1
|
Sun H, Gao L, Li Y, Xu Q, Li Y, Liu W. Screening of single-atomic catalysts loaded on two-dimensional transition metal dichalcogenides for electrocatalytic oxygen reduction via high throughput ab initio calculations. J Colloid Interface Sci 2025; 684:251-261. [PMID: 39832445 DOI: 10.1016/j.jcis.2025.01.060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 01/07/2025] [Accepted: 01/08/2025] [Indexed: 01/22/2025]
Abstract
The design and screening of low cost and high efficiency oxygen reduction reaction (ORR) electrocatalysts is vital in the realms of fuel cells and metal-air batteries. Existing studies largely rely on the calculation of absorption free energy, a method established 20 years ago by Jens K. Nørskov. However, the study of electrocatalysts grounded solely on free energy calculation often lacks in-depth analysis, particularly overlooking the influence of solvent and electrode potential. In this regard, we here present a novel approach using constant-potential and ab initio molecular dynamics (AIMD) simulation to screen single-atom catalysts loaded on transition metal dichalcogenides (SA@TMDs) for ORR. An extensive investigation of 1584 SA@TMDs results in 20 high performing ORR catalysts with overpotential less than 0.33 V and high working stability. In addition, our study shows that the electrode potential has different effects on the adsorption energy of *OOH, *O and *OH, which leads to a reversal of the rate-determining step (RDS) of the ORR. This work presents not only credible, high-performance catalyst candidates for experimental exploration, but also significantly improves our understanding on the reaction mechanism of ORR under realistic reaction conditions.
Collapse
Affiliation(s)
- Hao Sun
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029 China
| | - Liyao Gao
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029 China
| | - Yizhe Li
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029 China
| | - Qingzhen Xu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029 China
| | - Yaping Li
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029 China.
| | - Wen Liu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029 China.
| |
Collapse
|
2
|
Tang Q, Lv M, Yu G, Chen W. Constructing Janus Structures and Rich Electron Pool in 2D TMTe Nanostructures To Achieve OER/ORR Electrocatalysts. Inorg Chem 2025; 64:4283-4297. [PMID: 39983093 DOI: 10.1021/acs.inorgchem.4c04704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2025]
Abstract
Through first-principles structure search calculations, we have identified ten hitherto unknown two-dimensional (2D) Janus-wrinkled TMTe monolayers (TM = Ni, Pd, Pt, Co, Rh, Ir, Fe, Ru, Os, and Hf) by screening 3d, 4d, and 5d transition metal atoms. These monolayers exhibit high stability and metallic conductivity. Among the discovered materials, the 2D PdTe (ηOER/ORR = 0.46/0.22 V) and PtTe (ηOER/ORR = 0.46/0.32 V) monolayers can demonstrate superior bifunctional catalytic performance for oxygen evolution and oxygen reduction reactions (OER/ORR), with lower overpotential than the state-of-the-art IrO2 for OER and Pt (111) for ORR, respectively. The TM- and Te-sides originating from the unique Janus configurations play a crucial role in the high OER and ORR catalytic activities, respectively. Furthermore, by stacking the monolayer structures, eight new (TMTe)2 bilayers with high stability and metallic conductivity can be achieved, which possess an internal metal layer, forming a rich electron pool. This effectively improves oxygen adsorption and activity on some bilayers, including (PdTe)2, (PtTe)2, (RhTe)2, and (IrTe)2, by transferring more electrons to the adsorbed O2 molecule, leading to considerably high ORR catalytic performance (ηORR = 0.16-0.44 V). Moreover, detailed analyses of the catalytic mechanisms have been conducted. These intriguing findings can offer new insights for designing low-cost and high-performance electrocatalysts for OER and ORR reactions, with the potential to replace related noble metal catalysts used in water splitting, fuel cells, metal-air batteries, etc.
Collapse
Affiliation(s)
- Qian Tang
- Engineering Research Center of Industrial Biocatalysis, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian-Taiwan Science and Technology Cooperation Base of Biomedical Materials and Tissue Engineering, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China
| | - Mingyue Lv
- Engineering Research Center of Industrial Biocatalysis, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian-Taiwan Science and Technology Cooperation Base of Biomedical Materials and Tissue Engineering, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China
| | - Guangtao Yu
- Engineering Research Center of Industrial Biocatalysis, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian-Taiwan Science and Technology Cooperation Base of Biomedical Materials and Tissue Engineering, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China
| | - Wei Chen
- Engineering Research Center of Industrial Biocatalysis, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian-Taiwan Science and Technology Cooperation Base of Biomedical Materials and Tissue Engineering, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China
- Academy of Carbon Neutrality of Fujian Normal University, Fuzhou 350007, China
| |
Collapse
|
3
|
Gao J, Shen Y, Sun Y, Feng Z, Shi P, Xie K, Lin L, Guo X, Zhang S. CrSe 2 based single-cluster catalysts with controllable charge states for the oxygen reduction and hydrogen evolution reactions. J Colloid Interface Sci 2025; 678:1122-1131. [PMID: 39341143 DOI: 10.1016/j.jcis.2024.09.190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/14/2024] [Accepted: 09/22/2024] [Indexed: 09/30/2024]
Abstract
Development of affordable catalysts for the oxygen reduction reaction (ORR) and hydrogen evolution reaction (HER) represents a central task for advancing electrochemical systems such as fuel cells and metal-air batteries. This study reported the ORR and HER performance of a set of single cluster catalysts (SCCs) with atomically dispersed 3d/4d/5d transition metal cluster (TM3) embedded in a two-dimensional (2D) defective CrSe2 substrate. Distinguishing from the conventional SCCs with positive charge active center, the unique electronegativity discrepancy between the metal clusters and the substrate renders the active center controllable charge states from negative to positive. Our investigations indicate that the TM3 cluster helps tuning the adsorption performance of the intermediates, and therefore enhancing the electrocatalytic activity of the SCCs. Among all the candidates, we demonstrated that the less reported elements of Ir and Ag exhibit the best performance of HER and ORR with low overpotentials of -0.059 and 0.61 V, respectively. Our work provides a prototype to rationally regulate the charge states of catalysts, which could potentially contribute to the development of new kinds of catalysts and serve as a valuable theoretical reference for the experimental rationalization of SCCs.
Collapse
Affiliation(s)
- Jie Gao
- Yellow River Conservancy Technical Institute, Kaifeng, Henan 475004, China
| | - Ye Shen
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, China.
| | - Yadan Sun
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, China
| | - Zhiyan Feng
- Cultivating Base for Key Laboratory of Environment-Friendly Inorganic Materials in Henan Province, School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454000, China
| | - Pei Shi
- Cultivating Base for Key Laboratory of Environment-Friendly Inorganic Materials in Henan Province, School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454000, China
| | - Kun Xie
- Cultivating Base for Key Laboratory of Environment-Friendly Inorganic Materials in Henan Province, School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454000, China
| | - Long Lin
- Cultivating Base for Key Laboratory of Environment-Friendly Inorganic Materials in Henan Province, School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454000, China.
| | - Xiangyu Guo
- School of Science, Constructor University, Bremen 28759, Germany.
| | - Shengli Zhang
- MIIT Key Laboratory of Advanced Display Materials and Devices Ministry of Industry and Information Technology, College of Material Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| |
Collapse
|
4
|
Xiong M, Yang T. Computational screening on azafullerene-supported bifunctional single-atom catalysts for oxygen evolution and reduction reactions. Phys Chem Chem Phys 2024; 26:29895-29903. [PMID: 39611560 DOI: 10.1039/d4cp03608e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Abstract
Developing efficient bifunctional catalysts toward both the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) remains challenging. Herein, we systematically explored the catalytic activity of single-atom catalysts (SACs) for the OER and ORR with 27 transition metal atoms supported on pyrrolic/pyridinic azafullerenes C54N4 and C64N4 using first-principles calculations. The catalytic performance of these single-atom catalysts TM@azafullerenes is highly dependent on the number of electrons in the TM d-orbitals. Azafullerene-supported Rh, Ir, and Co catalysts show overpotentials comparable or even superior to those of TM-N4-graphene, emerging as promising candidates for bifunctional ORR and OER catalysts. Further bonding analysis shows that the TM-N bonds (TM = Rh, Co, and Ir) exhibit ionic characteristics, and ab initio molecular dynamics simulations (AIMD) demonstrate that these catalysts remain stable at 300 K. Descriptors, including the integrated crystal orbital Hamilton population and ϕ incorporating the d-orbital electron count and the electronegativity effectively elucidate the origins of the high catalytic activity for the ORR/OER. Our findings not only enrich the understanding of single-atom catalysts but also stimulate further development of novel fullerene-based SACs.
Collapse
Affiliation(s)
- Mo Xiong
- MOE Key Laboratory for Non-Equilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China.
| | - Tao Yang
- MOE Key Laboratory for Non-Equilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China.
| |
Collapse
|
5
|
Kim H, Min K, Kwon K, Eun Shim S, Baeck SH. Synergistic enhancement of Zn-air battery performance via integration of Ni-doped cobalt sulfide nanoparticles within N, S-doped carbon matrix. J Colloid Interface Sci 2024; 675:104-116. [PMID: 38968631 DOI: 10.1016/j.jcis.2024.06.242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/20/2024] [Accepted: 06/30/2024] [Indexed: 07/07/2024]
Abstract
Exploring precious metal-free bifunctional electrocatalysts for both the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER) is essential for the practical application of rechargeable Zn-air battery (ZAB). Herein, Ni-doped Co9S8 nanoparticles embedded in a defect-rich N, S co-doped carbon matrix (d-NixCo9-xS8@NSC) are synthesized via a facile pyrolysis and acid treatment process. The introduction of abundant defects in both the carbon matrix and metal sulfide provides numerous active sites and significantly enhances the electrocatalytic performances for both the ORR and OER. d-NixCo9-xS8@NSC exhibits a superior half-wave potential of 0.841 V vs. RHE for the ORR and delivers a low overpotential of 0.329 V at 10 mA cm-2 for the OER. Additionally, Zn-air secondary battery using d-NixCo9-xS8@NSC as the air cathode displays a higher specific capacity of 734 mAh gZn-1 and a peak power density of 148.03 mW cm-2 compared to those of state-of-the-art Pt/C-RuO2 (673 mAh gZn-1 and 136.9 mW cm-2, respectively). These findings underscore the potential of d-NixCo9-xS8@NSC as a high-performance electrocatalyst for secondary ZABs, offering new perspectives on the design of efficient noble metal-free electrocatalysts for future energy storage and conversion applications.
Collapse
Affiliation(s)
- Hyejin Kim
- Department of Chemistry and Chemical Engineering, Education and Research Center for Smart Energy Materials and Process, Inha University, Incheon 22212, Republic of Korea
| | - Kyeongseok Min
- Department of Chemistry and Chemical Engineering, Education and Research Center for Smart Energy Materials and Process, Inha University, Incheon 22212, Republic of Korea
| | - Kyeongmin Kwon
- Department of Chemistry and Chemical Engineering, Education and Research Center for Smart Energy Materials and Process, Inha University, Incheon 22212, Republic of Korea
| | - Sang Eun Shim
- Department of Chemistry and Chemical Engineering, Education and Research Center for Smart Energy Materials and Process, Inha University, Incheon 22212, Republic of Korea
| | - Sung-Hyeon Baeck
- Department of Chemistry and Chemical Engineering, Education and Research Center for Smart Energy Materials and Process, Inha University, Incheon 22212, Republic of Korea.
| |
Collapse
|
6
|
Sam DK, Li H, Xu YT, Cao Y. Advances in porous carbon materials for a sustainable future: A review. Adv Colloid Interface Sci 2024; 333:103279. [PMID: 39208622 DOI: 10.1016/j.cis.2024.103279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 08/05/2024] [Accepted: 08/17/2024] [Indexed: 09/04/2024]
Abstract
Developing clean and renewable energy sources is key to a sustainable future. For human society to progress sustainably, environmentally friendly energy conversion and storage technologies are critical. The use of nanostructured advanced functional materials heavily influences the functionality of these systems. Porous carbons are multifunctional materials boasting considerable industrial utility. They possess many remarkable physiochemical and mechanical characteristics which have garnered interest in various fields. In this review, the application of porous carbon materials in electrocatalysis (HER, OER, ORR, NARR, and CO2RR) and rechargeable batteries (LIBs, LiS batteries, NIBs, and KIBs) for renewable energy conversion and storage are discussed. The suitability of porous carbon materials for these applications is discussed, and some recent works are reviewed. Finally, a few viewpoints on developing porous carbons in electrocatalysis and rechargeable batteries are given. This review aims to generate interest in current and upcoming researchers in porous carbon application for a sustainable future.
Collapse
Affiliation(s)
- Daniel Kobina Sam
- School of Energy Science and Engineering, University of Science and Technology of China, Guangzhou 510640, China; Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Key Laboratory of Renewable Energy, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China
| | - Heyu Li
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Key Laboratory of Renewable Energy, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan-Tong Xu
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Key Laboratory of Renewable Energy, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China; School of Advanced Energy, Sun Yat-Sen University, Shenzhen 518107, China.
| | - Yan Cao
- School of Energy Science and Engineering, University of Science and Technology of China, Guangzhou 510640, China; Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Key Laboratory of Renewable Energy, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China.
| |
Collapse
|
7
|
Li Q, Li W, Liu D, Ma Z, Ye Y, Zhang Y, Chen Q, Cheng Z, Chen Y, Sa R. Advancing electrochemical nitrogen reduction: Efficacy of two-dimensional SiP layered structures with single-atom transition metal catalysts. J Colloid Interface Sci 2024; 668:399-411. [PMID: 38685165 DOI: 10.1016/j.jcis.2024.04.115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/07/2024] [Accepted: 04/16/2024] [Indexed: 05/02/2024]
Abstract
Researchers are interested in single-atom catalysts with atomically scattered metals relishing the enhanced electrocatalytic activity for nitrogen reduction and 100 % metal atom utilization. In this paper, we investigated 18 transition metals (TM) spanning 3d to 5d series as efficient nitrogen reduction reaction (NRR) catalysts on defective 2D SiPV layered structures through first-principles calculation. A systematic screening identified Mo@SiPV, Nb@SiPV, Ta@SiPV and W@SiPV as superior, demonstrating enhanced ammonia synthesis with significantly lower limiting potentials (-0.25, -0.45, -0.49 and -0.15 V, respectively), compared to the benchmark -0.87 eV for the defective SiP. In addition, the descriptor ΔG*N was introduced to establish the relationship between the different NRR intermediates, and the volcano plot of the limiting potentials were determined for their potential-determining steps (PDS). Remarkably, the limiting voltage of the NRR possesses a good linear relationship with the active center TM atom Ɛd, which is a reliable descriptor for predicting the limiting voltage. Furthermore, we verified the stability (using Ab Initio Molecular Dynamics - AIMD) and high selectivity (UL(NRR)-UL(HER) > -0.5 V) of these four catalysts in vacuum and solvent environments. This study systematically demonstrates the strong catalytic potential of 2D TM@SiPV(TM = Mo, Nb, Ta, W) single-atom catalysts for nitrogen reduction electrocatalysis.
Collapse
Affiliation(s)
- Qingyu Li
- College of Materials and Chemical Engineering, Minjiang University, Fuzhou 350108, China; Fujian Key Laboratory of Polymer Materials, College of Materials Science and Engineering, Fujian Normal University, Fuzhou 350007
| | - Weiguo Li
- College of Materials and Chemical Engineering, Minjiang University, Fuzhou 350108, China; Fujian Key Laboratory of Polymer Materials, College of Materials Science and Engineering, Fujian Normal University, Fuzhou 350007
| | - Diwen Liu
- School of Materials and Chemical Engineering, Pingxiang University, Pingxiang 337055, China.
| | - Zuju Ma
- School of Environmental and Materials Engineering, Yantai University, Yantai 264005, China
| | - Yuansong Ye
- College of Materials and Chemical Engineering, Minjiang University, Fuzhou 350108, China
| | - Yanjie Zhang
- College of Materials and Chemical Engineering, Minjiang University, Fuzhou 350108, China
| | - Qiang Chen
- College of Materials and Chemical Engineering, Minjiang University, Fuzhou 350108, China.
| | - Zhibing Cheng
- Fujian Key Laboratory of Polymer Materials, College of Materials Science and Engineering, Fujian Normal University, Fuzhou 350007
| | - Yiting Chen
- College of Materials and Chemical Engineering, Minjiang University, Fuzhou 350108, China
| | - Rongjian Sa
- College of Materials and Chemical Engineering, Minjiang University, Fuzhou 350108, China; Fujian Key Laboratory of Polymer Materials, College of Materials Science and Engineering, Fujian Normal University, Fuzhou 350007.
| |
Collapse
|
8
|
Fu Q, Xu T, He C, Wang D, Liu M, Liu C. Machine Learning-Assisted Study of REN xC 6-x-Doped Graphene as Potential Electrocatalysts for Oxygen Electrode Reactions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:10726-10736. [PMID: 38717961 DOI: 10.1021/acs.langmuir.4c00803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
In the application of renewable energy, the oxidation-reduction reaction (ORR) and oxygen evolution reaction (OER) are two crucial reactions. Single-atom catalysts (SACs) based on metal-doped graphene have been widely employed due to their high activity and high atom utilization efficiency. However, the catalytic activity is significantly influenced by different metals and local coordination, making it challenging to efficiently screen through either experimental or density functional theory (DFT) calculations. To address this issue, this study employed a combination of DFT calculations and machine learning (DFT-ML) to investigate rare earth-modified carbon-based (RENxC6-x) electrocatalysts. Based on computational data from 75 catalysts, we trained two ML models to capture the underlying patterns of physical properties and overpotential. Subsequently, the candidate catalysts were screened, leading to the discovery of four ORR catalysts, nine OER catalysts, and five bifunctional electrocatalysts, all of which were thoroughly validated for their stability. Lastly, by integrating the ML models with the SHAP analysis framework, we revealed the influence of atomic radius, Pauling electronegativity, and other features on the catalytic activity. Additionally, we analyzed the physicochemical properties of potential catalysts through DFT calculations. The revolutionary DFT-ML approach provides a crucial driving force for the design and synthesis of potential catalysts in subsequent studies.
Collapse
Affiliation(s)
- Qiming Fu
- School of Materials Science and Engineering, Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, People's Republic of China
| | - Tao Xu
- School of Materials Science and Engineering, Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, People's Republic of China
| | - Chenggong He
- School of Materials Science and Engineering, Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, People's Republic of China
| | - Daomiao Wang
- School of Materials Science and Engineering, Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, People's Republic of China
| | - Meiling Liu
- School of Materials Science and Engineering, Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, People's Republic of China
| | - Chao Liu
- School of Materials Science and Engineering, Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, People's Republic of China
| |
Collapse
|
9
|
Liao M, Zhao B, Zhang G, Peng J, Zhang Y, Liu B, Wang X. The oxygen evolution reaction on cobalt atom embedded nitrogen doped graphene electrocatalysts: a density functional theory study. Phys Chem Chem Phys 2024; 26:14079-14088. [PMID: 38687286 DOI: 10.1039/d4cp00542b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
The oxygen evolution reaction (OER) is essential for the development of renewable energy conversion and storage technologies. Eight N-doped graphenes containing variable numbers of embedded cobalt atoms (Coxy-NG, x = 1-4, y = 1-3, where x represents the number of embedded Co atoms and y represents different configurations) were designed and their OER electrocatalytic activities were systematically studied through density functional theory calculations. The significant roles of the number of Co atoms and their configuration in their OER performance were discussed in detail. Co31-NG occupies the peak of the activity volcano plot with a low overpotential of 0.31 V, which is smaller than Co11-NG with only one Co atom and even superior to the widely used IrO2 (0.56 V). The electronic structure and electron density analysis reveal that the outstanding electrocatalytic performance is due to the orbital hybridization between Co and N atoms and the increased positive charge on in-plane Co due to the out-of-plane Co atoms/clusters. This work clarifies the important role of transition atoms and provides excellent examples for reducing the overpotential through embedding several transition metal atoms onto single-atom electrocatalysts.
Collapse
Affiliation(s)
- Meijing Liao
- Shandong Provincial Key Laboratory of Monocrystalline Silicon Semiconductor Materials and Technology, Shandong Provincial Engineering Research Center of Organic Functional Materials and Green Low-Carbon Technology, Shandong Universities Engineering Research Center of Integrated Circuits Functional Materials and Expanded Applications, College of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, P. R. China.
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China
| | - Bing Zhao
- Shandong Provincial Key Laboratory of Monocrystalline Silicon Semiconductor Materials and Technology, Shandong Provincial Engineering Research Center of Organic Functional Materials and Green Low-Carbon Technology, Shandong Universities Engineering Research Center of Integrated Circuits Functional Materials and Expanded Applications, College of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, P. R. China.
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China
| | - Guangsong Zhang
- Shandong Provincial Key Laboratory of Monocrystalline Silicon Semiconductor Materials and Technology, Shandong Provincial Engineering Research Center of Organic Functional Materials and Green Low-Carbon Technology, Shandong Universities Engineering Research Center of Integrated Circuits Functional Materials and Expanded Applications, College of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, P. R. China.
| | - Junhao Peng
- Shandong Provincial Key Laboratory of Monocrystalline Silicon Semiconductor Materials and Technology, Shandong Provincial Engineering Research Center of Organic Functional Materials and Green Low-Carbon Technology, Shandong Universities Engineering Research Center of Integrated Circuits Functional Materials and Expanded Applications, College of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, P. R. China.
| | - Yuexing Zhang
- Shandong Provincial Key Laboratory of Monocrystalline Silicon Semiconductor Materials and Technology, Shandong Provincial Engineering Research Center of Organic Functional Materials and Green Low-Carbon Technology, Shandong Universities Engineering Research Center of Integrated Circuits Functional Materials and Expanded Applications, College of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, P. R. China.
| | - Bin Liu
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China
| | - Xinfang Wang
- Shandong Provincial Key Laboratory of Monocrystalline Silicon Semiconductor Materials and Technology, Shandong Provincial Engineering Research Center of Organic Functional Materials and Green Low-Carbon Technology, Shandong Universities Engineering Research Center of Integrated Circuits Functional Materials and Expanded Applications, College of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, P. R. China.
| |
Collapse
|
10
|
Li D, Zhang A, Feng Z, Wang W. Theoretical Insights on the Charge State and Bifunctional OER/ORR Electrocatalyst Activity in 4d-Transition-Metal-Doped g-C 3N 4 Monolayers. ACS APPLIED MATERIALS & INTERFACES 2024; 16:5779-5791. [PMID: 38270099 DOI: 10.1021/acsami.3c14995] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
Exploring efficient and stable electrocatalysts for the bifunctional oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) is vital to developing renewable energy technologies. However, due to the substantial and intricate design space associated with these bifunctional OER/ORR electrocatalysts, their development presents a formidable challenge, resulting in their cost-prohibitive nature in both experimental and computational studies. Herein, using the defect physics method, we systematically investigate the formation energies and bifunctional overpotential (ηBi) of 4d-transition-metal (4d-TM, 4d-TM = Zr, Nb, Mo, Ru, Rh, Pd, and Ag)-doped monolayer supercell g-C3N4 (4d-TM@C54N72) based on the density functional theory (DFT) calculations. Under N-rich and C-rich conditions, we find that the formation energies of RhN@C54N71 (Rh occupation N) and PdN@C54N71 (Pd occupation N) are smaller than that of other 4d-TMN@C54N71 (4d-TM occupation N site); for the 4d-TMint@C54N72 (4d-TM interstitial site occupation), the lowest-formation energy defects are Pdint@C54N72. These results indicate that they have better stabilities. Interestingly, for these formation energy lower systems, Pd0int@C54N72 (ηBi = 1.00 V) and Rh1+N@C54N71 (ηBi = 0.73 V) have ultralow overpotential and can be great candidates for bifunctional OER/ORR electrocatalysts. We find the reason is that adjusting the charge states of 4d-TM@C54N72 can tune the interaction strength between the oxygenated intermediates and the 4d-TM@C54N72, which plays a crucial role in the activity of reactions. Additionally, the data obtained through machine learning (ML) application suggest that the electronegativity (Nm) and bond length of 4d-TM and coordination atoms (dTM-OOH) are primary descriptors characterizing the OER and ORR activities, respectively. The charged defect tuning of the bifunctional OER/ORR activity for 4d-TM@C54N72 would enable electrocatalytic performance optimization and the development of potential electrocatalysts for renewable energy applications.
Collapse
Affiliation(s)
- Dongying Li
- Guizhou Provincial Key Laboratory of Computational Nano-Material Science, Guizhou Education University, Guiyang 550018, China
| | - Aodi Zhang
- Institute for Computational Materials Science, School of Physics and Electronics, International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, Henan University, Kaifeng 475004, China
| | - Zhenzhen Feng
- Institute for Computational Materials Science, School of Physics and Electronics, International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, Henan University, Kaifeng 475004, China
| | - Wentao Wang
- Guizhou Provincial Key Laboratory of Computational Nano-Material Science, Guizhou Education University, Guiyang 550018, China
| |
Collapse
|
11
|
Yang X, Yu G, Chen W. Realizing a high OER activity in new single-atom catalysts formed by introducing TMN x ( x = 3 and 4) units into carbon nanotubes using high-throughput calculations. NANOSCALE 2023; 16:273-283. [PMID: 38059271 DOI: 10.1039/d3nr04396g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
Exploring highly efficient electrocatalysts for the oxygen evolution reaction (OER) is of great significance for hydrogen production through water splitting. By means of high-throughput density functional theory (DFT) calculations, we investigated the OER catalytic activity of a series of one-dimensional carbon nanotube (CNT)-based systems containing TMN4 or TMN3 functional units. Through the screening of 3d/4d/5d transition metals (TMs) from Group IVB to Group VIII, eight newly obtained TMNx@CNT (x = 3 and 4) systems were found to exhibit excellent OER activity, with very low overpotentials in the range 0.29-0.51 V, where the Co, Rh, Ir, Ti, Fe, and Ru atoms could be used as active sites. It was found that under the framework of TMN3@CNTs, the pre-adsorption of some species from water dissociation on the relevant TM sites (TM = Ti, Fe, and Ru) could lead to a high OER catalytic activity, which was different from the general situation where OER reactions directly occur on the clean surfaces of the remaining systems with Co/Rh/Ir metal centers. Moreover, the catalytic mechanisms were analyzed in detail. This work can be conducive to obtaining low-cost and high-performance OER single-atom electrocatalysts based on excellent CNT nanomaterials.
Collapse
Affiliation(s)
- Xia Yang
- Engineering Research Center of Industrial Biocatalysis, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian-Taiwan Science and Technology Cooperation Base of Biomedical Materials and Tissue Engineering, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, China.
| | - Guangtao Yu
- Engineering Research Center of Industrial Biocatalysis, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian-Taiwan Science and Technology Cooperation Base of Biomedical Materials and Tissue Engineering, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, China.
| | - Wei Chen
- Engineering Research Center of Industrial Biocatalysis, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian-Taiwan Science and Technology Cooperation Base of Biomedical Materials and Tissue Engineering, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, China.
- Academy of Carbon Neutrality of Fujian Normal University, Fujian Normal University, Fuzhou, 350007, China
- Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
12
|
Xue Z, Tan R, Wang H, Tian J, Wei X, Hou H, Zhao Y. A novel tetragonal T-C 2N supported transition metal atoms as superior bifunctional catalysts for OER/ORR: From coordination environment to rational design. J Colloid Interface Sci 2023; 651:149-158. [PMID: 37542890 DOI: 10.1016/j.jcis.2023.07.128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/05/2023] [Accepted: 07/19/2023] [Indexed: 08/07/2023]
Abstract
Single-atom catalysts with particular electronic structures and precisely regulated coordination environments delivering excellent activity for oxygen-evolution reaction (OER) and oxygen-reduction reaction (ORR) are highly desirable for renewable energy applications. In this work, a novel tetragonal carbon nitride T-C2N monolayer with remarkable stability was predicted by using the RG2 method. Inspired by the well-defined atomic structures and just right N4 aperture of T-C2N substrate, the electrocatalytic performance of a series of transition metal single-atoms anchored on porous T-C2N matrix (TM@C2N) have been systematically investigated. In addition, machine learning (ML) method was employed with the gradient boosting regression GBR model to deeply explore the complex controlling factors and offer direct guidance for rational discovery of desirable catalysts. On this basis, the coordination environment of the central TM active sites has been tailored by incorporating heteroatoms. Impressively, the Co@C2N/B-C, Rh@C2N/SC and Rh@C2N/SN exhibit significantly enhanced OER/ORR activity with notably low ηOER/ηORR of 0.39/0.32, 0.26/0.35 and 0.37/0.27 V, respectively. Our work provides insights into the rational design, data-driven, performance regulation, mechanism analysis and practical application of TMNC catalysts. Such a systematic theoretical framework can also be expanded to many other kinds of catalysts for energy storage and conversion.
Collapse
Affiliation(s)
- Zhe Xue
- School of Materials Science and Engineering, Collaborative Innovation Center of Ministry of Education and Shanxi Province for High-performance Al/Mg Alloy Materials, North University of China, Taiyuan 030051, China
| | - Rui Tan
- Physics and Electronic Engineering, Hengyang Normal University, Hengyang 421002, China
| | - Hongxia Wang
- School of Materials Science and Engineering, Collaborative Innovation Center of Ministry of Education and Shanxi Province for High-performance Al/Mg Alloy Materials, North University of China, Taiyuan 030051, China
| | - Jinzhong Tian
- School of Materials Science and Engineering, Collaborative Innovation Center of Ministry of Education and Shanxi Province for High-performance Al/Mg Alloy Materials, North University of China, Taiyuan 030051, China
| | - Xiaolin Wei
- Physics and Electronic Engineering, Hengyang Normal University, Hengyang 421002, China.
| | - Hua Hou
- School of Materials Science and Engineering, Collaborative Innovation Center of Ministry of Education and Shanxi Province for High-performance Al/Mg Alloy Materials, North University of China, Taiyuan 030051, China; School of Materials Science and Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, China
| | - Yuhong Zhao
- School of Materials Science and Engineering, Collaborative Innovation Center of Ministry of Education and Shanxi Province for High-performance Al/Mg Alloy Materials, North University of China, Taiyuan 030051, China; Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China; Institute for Materials Intelligent Technology, Liaoning Academy of Materials, Shenyang 110010, China.
| |
Collapse
|
13
|
Wang D, Liao M, Jin L, Wu K, Peera SG, Liu C. Evaluating the Oxygen Electrode Reactions of La Single-Atom Catalysts with the N/C Coordination Effect. Inorg Chem 2023. [PMID: 38019710 DOI: 10.1021/acs.inorgchem.3c03368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
There is a growing demand for bifunctional electrocatalysts for oxygen electrodes in rechargeable metal-air batteries. This article investigates the bifunctional activity of La single-atom catalysts with N/C coordination (LaNxC6-x@Gra) using density functional theory (DFT). The augmentation of N coordination will result in enhanced synthetic stability. The coordination between nitrogen and carbon (N/C) has a significant influence on the working stability of the system under consideration. In the context of active atoms, the coordination between nitrogen and carbon (N/C coordination) has a significant impact on the electronic structure. This, in turn, influences the adsorption performance and catalytic activity of the catalysts. In the case of stable coordination environments, a correlation exists between the f-orbital center (εf) and the overpotential (η) via the adsorption free energy of intermediates (ΔG*ads). This correlation serves as a useful tool for predicting catalytic performance. The LaNxC6-x@Gra exhibits remarkable bifunctional activity due to its complementary performance, with an overpotential for the oxygen reduction reaction (ηORR) of 0.66 V and an overpotential for the oxygen evolution reaction (ηOER) of 0.43 V. This makes it a promising candidate for use as a bifunctional electrocatalyst in oxygen electrodes.
Collapse
Affiliation(s)
- Daomiao Wang
- School of Materials Science and Engineering, Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, People's Republic of China
| | - Mengqi Liao
- School of Materials Science and Engineering, Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, People's Republic of China
| | - Luya Jin
- School of Materials Science and Engineering, Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, People's Republic of China
| | - Kang Wu
- School of Materials Science and Engineering, Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, People's Republic of China
| | - Shaik Gouse Peera
- Department of Environmental Science, Keimyung University, 1095, Dalseo-gu, Daegu 42601, Republic of Korea
| | - Chao Liu
- School of Materials Science and Engineering, Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, People's Republic of China
| |
Collapse
|
14
|
Yan T, Li X, Wang Z, Cai Q, Zhao J. Interface engineering of transition metal-nitrogen-carbon by graphdiyne for boosting the oxygen reduction/evolution reactions: A computational study. J Colloid Interface Sci 2023; 649:1-9. [PMID: 37331105 DOI: 10.1016/j.jcis.2023.06.066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/05/2023] [Accepted: 06/10/2023] [Indexed: 06/20/2023]
Abstract
Exploring high-efficiency electrocatalysts to boost the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) is pivotal to the large-scale applications for clean and renewable energy technologies, such as fuel cells, water splitting, and metal-air batteries. Herein, by means of density functional theory (DFT) computations, we proposed a strategy to modulate the catalytic activity of transition metal-nitrogen-carbon catalysts through their interface engineering with graphdiyne (TMNC/GDY). Our results revealed that these hybrid structures exhibit good stability and excellent electrical conductivity. Especially, CoNC/GDY was identified as a promising bifunctional catalyst for ORR/OER with rather low overpotentials in acidic conditions according to the constant-potential energy analysis. Moreover, the volcano plots were established to describe the activity trend of the ORR/OER on TMNC/GDY using the adsorption strength of the oxygenated intermediates. Remarkably, the d-band center and charge transfer of the TM active sites can be utilized to correlate the ORR/OER catalytic activity and their electronic properties. Our findings not only suggested an ideal bifunctional oxygen electrocatalyst, but also provided a useful strategy to obtain highly efficient catalysts by interface engineering of two-dimensional heterostructures.
Collapse
Affiliation(s)
- Tingyu Yan
- College of Chemistry and Chemical Engineering, Key Laboratory of Photonic and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University, Harbin 150025, Heilongjiang, China
| | - Xinyi Li
- College of Chemistry and Chemical Engineering, Key Laboratory of Photonic and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University, Harbin 150025, Heilongjiang, China
| | - Zhongxu Wang
- College of Chemistry and Chemical Engineering, Key Laboratory of Photonic and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University, Harbin 150025, Heilongjiang, China.
| | - Qinghai Cai
- College of Chemistry and Chemical Engineering, Key Laboratory of Photonic and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University, Harbin 150025, Heilongjiang, China; Heilongjiang Province Collaborative Innovation Center of Cold Region Ecological Safety, Harbin 150025, China
| | - Jingxiang Zhao
- College of Chemistry and Chemical Engineering, Key Laboratory of Photonic and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University, Harbin 150025, Heilongjiang, China.
| |
Collapse
|
15
|
Wang C, Huang F, Liang H, Nong W, Tian F, Li Y, Wang C. d- and p-Block single-atom catalysts supported by BN nanocages toward electrochemical reactions of N 2 and O 2. Phys Chem Chem Phys 2023; 25:25761-25771. [PMID: 37724050 DOI: 10.1039/d3cp03487a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
Electrocatalysis is involved in many energy storage and conversion devices, triggering research and development of electrocatalysts, particularly single-atom catalysts (SACs). The introduction of the strain effect to enhance the performance of SACs has drawn ever-increasing research attention, which can tailor the local atomic and electronic structure of active sites. Herein, via high throughput calculations, we have explored the effects of strain on the catalytic performance of SACs with MN4 configuration for electrochemical reactions of N2 and O2 by incorporating d- and p-block single metal atoms into BN nanocages (BNNCs). The calculations demonstrate that Os@BNNC exhibits the highest catalytic activity for the nitrogen reduction reaction (NRR) with a limiting potential of -0.29 V. Co@BNNC can serve as an excellent bifunctional SAC for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER), with overpotentials of 0.32 and 0.37 V, respectively. In particular, Sn@BNNC with a p-block metal as the active center is a competitive SAC for the ORR with an overpotential of 0.64 V. More interestingly, the NRR and ORR performances of SACs supported by BNNCs have a close correlation with the structural and electronic properties of adsorbed N2 and O2 molecules, which proves that controlling the adsorption energy of N2 and O2 molecules is crucial to improving the catalytic activity of BNNC. The current investigation opens up an avenue for designing SACs embedded in nanocages possessing intrinsically curved surfaces for electrochemical reactions.
Collapse
Affiliation(s)
- Chenhui Wang
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen (Zhongshan) University, Guangzhou 510275, People's Republic of China.
| | - Fan Huang
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen (Zhongshan) University, Guangzhou 510275, People's Republic of China.
| | - Haikuan Liang
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen (Zhongshan) University, Guangzhou 510275, People's Republic of China.
| | - Wei Nong
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen (Zhongshan) University, Guangzhou 510275, People's Republic of China.
| | - Fei Tian
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen (Zhongshan) University, Guangzhou 510275, People's Republic of China.
| | - Yan Li
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen (Zhongshan) University, Guangzhou 510275, People's Republic of China.
| | - Chengxin Wang
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen (Zhongshan) University, Guangzhou 510275, People's Republic of China.
| |
Collapse
|
16
|
Lu X, Li J, Cao S, Hu Y, Yang C, Chen Z, Wei S, Liu S, Wang Z. Constructing N,S and N,P Co-Coordination in Fe Single-Atom Catalyst for High-Performance Oxygen Redox Reaction. CHEMSUSCHEM 2023; 16:e202300637. [PMID: 37232090 DOI: 10.1002/cssc.202300637] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 05/27/2023]
Abstract
Single-atom catalysts (SACs) are promising electrocatalysts for the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER), in which the coordination environment plays a crucial role in activating the intrinsic activity of the central metal. Taking the FeN4 SAC as a probe, this work investigates the effect of introducing S or P atoms into N coordination (FeSx N4-x and FePx N4-x (x=1-4)) on the electronic structure optimization of Fe center and its catalytic performance. Attributing to the optimal Fe 3d orbitals, FePN3 can effectively activate O2 and promote ORR with a low overpotential of 0.29 V, surpassing FeN4 and most reported catalysts. FeSN3 is beneficial to H2 O activation and OER, proceeding with an overpotential of 0.68 V, which is superior to FeN4 . Both FePN3 and FeSN3 exhibit outstanding thermodynamic and electrochemical stability with negative formation energies and positive dissolution potentials. Hence, the N,P and N,S co-coordination might provide better catalytic environment than regular N coordination for SACs in ORR and OER. This work demonstrates FePN3 /FeSN3 as high-performance ORR/OER catalysts and highlights N,P and N,S co-coordination regulation as an effective approach to fine tune high atomically dispersed electrocatalysts.
Collapse
Affiliation(s)
- Xiaoqing Lu
- School of Materials Science and Engineering, China University of Petroleum, Qingdao, Shandong, 266580, P. R. China
| | - Jiao Li
- School of Materials Science and Engineering, China University of Petroleum, Qingdao, Shandong, 266580, P. R. China
| | - Shoufu Cao
- School of Materials Science and Engineering, China University of Petroleum, Qingdao, Shandong, 266580, P. R. China
| | - Yuying Hu
- School of Materials Science and Engineering, China University of Petroleum, Qingdao, Shandong, 266580, P. R. China
| | - Chunyu Yang
- School of Materials Science and Engineering, China University of Petroleum, Qingdao, Shandong, 266580, P. R. China
| | - Zengxuan Chen
- School of Materials Science and Engineering, China University of Petroleum, Qingdao, Shandong, 266580, P. R. China
| | - Shuxian Wei
- College of Science, China University of Petroleum, Qingdao, Shandong, 266580, P. R. China
| | - Siyuan Liu
- School of Materials Science and Engineering, China University of Petroleum, Qingdao, Shandong, 266580, P. R. China
| | - Zhaojie Wang
- School of Materials Science and Engineering, China University of Petroleum, Qingdao, Shandong, 266580, P. R. China
| |
Collapse
|
17
|
Huang M, Jiang Y, Luo Z, Wang J, Ding Z, Guo X, Liu X, Wang Y. Transition metal doped WSi 2N 4monolayer for water splitting electrocatalysts: a first-principles study. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2023; 35:485001. [PMID: 37665141 DOI: 10.1088/1361-648x/acf263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/21/2023] [Indexed: 09/05/2023]
Abstract
High-performance water splitting electrocatalysts are urgently needed in the face of the environmental degradation and energy crisis. The first principles method was used in this study to systematically examine the electronic characteristics of transition metal (Sc, Ti, V, Cr, Mn, Fe, and Ru) doped WSi2N4(TM@WSi2N4) and its potential as oxygen evolution reaction (OER) catalysts. Our study shows that the doping of TM atoms significantly improves the catalytic performance of TM@WSi2N4, especially Fe@WSi2N4shows a low overpotential (ηOER= 470 mV). Interestingly, we found that integrated-crystal orbital Hamilton population and d-band center can be used as descriptors to explain the high catalytic activity of Fe@WSi2N4. Subsequently, Fe@WSi2N4exhibits the best hydrogen evolution reaction (HER) activity with a universal overpotential of 47 mV on N1sites. According to our research, Fe@WSi2N4offers a promising substitute for precious metals as a catalyst for overall water splitting with low OER and HER overpotentials.
Collapse
Affiliation(s)
- Mengya Huang
- College of Big Data and Information Engineering, Guizhou University, Guiyang 550025, People's Republic of China
- Key Laboratory of Micro-Nano-Electronics of Guizhou Province, Guiyang 550025, People's Republic of China
- College of Big Health, Guizhou Medical University, Guiyang 550025, People's Republic of China
| | - Yan Jiang
- College of Big Data and Information Engineering, Guizhou University, Guiyang 550025, People's Republic of China
- Key Laboratory of Micro-Nano-Electronics of Guizhou Province, Guiyang 550025, People's Republic of China
| | - Zijiang Luo
- School of Information, Guizhou University of Finance and Economics, Guiyang 550025, People's Republic of China
| | - Jihong Wang
- College of Big Data and Information Engineering, Guizhou University, Guiyang 550025, People's Republic of China
| | - Zhao Ding
- College of Big Data and Information Engineering, Guizhou University, Guiyang 550025, People's Republic of China
- Power Semiconductor Device Reliability Research Center of the Ministry of Education, Guizhou University, Guiyang 550025, People's Republic of China
- Key Laboratory of Micro-Nano-Electronics of Guizhou Province, Guiyang 550025, People's Republic of China
| | - Xiang Guo
- College of Big Data and Information Engineering, Guizhou University, Guiyang 550025, People's Republic of China
- Power Semiconductor Device Reliability Research Center of the Ministry of Education, Guizhou University, Guiyang 550025, People's Republic of China
- Key Laboratory of Micro-Nano-Electronics of Guizhou Province, Guiyang 550025, People's Republic of China
| | - Xuefei Liu
- School of Physics and Electronic Science, Guizhou Normal University, Guiyang 550025, People's Republic of China
| | - Yi Wang
- College of Big Data and Information Engineering, Guizhou University, Guiyang 550025, People's Republic of China
- Power Semiconductor Device Reliability Research Center of the Ministry of Education, Guizhou University, Guiyang 550025, People's Republic of China
- Key Laboratory of Micro-Nano-Electronics of Guizhou Province, Guiyang 550025, People's Republic of China
| |
Collapse
|
18
|
Zhang P, Chen K, Li J, Wang M, Li M, Liu Y, Pan Y. Bifunctional Single Atom Catalysts for Rechargeable Zinc-Air Batteries: From Dynamic Mechanism to Rational Design. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2303243. [PMID: 37283478 DOI: 10.1002/adma.202303243] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/21/2023] [Indexed: 06/08/2023]
Abstract
Ever-growing demands for rechargeable zinc-air batteries (ZABs) call for efficient bifunctional electrocatalysts. Among various electrocatalysts, single atom catalysts (SACs) have received increasing attention due to the merits of high atom utilization, structural tunability, and remarkable activity. Rational design of bifunctional SACs relies heavily on an in-depth understanding of reaction mechanisms, especially dynamic evolution under electrochemical conditions. This requires a systematic study in dynamic mechanisms to replace current trial and error modes. Herein, fundamental understanding of dynamic oxygen reduction reaction and oxygen evolution reaction mechanisms for SACs is first presented combining in situ and/or operando characterizations and theoretical calculations. By highlighting structure-performance relationships, rational regulation strategies are particularly proposed to facilitate the design of efficient bifunctional SACs. Furthermore, future perspectives and challenges are discussed. This review provides a thorough understanding of dynamic mechanisms and regulation strategies for bifunctional SACs, which are expected to pave the avenue for exploring optimum single atom bifunctional oxygen catalysts and effective ZABs.
Collapse
Affiliation(s)
- Peng Zhang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Kuo Chen
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Jiaye Li
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Minmin Wang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Min Li
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Yunqi Liu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Yuan Pan
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| |
Collapse
|
19
|
Hu H, Zhang P, Xiao BB, Mi JL. Substrate Strain Engineering of Single-Atomic Sn-N 4 Sites Embedded in Various Carbon Matrixes for Bifunctional Oxygen Electrocatalysis. ACS APPLIED MATERIALS & INTERFACES 2023; 15:23170-23184. [PMID: 37141049 DOI: 10.1021/acsami.3c02232] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
It is still a great challenge to design and synthesize high-efficiency and low-cost single-atom catalysts (SACs) as promising bifunctional electrocatalysts for the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER). Herein, theoretical insights into Sn-N4 embedded carbon nanotubes, graphene quantum dots, and graphene nanosheets (denoted as Sn-N4-CNTs, Sn-N4-GQDs, and Sn-N4-Gra, respectively) for the ORR/OER are systematically provided. These results show that the protruding Sn atom creates a Sn-N4 pyramid and induces varied strain transfer between Sn-N4 and different carbon substrates prior to adsorption of O intermediates, resulting in the opposite response of the adsorption strengths of O intermediates to the substrate curvature of Sn-N4-CNTs and Sn-N4-GQDs. The torsional strain induced by OH* and OOH* on the Sn atom of Sn-N4-CNTs breaks the scaling relations between the adsorption strengths of O intermediates. Consequently, Sn-N4-CNTs with suitable curvature achieve outstanding ORR performance with very low overpotentials (0.28 V). Furthermore, the increase of curvature boosts the OER activity of Sn-N4-CNTs. For Sn-N4-GQDs, high curvature contributes to promoted OER activity but reduced ORR activity. The electronic interactions reveal the electron transfer from the s/p-bands of Sn to the half-filled β states of the frontier orbitals of O intermediates.
Collapse
Affiliation(s)
- Hao Hu
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Peng Zhang
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay, Guangzhou University, Guangzhou 510006, China
| | - Bei-Bei Xiao
- School of Energy and Power Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China
| | - Jian-Li Mi
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
20
|
Han J, Niu X, Guan J. Unveiling the role of defects in iron oxyhydroxide for oxygen evolution. J Colloid Interface Sci 2023; 635:167-175. [PMID: 36586142 DOI: 10.1016/j.jcis.2022.12.128] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/20/2022] [Accepted: 12/24/2022] [Indexed: 12/28/2022]
Abstract
Development of earth-abundant and robust oxygen evolution reaction (OER) catalysts is imperative for cost-effective hydrogen production via water electrolysis. Herein, we report ultrafine iron (oxy)hydroxide nanoparticles with average particle size of 2.6 nm and abundant surface defects homogeneously supported on oleum-treated graphite (FeOx(n)@HG-T), providing abundant active sites for the OER. The optimal FeOx(0.03)@HG-110 exhibits high electrocatalytic OER activity and excellent stability. Electrochemical testing results and theoretical calculations reveal that the outstanding OER activity of FeOx(0.03)@HG-110 is due to its stronger charge transfer ability and lower OER energy barrier than defect-free FeOx nanoparticles. This work demonstrates that the OER performance of oxyhydroxide-based electrocatalysts can be improved by surface defect engineering.
Collapse
Affiliation(s)
- Jingyi Han
- Institute of Physical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun 130021, China
| | - Xiaodi Niu
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Jingqi Guan
- Institute of Physical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun 130021, China.
| |
Collapse
|
21
|
Efficient Electrocatalysts of Single Metal Atom Supported on Defective Graphene for Oxygen Reduction Reaction (ORR): a First Principles Study. Chem Phys 2023. [DOI: 10.1016/j.chemphys.2023.111888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
|
22
|
Structure evolution and durability of Metal-Nitrogen-Carbon (M = Co, Ru, Rh, Pd, Ir) based oxygen evolution reaction electrocatalyst: A theoretical study. J Colloid Interface Sci 2023; 640:170-178. [PMID: 36848770 DOI: 10.1016/j.jcis.2023.02.103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/10/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023]
Abstract
Developing low-cost, high activity and stability oxygen evolution reaction (OER) catalysts is significantly important but still challenging for water electrolyzers. In this work, we calculated the OER activity and stability of Metal-Nitrogen-Carbon (MNC, M = Co, Ru, Rh, Pd, Ir) based electrocatalyst with different structures (MN4C8, MN4C10, MN4C12) using density functional theory (DFT) method. These electrocatalysts were divided into three groups based on the value of ΔG*OH, that is ΔG*OH > 1.53 eV (PdN4C8, PdN4C10, PdN4C12), ΔG*OH < 1.23 eV (RuN4C8, RuN4C10, RuN4C12, CoN4C8, CoN4C10) and 1.23 eV < ΔG*OH < 1.53 eV (RhN4C8, RhN4C10, RhN4C12, IrN4C8, IrN4C10, IrN4C12, CoN4C12), and ΔG*OH determine whether the structure evolution will appear. The results proved that MNC (M = Rh, Ir) with 1.23 eV < ΔG*OH < 1.53 eV shows higher OER activity due to moderate binding energy between reaction intermediates and MNC. Furthermore, these catalysts could maintain MNC structure without further oxidation and structural evolution under working conditions (high temperature, dynamic condition, local electric field and strong specific adsorption), therefore show excellent stability. However, MNC electrocatalyst with ΔG*OH > 1.53 eV or ΔG*OH < 1.23 eV revealed less stability under working conditions, due to their low intrinsic stability or structural evolution under working conditions, respectively. In conclusion, we proposed a comprehensive evaluation method for MNC electrocatalysts by taking ΔG*OH as the screening criterion for OER activity and stability, as well as ΔEb under working condition as descriptor of stability. This is of great significance for the design and screening of ORR, OER and HER electrocatalysts under working conditions.
Collapse
|
23
|
Qin T, Niu J, Liu X, Geng C, O'Mullane AP. Preparation of "Co-N x Carbon Net" Protected CoFe Alloy on Carbon Nanotubes as an Efficient Bifunctional Electrocatalyst in Zn-Air Batteries. ACS APPLIED MATERIALS & INTERFACES 2023; 15:7987-7998. [PMID: 36735624 DOI: 10.1021/acsami.2c19640] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Herein, Co/Fe bimetallic hydroxide nanosheets (Co3Fe2 BMHs) were densely deposited on polypyrrole nanotubes (PPy NTs), followed by the successive coating of polydopamine (PDA) and zeolitic imidazolate frameworks (ZIF)-67 to form a composite catalyst precursor. Then, Co3Fe2 BMHs, PPy NTs, and ZIF-67/PDA in this precursor were calcined into Co2Fe alloy nanoparticles, nitrogen-doped carbon NTs (NCNTs), and a Co-Nx activated carbon net, respectively, which constituted a novel composite catalyst. In this composite catalyst, the high-density Co2Fe alloy nanoparticles are highly dispersed on the NCNT and coated by the Co-Nx activated carbon net. The Co-Nx activated carbon net protects the alloy particles from agglomerating during calcination and from being corroded by the electrolyte. Moreover, the experimental results demonstrated that the calcination temperature and chemical components of the catalyst precursors greatly affect the morphology, structure, composition, and ultimately electrocatalytic activity of the calcined products. The obtained optimum catalyst material exhibited significant electrocatalytic effects on both the oxygen reduction reaction and oxygen evolution reaction with a small ΔE of 0.715 V. The Zn-air battery utilizing this material as the air electrode catalyst showed a power density of 235.5 mW cm-2, an energy density of 1073.5 Wh kg-1, and a round-trip efficiency of 62.3% after 1000 cycles, superior to the benchmark battery based on the mixed commercial catalyst of Pt/C and RuO2. An all-solid-state battery was also assembled to confirm the practical application prospect of the prepared composite material as the air electrode catalyst. More importantly, both experimental data and density functional theory calculations verified that the superior bifunctional catalytic activity was mainly attributed to the synergy between the Co-Nx activated carbon net and Co2Fe alloy.
Collapse
Affiliation(s)
- Tengteng Qin
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan Province 475004, P.R. China
| | - Jiaqi Niu
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan Province 475004, P.R. China
| | - Xiaoqiang Liu
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan Province 475004, P.R. China
| | - Chaoyao Geng
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan Province 475004, P.R. China
| | - Anthony P O'Mullane
- School of Chemistry and Physics, Queensland University of Technology (QUT),Brisbane, QLD 4001, Australia
| |
Collapse
|
24
|
The graphene-supported Lanthanum oxide cluster as efficient bifunctional electrocatalyst for oxygen reaction. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2022.112879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
25
|
2D RhTe Monolayer: A highly efficient electrocatalyst for oxygen reduction reaction. J Colloid Interface Sci 2023; 629:971-980. [DOI: 10.1016/j.jcis.2022.09.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/24/2022] [Accepted: 09/04/2022] [Indexed: 11/21/2022]
|
26
|
Yang W, Zhou B, Jia Z, Wu C, Wei L, Gao Z, Li H. Coordination Engineering of Single‐Atom Iron Catalysts for Oxygen Evolution Reaction. ChemCatChem 2022. [DOI: 10.1002/cctc.202201016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Weijie Yang
- Department of Power Engineering School of Energy Power and Mechanical Engineering North China Electric Power University 071003 Baoding P. R. China
- Hebei Key Laboratory of Low Carbon and High Efficiency Power Generation Technology North China Electric Power University 071003 Baoding P. R. China
| | - Binghui Zhou
- Department of Power Engineering School of Energy Power and Mechanical Engineering North China Electric Power University 071003 Baoding P. R. China
- Hebei Key Laboratory of Low Carbon and High Efficiency Power Generation Technology North China Electric Power University 071003 Baoding P. R. China
| | - Zhenhe Jia
- Department of Power Engineering School of Energy Power and Mechanical Engineering North China Electric Power University 071003 Baoding P. R. China
- Hebei Key Laboratory of Low Carbon and High Efficiency Power Generation Technology North China Electric Power University 071003 Baoding P. R. China
| | - Chongchong Wu
- CNOOC Institute of Chemicals and Advanced Materials Beijing 102200 P. R. China
| | - Li Wei
- School of Chemical and Biomolecule Engineering The University of Sydney 2006 Darlington NSW Australia
| | - Zhengyang Gao
- Department of Power Engineering School of Energy Power and Mechanical Engineering North China Electric Power University 071003 Baoding P. R. China
- Hebei Key Laboratory of Low Carbon and High Efficiency Power Generation Technology North China Electric Power University 071003 Baoding P. R. China
| | - Hao Li
- Advanced Institute for Materials Research (WPI-AIMR) Tohoku University 980-8577 Sendai Japan
| |
Collapse
|
27
|
Fan T, Chen H, Ji Y. Graphdiyne supported single-atom cobalt catalyst for oxygen reduction reaction: The role of the co-adsorbates. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.139805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
28
|
Chen X, Li Y, Leng M. Dual-metal-organic frameworks as ultrahigh-performance bifunctional electrocatalysts for oxygen reduction and oxygen evolution. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128882] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
29
|
Nitrogen-doped porous carbon fiber with enriched Fe2N sites: Synthesis and application as efficient electrocatalyst for oxygen reduction reaction in microbial fuel cells. J Colloid Interface Sci 2022; 616:539-547. [DOI: 10.1016/j.jcis.2022.02.106] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/19/2022] [Accepted: 02/22/2022] [Indexed: 11/23/2022]
|
30
|
Single noble metals (Pd, Pt and Ir) anchored Janus MoSSe monolayers: Efficient oxygen reduction/evolution reaction bifunctional electrocatalysts and harmful gas detectors. J Colloid Interface Sci 2022; 616:177-188. [DOI: 10.1016/j.jcis.2022.02.054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 02/07/2022] [Accepted: 02/12/2022] [Indexed: 12/25/2022]
|
31
|
Wang X, Niu H, Wan X, Zhang Z, Wang FR, Guo Y. Strain-promoted conductive metal-benzenhexathiolate frameworks for overall water splitting. J Colloid Interface Sci 2022; 624:160-167. [PMID: 35660885 DOI: 10.1016/j.jcis.2022.05.127] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/18/2022] [Accepted: 05/21/2022] [Indexed: 12/19/2022]
Abstract
Designing efficient catalysts for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is a desirable strategy for overall water splitting and the generation of clean and renewable energies. Herein, the electrocatalytic HER and OER activity of the conductive metal-benzenhexathiolate (M-BHT) frameworks has been evaluated utilizing first-principles calculations. The in-plane π-d conjugation of M-BHT guarantees fast electron transfer during electrocatalytic reactions. Notably, Rh-BHT holds the promise of bifunctional HER/OER activity with the overpotentials of 0.07/0.36 V. Furthermore, the application of strain engineering tailors the adsorption of intermediates and promotes the overall water splitting performance. Rh-BHT with the +1% tensile strain shows the HER/OER overpotential of 0.02/0.37 V. This work not only demonstrates the prospects of conductive metal-organic frameworks in electrocatalysis but also offers new insights into designing efficient catalysts by strain engineering.
Collapse
Affiliation(s)
- Xiting Wang
- School of Electrical Engineering and Automation, Wuhan University, Wuhan 430072, Hubei, China
| | - Huan Niu
- School of Electrical Engineering and Automation, Wuhan University, Wuhan 430072, Hubei, China
| | - Xuhao Wan
- School of Electrical Engineering and Automation, Wuhan University, Wuhan 430072, Hubei, China
| | - Zhaofu Zhang
- Department of Engineering, University of Cambridge, Cambridge CB2 1PZ, United Kingdom
| | - Feng Ryan Wang
- Departments of Chemical Engineering, University College London, Torrington Place, London WC1E 7JE, United Kingdom
| | - Yuzheng Guo
- School of Electrical Engineering and Automation, Wuhan University, Wuhan 430072, Hubei, China.
| |
Collapse
|
32
|
Qin Z, Wang Z, Zhao J. Computational screening of single-atom catalysts supported by VS 2 monolayers for electrocatalytic oxygen reduction/evolution reactions. NANOSCALE 2022; 14:6902-6911. [PMID: 35446333 DOI: 10.1039/d2nr01671k] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The development of highly efficient bifunctional electrocatalysts to boost oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) is highly desirable for energy conversion and storage devices. Herein, by means of comprehensive first-principles computations, we systematically explored the catalytic activities of a series of single transition metal atoms anchored on two-dimensional VS2 monolayers (TM@VS2) for ORR/OER. Our results revealed that Ni@VS2 exhibits low overpotentials for both ORR (0.45 V) and OER (0.31 V), suggesting its great potential as a bifunctional catalyst, which is mainly induced by its moderate interaction with oxygenated intermediates according to the established scaling relationship and volcano plot. Interestingly, the substituted doping of nitrogen heteroatoms into the VS2 substrate can further effectively improve the ORR/OER activity of the active metal atom to achieve more eligible ORR/OER bifunctional catalysts. Our results not only propose a new class of potential bifunctional oxygen catalysts but also offer a feasible strategy for further tuning their catalytic activity.
Collapse
Affiliation(s)
- Zengming Qin
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin, 150025, P. R. China.
| | - Zhongxu Wang
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin, 150025, P. R. China.
| | - Jingxiang Zhao
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin, 150025, P. R. China.
| |
Collapse
|
33
|
Yang M, Lian Z, Si C, Jan F, Li B. Revealing the intrinsic relation between heteroatom dopants and graphene quantum dots as a bi-functional ORR/OER catalyst. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2021.112109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
34
|
Zhang Y, Chen X, Zhang H, Ge X. Screening of catalytic oxygen reduction reaction activity of 2, 9-dihalo-1, 10-phenanthroline metal complexes: The role of transition metals and halogen substitution. J Colloid Interface Sci 2021; 609:130-138. [PMID: 34894547 DOI: 10.1016/j.jcis.2021.11.148] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/20/2021] [Accepted: 11/23/2021] [Indexed: 10/19/2022]
Abstract
The sluggish kinetics of oxygen reduction reaction (ORR) restricts the employment of fuel cells, it is urgent to design ORR catalysts with excellent performance. The ORR performances of 2, 9-dihalo-1, 10-phenanthroline metal complexes (named as TM-X, X = Cl, Br, I) are comprehensively studied by the density functional theory methods. From the stability point of view, chlorine is more suitable for substitution. The adsorption free energy reveals that the liner relationship between adsorption free energy of *OOH and *OH is changed positively by the steric hindrance caused by the orthogonal TM-X structures. The Ni-Br stands out with the lowest overpotential of 0.34 V, and many other TM-X also show the promising ORR activity. Combining with the analysis of the Gibbs free energy diagrams and d-band center results, the substitution of halogen can improve the electronic structures of TM-X, thus enhancing their ORR activities and changing the ORR mechanism possibly.
Collapse
Affiliation(s)
- Yizhen Zhang
- Center for Computational Chemistry and Molecular Simulation, College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, PR. China
| | - Xin Chen
- Center for Computational Chemistry and Molecular Simulation, College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, PR. China; State Key Laboratory of Oil & Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, 610500, PR. China; Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, PR. China.
| | - Hui Zhang
- Center for Computational Chemistry and Molecular Simulation, College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, PR. China
| | - Xingbo Ge
- Center for Computational Chemistry and Molecular Simulation, College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, PR. China
| |
Collapse
|