iraq
| | - Athraa G Taher
- Ministry of Oil, Oil Pipelines Company, Daura, Baghdad, Iraq
| |
Collapse
|
6
|
Bai Y, Hao D, Feng S, Lu L, Wang Q. A magnetically reusable Ce-MOF/GO/Fe 3O 4 composite for effective photocatalytic degradation of chlortetracycline. Phys Chem Chem Phys 2024; 26:3832-3841. [PMID: 38221795 DOI: 10.1039/d3cp04499h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
Herein, we report a novel 1/GO/Fe3O4 photocatalyst, comprising Ce(BTB)(H2O) (MOF-1, H3BTB = 1,3,5-benzenetrisbenzoic acid), graphene oxide (GO), and iron oxide (Fe3O4) for photocatalytic degradation of chlortetracycline (CTC). This design enables the effective transfer of electrons from the MOF to GO, thereby reducing the photoelectron-hole recombination rate. Therefore, the optimized 1/GO/Fe3O4 photocatalyst with H2O2 shows the highest photocatalytic activity toward CTC. The kinetic constant is 5.4 times that in the system of MOF-1 and hydrogen peroxide, which usually acted as efficient electron acceptors to improve the photocatalytic performance of MOFs. More importantly, light absorption is extended from the ultraviolet to the visible region. Furthermore, 1/GO/Fe3O4 can be quickly recycled under an applied magnetic field and displays outstanding stability and reusability. According to the radical trapping experiments and electron paramagnetic resonance results, hydroxyl radicals, superoxide radicals, and holes all contribute to excellent photocatalytic activity. The possible catalytic mechanism of 1/GO/Fe3O4 is tentatively proposed. This work aims to explore the synergistic effect between metal-organic frameworks (MOFs) and GO, and provide a theoretical basis for MOF-based composites to remove antibiotic contaminants in the environment.
Collapse
Affiliation(s)
- Yuting Bai
- Institute of Molecular Science, Key Laboratory of Chemical Biology and Molecular Engineering of the Education Ministry, Shanxi University, Taiyuan, Shanxi 030006, P. R. China.
- Department of Energy Chemistry and Materials Engineering, Shanxi Institute of Energy, Jinzhong, Shanxi, 030600, China
| | - Derek Hao
- Centre for Technology in Water and Wastewater (CTWW), School of Civil and Environmental Engineering, University of Technology Sydney (UTS), Sydney, NSW 2007, Australia
| | - Sisi Feng
- Institute of Molecular Science, Key Laboratory of Chemical Biology and Molecular Engineering of the Education Ministry, Shanxi University, Taiyuan, Shanxi 030006, P. R. China.
- Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province, Shanxi University, Taiyuan, Shanxi, 030006, P. R. China.
| | - Liping Lu
- Institute of Molecular Science, Key Laboratory of Chemical Biology and Molecular Engineering of the Education Ministry, Shanxi University, Taiyuan, Shanxi 030006, P. R. China.
| | - Qi Wang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China.
| |
Collapse
|
7
|
Wei L, Zhang Y, Jiang J, Yang Y, Liu H. Modified UiO-66-Br Microphotocatalyst with High Electron Mobility Enhances Tetracycline Degradation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:3678-3691. [PMID: 36853221 DOI: 10.1021/acs.langmuir.2c03308] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
In this work, the Br functional group on the ligand UiO-66-Br was modified with a Bi-O bond through the secondary solvothermal method, and the synthesis method of visible light catalyst UB (UiO-66-BiOBr) with high electron mobility was explored. The findings indicate that the effective charge transfer of the functional group-modified material UB is 2.98 times and 1.22 times that of BiOBr and traditional UiO-66/BiOBr heterojunctions, respectively. Under simulated sunlight irradiation, the removal rate of tetracycline can reach 88.71%, and the photocatalytic performance is 22.73 times higher than that of UiO-66-Br. Moreover, it maintains good adsorption and photocatalytic performance under different laboratory and actual engineering water environment conditions. In the complex water environment of municipal wastewater, the degradation effect reaches more than 80%. Finally, the decomposition pathways of TC and ecotoxicities of the intermediates were analyzed via combining theoretical calculation, LC-MS/MS, and T.E.S.T.
Collapse
Affiliation(s)
- Lihong Wei
- College of Energy and Environment, Shenyang Aerospace University, Shenyang 110122, China
| | - Yao Zhang
- College of Energy and Environment, Shenyang Aerospace University, Shenyang 110122, China
| | - Jinyuan Jiang
- Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yinbo Yang
- College of Energy and Environment, Shenyang Aerospace University, Shenyang 110122, China
| | - Hui Liu
- Lab of Plasma Propulsion, Harbin Institute of Technology (HIT), Harbin 150001, China
| |
Collapse
|
8
|
Li J, Wang H, Reddy N, Zhu Z, Zheng J, Wang W, Liu B, Hu C. MOF FeCo/B-CN composites achieve efficient degradation of antibiotics in a non-homogeneous concurrent photocatalytic-persulfate activation system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159795. [PMID: 36336040 DOI: 10.1016/j.scitotenv.2022.159795] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/09/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
We synthesized an MFeCoB0.4CNx% (MOF-Fe/Co nanosheets/boron-doped g-C3N4) composite catalyst for enhancing the concurrent photocatalytic-persulfate activation (CPPA) system and achieved efficient degradation of antibiotics. The role of MOF-Fe/Co is to activate persulfate, while boron-doped g-C3N4 can generate photogenerated electrons for the reduction of Co3+/Fe3+ to enhance the regeneration of the active center. The rate constant for Tetracycline degradation by the CPPA system was 4.74 and 7.54 times higher than the photocatalytic and persulfate-activated systems, respectively. This composite was shown to be practical and economically viable for antibiotic degradation. The degradation behavior was explored based on experiments, and molecular orbitals and Fukui functions were obtained by density functional theory calculations. Mechanisms were investigated using reactive oxygen species trapping studies and electron spin resonance, and the process was explained in terms of the charge population and electron density difference of MOF-Fe/Co nanosheets. The CPPA system is an ecologically benign technology for removing antibiotic-related risks to the environment and human health.
Collapse
Affiliation(s)
- Jinyang Li
- Key Lab of Science and Technology of Eco-textile, Ministry of Education, College of Chemistry and Chemical Engineering, Innovation Center for Textile Science and Technology, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, China
| | - Haofu Wang
- Key Lab of Science and Technology of Eco-textile, Ministry of Education, College of Chemistry and Chemical Engineering, Innovation Center for Textile Science and Technology, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, China
| | - Narendra Reddy
- Centre for Incubation, Innovation, Research and Consultancy (CIIRC), Jyothy Institute of Technology, Thataguni, Off Kanakapura Road, Bangalore, Karnataka 560082, India
| | - Zhijia Zhu
- Key Lab of Science and Technology of Eco-textile, Ministry of Education, College of Chemistry and Chemical Engineering, Innovation Center for Textile Science and Technology, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, China
| | - Jian Zheng
- Key Lab of Science and Technology of Eco-textile, Ministry of Education, College of Chemistry and Chemical Engineering, Innovation Center for Textile Science and Technology, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, China
| | - Wei Wang
- Key Lab of Science and Technology of Eco-textile, Ministry of Education, College of Chemistry and Chemical Engineering, Innovation Center for Textile Science and Technology, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, China; Department of Textile &Garment Engineering, Changshu Institute of Technology, Suzhou 215500, China
| | - Baojiang Liu
- Key Lab of Science and Technology of Eco-textile, Ministry of Education, College of Chemistry and Chemical Engineering, Innovation Center for Textile Science and Technology, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, China
| | - Chunyan Hu
- Key Lab of Science and Technology of Eco-textile, Ministry of Education, College of Chemistry and Chemical Engineering, Innovation Center for Textile Science and Technology, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, China.
| |
Collapse
|
9
|
Yang Z, Wang L, Fang M, Xia X, Liu Y. Efficient spatial separation of charge carriers over CoS1+x cocatalyst modified MIL-88B (Fe)/ZnIn2S4 S-scheme heterojunctions for photoredox dual reaction and insight into the charge-transfer mechanism. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
10
|
Cui Y, Zheng J, Zhu Z, Hu C, Liu B. Preparation and application of Bi4O7/Cu-BiOCl heterojunction photocatalyst for photocatalytic degradation of tetracycline under visible light. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
11
|
Ma R, Zhang S, Guo S, Jiang Z, Wang J, Sun M, Wang S, Wen T, Wang X. In situ low-temperature pyrolysis fabrication type II BiOIO 3/Bi 4O 5I 2 heterostructures with enhanced visible-light-driven photooxidation activity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 837:155836. [PMID: 35550903 DOI: 10.1016/j.scitotenv.2022.155836] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/30/2022] [Accepted: 05/06/2022] [Indexed: 06/15/2023]
Abstract
Novel visible-light-driven heterostructure semiconductors are considered as promising photocatalysts for the elimination of environmental organic pollutants. Herein, a solvent-assisted low-temperature in situ calcination strategy was developed to fabricate type II BiOIO3/Bi4O5I2 heterojunction by using BiOIO3 as self-sacrificed template. The phase transition temperature of BiOIO3 was reduced under solvent-assisted operating conditions. By controlling the elevated temperature from 200 to 300 °C, an in situ stepwise pyrolysis reaction occurred during the calcination process, which was described as BiOIO3 → BiOIO3/Bi4O5I2 → Bi4O5I2. The light absorption edge of different samples significantly red shifted from 385 to 632 nm with the increase of calcination temperature. Meanwhile, two interlocked interface lattice fringes were identified in high resolution transmission electron microscope (HRTEM) of BiOIO3/Bi4O5I2-250 composites, confirming the formation of BiOIO3/Bi4O5I2 heterojunction. The as-obtained BiOIO3/Bi4O5I2 heterojunction demonstrated the optimal photodegradation performance, which brought about 99.4% of bisphenol A (BPA) degraded within 30 min visible light (λ > 420 nm) illumination. Besides, after 5 repeated cycles, the photoactivity of BiOIO3/Bi4O5I2 heterojunction still maintained 91.5%, unfolding its high photostability. The superior photoreactivity of BiOIO3/Bi4O5I2 nanosheets was assigned to the formation of well-matched type II heterojunction, which significantly enhanced the separation and migration of photoinduced charge carriers. Superoxide radical (O2-) and hole (h+) are dominant reactive species in this photodegradation system. Based on active species quenching experiments and electron paramagnetic resonance (ESR) measurements, a possible type II heterojunction mechanism for enhanced photodegradation performance of BiOIO3/Bi4O5I2 heterostructure was proposed. This work affords an innovative method for design and construction of type II composites toward sustainable water purification.
Collapse
Affiliation(s)
- Ran Ma
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environment and Chemical Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Sai Zhang
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environment and Chemical Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Sisheng Guo
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environment and Chemical Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Zheng Jiang
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environment and Chemical Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Jian Wang
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environment and Chemical Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Mingtai Sun
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Process and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, PR China
| | - Suhua Wang
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environment and Chemical Engineering, North China Electric Power University, Beijing 102206, PR China; Guangdong Provincial Key Laboratory of Petrochemical Pollution Process and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, PR China
| | - Tao Wen
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environment and Chemical Engineering, North China Electric Power University, Beijing 102206, PR China.
| | - Xiangke Wang
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environment and Chemical Engineering, North China Electric Power University, Beijing 102206, PR China
| |
Collapse
|
12
|
Liu N, Dai W, Fei F, Xu H, Lei J, Quan G, Zheng Y, Zhang X, Tang L. Insights into the photocatalytic activation persulfate by visible light over ReS2/MIL-88B(Fe) for highly efficient degradation of ibuprofen: Combination of experimental and theoretical study. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121545] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
13
|
Khan MM, Rahman A, Matussin SN. Recent Progress of Metal-Organic Frameworks and Metal-Organic Frameworks-Based Heterostructures as Photocatalysts. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2820. [PMID: 36014685 PMCID: PMC9413115 DOI: 10.3390/nano12162820] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 08/13/2022] [Accepted: 08/14/2022] [Indexed: 05/09/2023]
Abstract
In the field of photocatalysis, metal-organic frameworks (MOFs) have drawn a lot of attention. MOFs have a number of advantages over conventional semiconductors, including high specific surface area, large number of active sites, and an easily tunable porous structure. In this perspective review, different synthesis methods used to prepare MOFs and MOFs-based heterostructures have been discussed. Apart from this, the application of MOFs and MOFs-based heterostructures as photocatalysts for photocatalytic degradation of different types of pollutants have been compiled. This paper also highlights the different strategies that have been developed to modify and regulate pristine MOFs for improved photocatalytic performance. The MOFs modifications may result in better visible light absorption, effective photo-generated charge carriers (e-/h+), separation and transfer as well as improved recyclability. Despite that, there are still many obstacles and challenges that need to be addressed. In order to meet the requirements of using MOFs and MOFs-based heterostructures in photocatalysis for low-cost practical applications, future development and prospects have also been discussed.
Collapse
Affiliation(s)
- Mohammad Mansoob Khan
- Chemical Sciences, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong BE 1410, Brunei
| | | | | |
Collapse
|
14
|
He H, Zhu Z, Zheng J, Hu C, Cui Y, Liu B, Wang W. Preparation of dual Z-scheme PDIP/WO3@CN-Br heterojunction photocatalyst and its excellent degradation efficiency of tetracycline under visible light. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
15
|
Chen L, Chen CW, Huang CP, Chuang Y, Nguyen TB, Dong CD. A visible-light sensitive MoSSe nanohybrid for the photocatalytic degradation of tetracycline, oxytetracycline, and chlortetracycline. J Colloid Interface Sci 2022; 616:67-80. [DOI: 10.1016/j.jcis.2022.01.035] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 01/05/2022] [Accepted: 01/06/2022] [Indexed: 12/26/2022]
|