1
|
Shao Y, Xu J, Amardeep A, Xia Y, Meng X, Liu J, Liao S. Lithium-Ion Conductive Coatings for Nickel-Rich Cathodes for Lithium-Ion Batteries. SMALL METHODS 2024; 8:e2400256. [PMID: 38708816 PMCID: PMC11671860 DOI: 10.1002/smtd.202400256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/20/2024] [Indexed: 05/07/2024]
Abstract
Nickel (Ni)-rich cathodes are among the most promising cathode materials of lithium batteries, ascribed to their high-power density, cost-effectiveness, and eco-friendliness, having extensive applications from portable electronics to electric vehicles and national grids. They can boost the wide implementation of renewable energies and thereby contribute to carbon neutrality and achieving sustainable prosperity in the modern society. Nevertheless, these cathodes suffer from significant technical challenges, leading to poor cycling performance and safety risks. The underlying mechanisms are residual lithium compounds, uncontrolled lithium/nickel cation mixing, severe interface reactions, irreversible phase transition, anisotropic internal stress, and microcracking. Notably, they have become more serious with increasing Ni content and have been impeding the widespread commercial applications of Ni-rich cathodes. Various strategies have been developed to tackle these issues, such as elemental doping, adding electrolyte additives, and surface coating. Surface coating has been a facile and effective route and has been investigated widely among them. Of numerous surface coating materials, have recently emerged as highly attractive options due to their high lithium-ion conductivity. In this review, a thorough and comprehensive review of lithium-ion conductive coatings (LCCs) are made, aimed at probing their underlying mechanisms for improved cell performance and stimulating new research efforts.
Collapse
Affiliation(s)
- Yijia Shao
- The Key Laboratory of Fuel Cell Technology of Guangdong Province & the Key Laboratory of New Energy Technology of Guangdong UniversitiesSchool of Chemistry and Chemical EngineeringSouth China University of TechnologyGuangzhou510641China
- School of EngineeringFaculty of Applied ScienceUniversity of British ColumbiaKelownaBCV1V 1V7Canada
| | - Jia Xu
- School of EngineeringFaculty of Applied ScienceUniversity of British ColumbiaKelownaBCV1V 1V7Canada
| | - Amardeep Amardeep
- School of EngineeringFaculty of Applied ScienceUniversity of British ColumbiaKelownaBCV1V 1V7Canada
| | - Yakang Xia
- School of EngineeringFaculty of Applied ScienceUniversity of British ColumbiaKelownaBCV1V 1V7Canada
| | - Xiangbo Meng
- Department of Mechanical EngineeringUniversity of ArkansasFayettevilleAR72701USA
| | - Jian Liu
- School of EngineeringFaculty of Applied ScienceUniversity of British ColumbiaKelownaBCV1V 1V7Canada
| | - Shijun Liao
- The Key Laboratory of Fuel Cell Technology of Guangdong Province & the Key Laboratory of New Energy Technology of Guangdong UniversitiesSchool of Chemistry and Chemical EngineeringSouth China University of TechnologyGuangzhou510641China
| |
Collapse
|
2
|
Ahangari M, Xia F, Szalai B, Zhou M, Luo H. Advancing Lithium-Ion Batteries' Electrochemical Performance: Ultrathin Alumina Coating on Li(Ni 0.8Co 0.1Mn 0.1)O 2 Cathode Materials. MICROMACHINES 2024; 15:894. [PMID: 39064405 PMCID: PMC11278549 DOI: 10.3390/mi15070894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/04/2024] [Accepted: 07/06/2024] [Indexed: 07/28/2024]
Abstract
Ni-rich Li(NixCoyMnz)O2 (x ≥ 0.8)-layered oxide materials are highly promising as cathode materials for high-energy-density lithium-ion batteries in electric and hybrid vehicles. However, their tendency to undergo side reactions with electrolytes and their structural instability during cyclic lithiation/delithiation impairs their electrochemical cycling performance, posing challenges for large-scale applications. This paper explores the application of an Al2O3 coating using an atomic layer deposition (ALD) system on Ni-enriched Li(Ni0.8Co0.1Mn0.1)O2 (NCM811) cathode material. Characterization techniques, including X-ray diffraction, scanning electron microscopy, and transmission electron microscopy, were used to assess the impact of alumina coating on the morphology and crystal structure of NCM811. The results confirmed that an ultrathin Al2O3 coating was achieved without altering the microstructure and lattice structure of NCM811. The alumina-coated NCM811 exhibited improved cycling stability and capacity retention in the voltage range of 2.8-4.5 V at a 1 C rate. Specifically, the capacity retention of the modified NCM811 was 5%, 9.11%, and 11.28% higher than the pristine material at operating voltages of 4.3, 4.4, and 4.5 V, respectively. This enhanced performance is attributed to reduced electrode-electrolyte interaction, leading to fewer side reactions and improved structural stability. Thus, NCM811@Al2O3 with this coating process emerges as a highly attractive candidate for high-capacity lithium-ion battery cathode materials.
Collapse
Affiliation(s)
| | | | | | - Meng Zhou
- Department of Chemical and Materials Engineering, New Mexico State University, Las Cruces, NM 88003, USA; (M.A.); (F.X.); (B.S.)
| | - Hongmei Luo
- Department of Chemical and Materials Engineering, New Mexico State University, Las Cruces, NM 88003, USA; (M.A.); (F.X.); (B.S.)
| |
Collapse
|
3
|
Shen L, Gu Y, Xu T, Zhou Q, Peng P, Chen Y, Du F, Zheng J. Dual modification of phosphate toward improving electrochemical performance of LiNiO 2 cathode materials. J Colloid Interface Sci 2024; 662:505-515. [PMID: 38364475 DOI: 10.1016/j.jcis.2024.01.181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/10/2024] [Accepted: 01/25/2024] [Indexed: 02/18/2024]
Abstract
Lithium nickel oxide (LiNiO2) cathode materials are featured with high capacity and low cost for rechargeable lithium-ion batteries but suffer from severe structure and interface instability. Bulk doping together with surface coating has been proven to be an efficient approach to improve the inner structure and interfacial stability of the LiNiO2 cathode material. Nevertheless, the role of anion doping seems to be quite different from that of cation doping, and a deep insight will be desirable for the structure design of the LiNiO2 cathode material. In this paper, PO43--doped and Li3PO4-coating of dual modification of LiNiO2 are achieved via a facile approach. It is demonstrated that the PO43- anions are doped into the tetrahedron vacant sites of the crystal structure, alleviating the phase transition and improving the reversibility of crystal structure. Besides, the Li3PO4 coating layer ameliorates the interface stability to restrain the side reactions. Therefore, the dual modification enhances overall structural stability of the material to provide excellent performance. Moreover, the consumption of the Li residues by the formation of Li3PO4 coating layer, and the enlarged interlayer spacing of the crystal structure by PO43- doping can facilitate the Li+ ions diffusion, resulting in a superior rate capability.
Collapse
Affiliation(s)
- Lina Shen
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Yuhan Gu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Tao Xu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Qun Zhou
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | - Pai Peng
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Yu Chen
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Fanghui Du
- Shandong Key Laboratory of Chemical Energy Storage and New Battery Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| | - Junwei Zheng
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| |
Collapse
|
4
|
Liu ZC, Hao S, Gao XP. Ga-Doped Ultrahigh-Nickel Oxide Microspheres with Radially Aligned Primary Grains as a Cathode for Stable Cycling Li-Ion Batteries. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37922429 DOI: 10.1021/acsami.3c12245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2023]
Abstract
Owing to the high energy density, ultrahigh-nickel (Ni > 0.9) layered oxides are used as promising cathode materials for next-generation Li-ion batteries. Unfortunately, the serious pulverization and rapid capacity fading during cycling limit the commercial viability of an ultrahigh-nickel oxide cathode. Herein, the introduction of Ga into LiNi0.96Co0.04O2 brings a radially aligned microstructural change of oxide microspheres during the lithiation of the Ni0.96Co0.04(OH)2 precursor. As expected, such radially aligned needle-like primary grains on microspheres have a positive influence to reduce the anisotropic volume change and suppress the formation of microcracks of Ga-induced Li(Ni0.96Co0.04)0.99Ga0.01O2 during cycling. Specifically, compared with irregular primary grains of LiNi0.96Co0.04O2, Ga-induced oxide presents a high initial discharge capacity of 227.9 mA h g-1 at 0.1C rate between 2.8 and 4.3 V. Especially, Ga-induced oxide delivers higher initial discharge capacities of 233.9 and 240.3 mA h g-1 with higher cutoff charge voltages of 4.4 and 4.5 V at 0.1C, respectively. Furthermore, a good capacity retention of 74.1% at 1 C rate is obtained after 300 cycles, which is almost 85% higher than that of the pristine sample, mainly due to the generation of microcracks of oxide microspheres during the long-term cycle. Therefore, the introduction of Ga into LiNi0.96Co0.04O2 is a feasible approach for improving the microstructure and cycling stability of the ultrahigh-Ni layered oxides.
Collapse
Affiliation(s)
- Zhi-Chao Liu
- Institute of New Energy Material Chemistry, School of Materials Science and Engineering, Nankai University, Tianjin 300350, China
| | - Shuai Hao
- Institute of New Energy Material Chemistry, School of Materials Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xue-Ping Gao
- Institute of New Energy Material Chemistry, School of Materials Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
5
|
Wu J, Yang J, Zheng J, Wang M, Li S, Huang B, Li Y, Zhu Q, Chen Q, Xiao S, Liu B. Co-Doping of Al 3+ and Ti 4+ and Electrochemical Properties of LiNiO 2 Cathode Materials for Lithium-Ion Batteries. CHEMSUSCHEM 2023; 16:e202300607. [PMID: 37357834 DOI: 10.1002/cssc.202300607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 06/27/2023]
Abstract
LiNiO2 cathode material for lithium-ion batteries has the advantages of high specific capacity, abundant resources, and low cost, but it suffers from difficulties in preparation, structural instability, and serious capacity decay. In this work, highly pure and layered structural LiNi0.95 Ala Ti0.05-a O2 (a=0, 0.025, 0.05) cathode materials were synthesized by a simply sol-gel method. The cation mixing of Ni2+ and Li+ , structural deterioration, irreversible conversion between H2 and H3 phases and unstable surface and CEI (Cathode-electrolyte interface) film can be effectively suppressed by co-doping with Al3+ and Ti4+ . A preferred LiNi0.95 Al0.025 Ti0.025 O2 sample provides a discharge specific capacity of 223 mAh g-1 at 0.1 C and 148.32 mAh g-1 at 5 C, a capacity retention of 72.7 % after 300 cycles at 1 C and a Li+ diffusion coefficient of about 2.0×10-9 cm2 s-1 .
Collapse
Affiliation(s)
- Jinmei Wu
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, P. R. China
| | - Jianwen Yang
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, P. R. China
| | - Jiawei Zheng
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, P. R. China
| | - Mengwen Wang
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, P. R. China
| | - Shengxian Li
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, P. R. China
| | - Bin Huang
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, P. R. China
| | - Yanwei Li
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, P. R. China
| | - Qing Zhu
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, P. R. China
| | - Quanqi Chen
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, P. R. China
| | - Shunhua Xiao
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, P. R. China
| | - Botian Liu
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, P. R. China
| |
Collapse
|
6
|
Xin Y, Pan S, Hu X, Miao C, Nie S, Mou H, Xiao W. Engineering amorphous SnO 2 nanoparticles integrated into porous N-doped carbon matrix as high-performance anode for lithium-ion batteries. J Colloid Interface Sci 2023; 639:133-144. [PMID: 36804786 DOI: 10.1016/j.jcis.2023.02.065] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/04/2023] [Accepted: 02/12/2023] [Indexed: 02/16/2023]
Abstract
A facile in-situ preparation strategy is proposed to anchor amorphous SnO2 nanoparticles into the porous N-doped carbon (NC) matrix to fabricate amorphous composite powders (am-SnO2@p-NC), which feature the hierarchically interconnected and well interlaced porous configurations by employing polyvinylpyrrolidone as the soft template. The morphology regulation of the porous structure is precisely realized by adjusting the content of the template and the relationship between structural evolution and electrochemical performance of composite powders is accurately described to explore the optimal template dosage. The results indicate that the am-SnO2@p-NC-50 % composite electrode can deliver the improved lithium storage capacity and cycling performance when the content of the template is controlled at 0.500 g, in which the initial discharge specific capacity is about 1557.6 mAh/g and the reversible value retains at 841.5 mAh/g after 100 cycles at 100 mA/g. Meanwhile, the discharge specific capacity of 869.8 mAh/g is exhibited for the am-SnO2@p-NC-50 % composite electrode after 60 cycles when the current density is recovered from 2000 to 100 mA/g. Moreover, the Li+ ions diffusion coefficient up to about 5.5 × 10-12 cm2/s is calculated from galvanostatic intermittent titration technique tests, which can be partly ascribed to the conductive NC substrate that provides the high electronic conductivity, and partly to the highly porous structure that shortens Li+ ions transfer pathways and guarantees the fast reaction kinetics. Therefore, the hierarchically porous engineering of carbon networks to confine amorphous transition metal oxide nanoparticles is of great significance in the development of high-performance anode materials for lithium-ion batteries.
Collapse
Affiliation(s)
- Yu Xin
- College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434023, PR China
| | - Shi Pan
- College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434023, PR China
| | - Xuezhou Hu
- College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434023, PR China
| | - Chang Miao
- College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434023, PR China
| | - Shuqing Nie
- College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434023, PR China
| | - Haoyi Mou
- College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434023, PR China
| | - Wei Xiao
- College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434023, PR China.
| |
Collapse
|
7
|
Liu Y, Yang R, Li X, Yang W, Lin Y, Zhang G, Wang L. Nb 2O 5 Coating to Improve the Cyclic Stability and Voltage Decay of Li-Rich Cathode Material for Lithium-Ion Battery. Molecules 2023; 28:molecules28093890. [PMID: 37175303 PMCID: PMC10179934 DOI: 10.3390/molecules28093890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/23/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
The commercialization of lithium manganese oxide (LMO) is seriously hindered by several drawbacks, such as low initial Coulombic efficiency, the degradation of the voltage and capacity during cycling, and the poor rating performance. Developing a simple and scalable synthesis for engineering with surface coating layers is significant and challenging for the commercial prospects of LMO oxides. Herein, we have proposed an efficient engineering strategy with a Nb2O5 coating layer. We dissolved niobate (V) ammonium oxalate hydrate and stoichiometric rich LMO (RLM) in deionized water and stirred constantly. Then, the target product was calcined at high temperature. The discharge capacity of the Nb2O5 coating RLM is increased from 195 mAh·g-1 (the RLM without Nb2O5) to 215 mAh·g-1 at a coating volume ratio of 0.010. The average voltage decay was 4.38 mV/cycle, which was far lower than the 7.50 mV/cycle for the pure LMO. The electrochemical kinetics results indicated that the performance was superior with the buffer engineering by the Nb2O5 coating of RLM, which provided an excellent lithium-ion conduction channel, and improved diffusion kinetics, capacity fading, and voltage decay. This reveals the strong potential of the Nb2O5 coating in the field of cathode materials for lithium-ion batteries.
Collapse
Affiliation(s)
- Yanlin Liu
- School of Material and Energy, Guangdong University of Technology, Guangzhou 510006, China
- School of Automobile and Transportation Engineering, Guangdong Polytechnic Normal University, Guangzhou 510640, China
| | - Ruifeng Yang
- School of Material and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Xinxi Li
- School of Material and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Wensheng Yang
- School of Material and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Yuanwei Lin
- School of Automobile and Transportation Engineering, Guangdong Polytechnic Normal University, Guangzhou 510640, China
| | - Guoqing Zhang
- School of Material and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Lijuan Wang
- College of Petroleum and Chemical Technology, Liaoning Petrochemical University, Fushun 113001, China
| |
Collapse
|
8
|
Revealing the effect of Nb 5+ on the electrochemical performance of nickel-rich layered LiNi 0.83Co 0.11Mn 0.06O 2 oxide cathode for lithium-ion batteries. J Colloid Interface Sci 2023; 635:295-304. [PMID: 36587581 DOI: 10.1016/j.jcis.2022.12.142] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/17/2022] [Accepted: 12/27/2022] [Indexed: 12/30/2022]
Abstract
The layered Nb5+-doped LiNi0.83Co0.11Mn0.06O2 (NCM) oxide cathode materials are successfully synthesized through introducing Nb2O5 into the precursor Ni0.83Co0.11Mn0.06(OH)2 during the lithiation process. The results refined by GSAS software present that the Nb5+-doped samples possess the perfect crystal structure with broader Li+ diffusion pathways. Moreover, the morphology characterized by scanning electron microscope displays the compact secondary particles packed by smaller primary particles under the effect of Nb5+. The excellent electrochemical properties are also acquired from the Nb5+-doped samples, in which the optimal rate performance and cycling stability are performed for NCM-1.0 when up to 1.0 mol % of Nb2O5 (based on the precursor) is added. Benefited from the introduction of Nb5+, the cell assembled with the NCM-1.0 electrode retains higher capacity retention of 86.6 % at 1.0 C and 25 °C, and 71.7 % at 1.0 C and 60 °C after 200cycles. Moreover, it also delivers higher discharge specific capacity of 154.6 mAh g-1 at 5.0 C. Therefore, the Nb5+-doping strategy may open an effective route for optimizing nickel-rich oxide cathode materials, which is worth popularizing for the enhancement of the electrochemical performance of nickel-rich cathodes for lithium-ion batteries.
Collapse
|
9
|
He ZX, Yu HT, He F, Xie Y, Yuan L, Yi TF. Improving the interfacial stability, conductivity, and electrochemical performance of Li2MoO3@g-C3N4 composite as a promising cathode for lithium-ion battery. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.11.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
10
|
|
11
|
Tian Y, Liu Y, Li F, Sun Y, Wei X, Hou P. Realizing high energy-density lithium-ion batteries: high Ni-content or high cut-off voltage of single-crystal layered cathodes? J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
12
|
Wang J, Liu C, Wang Q, Xu G, Miao C, Xu M, Wang C, Xiao W. Investigation of W 6+-doped in high-nickel LiNi 0.83Co 0.11Mn 0.06O 2 cathode materials for high-performance lithium-ion batteries. J Colloid Interface Sci 2022; 628:338-349. [PMID: 35998459 DOI: 10.1016/j.jcis.2022.08.085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 11/30/2022]
Abstract
WO3 as tungsten dopant is introduced into lithium nickel cobalt manganese (LiNi0.83Co0.11Mn0.06O2, NCM) layered oxide powders to synthesize W6+-doped NCM cathode materials during the lithiation process of the hydroxide precursor. Introducing W6+ into the lattice can lead to the diversities of the crystal structure, surface morphology, and electrochemical performance. The crystal structure confirmed by X-ray diffraction indicates that the W6+-doped oxide powders present a typical R-3m layered structure with larger interplanar distance and cell volume. Also, scanning electron microscope images reveal that the primary particles shrink forming a tighter surface under the effect of W6+, while the specific changes gradually aggravate with increase in the content of W6+ added. The excellent electrochemical stability of W6+-doped samples is observed, as the stable host structure is reinforced by the strong W-O bond. The stable structure does not only inhibit the anisotropic volume change caused by repetitive H2 ⇔ H3 phase transitions, but also sustains the integrated structure to impede the formation of microcracks and the appearance of more side reactions. This research provides an effective route on investigating the potential association between electrochemical performance and structure change for W6+-doped strategy.
Collapse
Affiliation(s)
- Jiale Wang
- College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou, 434023, PR China; Hebei Key Laboratory of Dielectric and Electrolyte Functional Material, Northeastern University at Qinhuangdao, Qinhuangdao 066004, PR China; Hubei Collaborative Innovation Center of Unconventional Oil and Gas, Yangtze University, Wuhan 434000, PR China
| | - Chengjin Liu
- College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou, 434023, PR China
| | - Qing Wang
- Hebei Key Laboratory of Dielectric and Electrolyte Functional Material, Northeastern University at Qinhuangdao, Qinhuangdao 066004, PR China
| | - Guanli Xu
- College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou, 434023, PR China; Hebei Key Laboratory of Dielectric and Electrolyte Functional Material, Northeastern University at Qinhuangdao, Qinhuangdao 066004, PR China
| | - Chang Miao
- College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou, 434023, PR China
| | - Mingbiao Xu
- College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou, 434023, PR China; Hubei Collaborative Innovation Center of Unconventional Oil and Gas, Yangtze University, Wuhan 434000, PR China
| | - Changjun Wang
- College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou, 434023, PR China; Hubei Collaborative Innovation Center of Unconventional Oil and Gas, Yangtze University, Wuhan 434000, PR China
| | - Wei Xiao
- College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou, 434023, PR China; Hebei Key Laboratory of Dielectric and Electrolyte Functional Material, Northeastern University at Qinhuangdao, Qinhuangdao 066004, PR China.
| |
Collapse
|
13
|
F-Doped Ni-Rich Layered Cathode Material with Improved Rate Performance for Lithium-Ion Batteries. Processes (Basel) 2022. [DOI: 10.3390/pr10081573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Ni-rich layered cathode materials for lithium-ion batteries have received widespread attention due to their large capacity and low cost; however, the structural stability of the material needs to be improved. Herein, F-doped and undoped cathode materials prepared with an advanced co-precipitation method were used to measure the effect of F doping on the material. Compared to the undoped sample, the F-doped cathode materials exhibited an improved rate performance, because the porous structure of F-doped cathode materials is favorable for the infiltration of the electrolyte and the material, and the F-doped cathode material has a larger (003) crystal plane and a smaller Li+ migration barrier energy. This simple F-doping treatment strategy provides a promising way to improve the performance of Ni-rich layered cathode materials for lithium-ion batteries.
Collapse
|
14
|
Xiao P, Li W, Chen S, Li G, Dai Z, Feng M, Chen X, Yang W. Effects of Oxygen Pressurization on Li +/Ni 2+ Cation Mixing and the Oxygen Vacancies of LiNi 0.8Co 0.15Al 0.05O 2 Cathode Materials. ACS APPLIED MATERIALS & INTERFACES 2022; 14:31851-31861. [PMID: 35799357 DOI: 10.1021/acsami.2c05136] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Ni-rich cathode materials are a low-cost and high-energy density solution for high-power lithium-ion batteries. However, Li+/Ni2+ cation mixing and oxygen vacancies are inevitably formed during the high-temperature calcination process, resulting in a poor crystal structure that adversely affects the electrochemical performance. In this work, the LiNi0.8Co0.15Al0.05O2 cathode material with a regular crystal structure was prepared through oxygen pressurization during lithiation-calcination, which effectively solved the problems caused by the high calcination temperature, such as oxygen loss and a reduction of Ni3+. The co-effect of oxygen pressure and calcination temperature on the properties of Ni-rich materials was systematically explored. Oxygen pressurization increased the redox conversion temperature, thus promoting the oxidation of Ni2+ and reducing Li+/Ni2+ cation mixing. Moreover, due to the strong oxidizing environment provided by the elevated calcination temperature and oxygen pressurization, the LiNi0.8Co0.15Al0.05O2 material synthesized under 0.4 MPa oxygen pressure and a calcination temperature of 775 °C exhibited few oxygen vacancies, which in turn suppressed the formation of microcracks during the electrochemical cycling. An additional feature of the LiNi0.8Co0.15Al0.05O2 material was the small specific surface area of the particles, which reduced both the contact area with the electrolyte and side reactions. As a result, the LiNi0.8Co0.15Al0.05O2 material exhibited remarkable electrochemical performance, with an initial discharge capacity of 191.6 mA h·g-1 at 0.1 C and a capacity retention of 94.5% at 0.2 C after 100 cycles.
Collapse
Affiliation(s)
- Peng Xiao
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Wenhao Li
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Shuai Chen
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Gang Li
- Sinopec Research Institute of Petroleum Processing, Beijing 100083, PR China
| | - Zhongjia Dai
- Sinopec Research Institute of Petroleum Processing, Beijing 100083, PR China
| | - Mengdan Feng
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
- New Oriental Academy, Beijing 102206, PR China
| | - Xu Chen
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Wensheng Yang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| |
Collapse
|
15
|
Influence of synthesis route on the structure and electrochemical performance of biphasic (O'3/O3) NaNi0.815Co0.15Al0.035O2 cathode for sodium-ion batteries. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140403] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
16
|
Wang H, Hashem AM, Abdel-Ghany AE, Abbas SM, El-Tawil RS, Li T, Li X, El-Mounayri H, Tovar A, Zhu L, Mauger A, Julien CM. Effect of Cationic (Na +) and Anionic (F -) Co-Doping on the Structural and Electrochemical Properties of LiNi 1/3Mn 1/3Co 1/3O 2 Cathode Material for Lithium-Ion Batteries. Int J Mol Sci 2022; 23:ijms23126755. [PMID: 35743197 PMCID: PMC9223843 DOI: 10.3390/ijms23126755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/08/2022] [Accepted: 06/16/2022] [Indexed: 02/01/2023] Open
Abstract
Elemental doping for substituting lithium or oxygen sites has become a simple and effective technique to improve the electrochemical performance of layered cathode materials. Compared with single-element doping, this work presents an unprecedented contribution to the study of the effect of Na+/F− co-doping on the structure and electrochemical performance of LiNi1/3Mn1/3Co1/3O2. The co-doped Li1-zNazNi1/3Mn1/3Co1/3O2-zFz (z = 0.025) and pristine LiNi1/3Co1/3Mn1/3O2 materials were synthesized via the sol–gel method using EDTA as a chelating agent. Structural analyses, carried out by X-ray diffraction, Raman spectroscopy, and X-ray photoelectron spectroscopy, revealed that the Na+ and F− dopants were successfully incorporated into the Li and O sites, respectively. The co-doping resulted in larger Li-slab spacing, a lower degree of cation mixing, and the stabilization of the surface structure, which substantially enhanced the cycling stability and rate capability of the cathode material. The Na/F co-doped LiNi1/3Mn1/3Co1/3O2 electrode delivered an initial specific capacity of 142 mAh g−1 at a 1C rate (178 mAh g−1 at 0.1C), and it maintained 50% of its initial capacity after 1000 charge–discharge cycles at a 1C rate.
Collapse
Affiliation(s)
- Hua Wang
- Department of Mechanical and Energy Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA; (H.W.); (X.L.); (H.E.-M.); (A.T.); (L.Z.)
| | - Ahmed M. Hashem
- Inorganic Chemistry Department, National Research Centre, 33 El Bohouth St., (Former El Tahrir St.), Dokki, Giza 12622, Egypt; (A.M.H.); (A.E.A.-G.); (S.M.A.); (R.S.E.-T.)
| | - Ashraf E. Abdel-Ghany
- Inorganic Chemistry Department, National Research Centre, 33 El Bohouth St., (Former El Tahrir St.), Dokki, Giza 12622, Egypt; (A.M.H.); (A.E.A.-G.); (S.M.A.); (R.S.E.-T.)
| | - Somia M. Abbas
- Inorganic Chemistry Department, National Research Centre, 33 El Bohouth St., (Former El Tahrir St.), Dokki, Giza 12622, Egypt; (A.M.H.); (A.E.A.-G.); (S.M.A.); (R.S.E.-T.)
| | - Rasha S. El-Tawil
- Inorganic Chemistry Department, National Research Centre, 33 El Bohouth St., (Former El Tahrir St.), Dokki, Giza 12622, Egypt; (A.M.H.); (A.E.A.-G.); (S.M.A.); (R.S.E.-T.)
| | - Tianyi Li
- Advanced Photon Source, Argonne National Laboratory, Lemont, IL 60439, USA;
| | - Xintong Li
- Department of Mechanical and Energy Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA; (H.W.); (X.L.); (H.E.-M.); (A.T.); (L.Z.)
| | - Hazim El-Mounayri
- Department of Mechanical and Energy Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA; (H.W.); (X.L.); (H.E.-M.); (A.T.); (L.Z.)
| | - Andres Tovar
- Department of Mechanical and Energy Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA; (H.W.); (X.L.); (H.E.-M.); (A.T.); (L.Z.)
| | - Likun Zhu
- Department of Mechanical and Energy Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA; (H.W.); (X.L.); (H.E.-M.); (A.T.); (L.Z.)
| | - Alain Mauger
- Institut de Minéralogie, de Physique des Matériaux et Cosmologie (IMPMC), Sorbonne Université, UMR-CNRS 7590, 4 Place Jussieu, 75752 Paris, France;
| | - Christian M. Julien
- Institut de Minéralogie, de Physique des Matériaux et Cosmologie (IMPMC), Sorbonne Université, UMR-CNRS 7590, 4 Place Jussieu, 75752 Paris, France;
- Correspondence:
| |
Collapse
|
17
|
Ndipingwi MM, Ikpo CO, Nwanya AC, Januarie KC, Ramoroka ME, Uhuo OV, Nwambaekwe K, Yussuf ST, Iwuoha EI. Engineering the chemical environment of lithium manganese silicate by Mn ion substitution to boost the charge storage capacity for application in high efficiency supercapattery. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
18
|
Voropaeva DY, Safronova EY, Novikova SA, Yaroslavtsev AB. Recent progress in lithium-ion and lithium metal batteries. MENDELEEV COMMUNICATIONS 2022. [DOI: 10.1016/j.mencom.2022.05.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
19
|
Hao Q, Du F, Xu T, Zhou Q, Cao H, Fan Z, Mei C, Zheng J. Evaluation of Nb-Doping on performance of LiNiO2 in wide temperature range. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
20
|
Enabling Intelligent Recovery of Critical Materials from Li-Ion Battery through Direct Recycling Process with Internet-of-Things. MATERIALS 2021; 14:ma14237153. [PMID: 34885314 PMCID: PMC8658619 DOI: 10.3390/ma14237153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/09/2021] [Accepted: 11/18/2021] [Indexed: 11/18/2022]
Abstract
The rapid market expansion of Li-ion batteries (LIBs) leads to concerns over the appropriate disposal of hazardous battery waste and the sustainability in the supply of critical materials for LIB production. Technologies and strategies to extend the life of LIBs and reuse the materials have long been sought. Direct recycling is a more effective recycling approach than existing ones with respect to cost, energy consumption, and emissions. This approach has become increasingly more feasible due to digitalization and the adoption of the Internet-of-Things (IoT). To address the question of how IoT could enhance direct recycling of LIBs, we first highlight the importance of direct recycling in tackling the challenges in the supply chain of LIB and discuss the characteristics and application of IoT technologies, which could enhance direct recycling. Finally, we share our perspective on a paradigm where IoT could be integrated into the direct recycling process of LIBs to enhance the efficiency, intelligence, and effectiveness of the recycling process.
Collapse
|