1
|
Wang Y, Guo J, Liang C, Wang W, Shi J, Pan A, Zhang Y. Interpenetrating Composite Hydrogel Electrolyte with Organic/Inorganic Polar Groups for Stable Zinc Metal Anode. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:20820-20830. [PMID: 39289813 DOI: 10.1021/acs.langmuir.4c03203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Hydrogel electrolytes have been widely explored in flexible zinc batteries owing to their considerable mechanical strain and water-retaining properties. However, it is difficult to balance the contradiction between the ionic conductivity and the mechanical strength due to the deterioration of structural stability with the addition of electrolyte salts. To address this, we designed a coassembling organic-inorganic hydrogel (P-P/M) based on poly(vinyl alcohol)-polyacrylamide (P-P) interpenetrating matrix decorated with Zn-based montmorillonite (Zn-MMT). The Zn-MMT with overall negative potential can attract and regulate the transport of Zn2+, while the Brønsted/Lewis acid sites with positive polarizations offer anchoring sites for anions, which increases the cation transference number and reduces byproduct formation. Moreover, the formation of hydrogen bonds in the hydrogel can weaken the contact between free water molecules and the zinc cations, which effectively suppresses the corrosion of zinc foil. Consequently, the Zn//Zn cell with P-P/M electrolyte delivers a long cycle life of 2400 h at 0.5 mA cm-2. The good mechanical properties of the P-P/M hydrogel boost its application in flexible pouch cells even under bending and cutting conditions. This study provides an effective approach to designing organic-inorganic hydrogel electrolytes for long-life flexible zinc batteries.
Collapse
Affiliation(s)
- Yaping Wang
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Jiashuo Guo
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Chao Liang
- Hunan RE Technology Co., Ltd., Changsha 410083, China
| | - Wenyan Wang
- School of Material Science & Engineering, State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China
| | - Jiyuan Shi
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Anqiang Pan
- School of Materials Science & Engineering, Central South University, Changsha, Hunan 410083, China
| | - Yifang Zhang
- School of Material Science & Engineering, State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China
| |
Collapse
|
2
|
Bhuyan MM, Jeong JH. Gels/Hydrogels in Different Devices/Instruments-A Review. Gels 2024; 10:548. [PMID: 39330150 PMCID: PMC11430987 DOI: 10.3390/gels10090548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/21/2024] [Accepted: 08/22/2024] [Indexed: 09/28/2024] Open
Abstract
Owing to their physical and chemical properties and stimuli-responsive nature, gels and hydrogels play vital roles in diverse application fields. The three-dimensional polymeric network structure of hydrogels is considered an alternative to many materials, such as conductors, ordinary films, constituent components of machines and robots, etc. The most recent applications of gels are in different devices like sensors, actuators, flexible screens, touch panels, flexible storage, solar cells, batteries, and electronic skin. This review article addresses the devices where gels are used, the progress of research, the working mechanisms of hydrogels in those devices, and future prospects. Preparation methods are also important for obtaining a suitable hydrogel. This review discusses different methods of hydrogel preparation from the respective raw materials. Moreover, the mechanism by which gels act as a part of electronic devices is described.
Collapse
Affiliation(s)
- Md Murshed Bhuyan
- Research Center for Green Energy Systems, Department of Mechanical, Smart, and Industrial Engineering (Mechanical Engineering Major), Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Gyeonggi-do, Republic of Korea
| | - Jae-Ho Jeong
- Research Center for Green Energy Systems, Department of Mechanical, Smart, and Industrial Engineering (Mechanical Engineering Major), Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Gyeonggi-do, Republic of Korea
| |
Collapse
|
3
|
Weng G, Yang X, Wang Z, Xu Y, Liu R. Hydrogel Electrolyte Enabled High-Performance Flexible Aqueous Zinc Ion Energy Storage Systems toward Wearable Electronics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303949. [PMID: 37530198 DOI: 10.1002/smll.202303949] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/14/2023] [Indexed: 08/03/2023]
Abstract
To cater to the swift advance of flexible wearable electronics, there is growing demand for flexible energy storage system (ESS). Aqueous zinc ion energy storage systems (AZIESSs), characterizing safety and low cost, are competitive candidates for flexible energy storage. Hydrogels, as quasi-solid substances, are the appropriate and burgeoning electrolytes that enable high-performance flexible AZIESSs. However, challenges still remain in designing suitable and comprehensive hydrogel electrolyte, which provides flexible AZIESSs with high reversibility and versatility. Hence, the application of hydrogel electrolyte-based AZIESSs in wearable electronics is restricted. A thorough review is required for hydrogel electrolyte design to pave the way for high-performance flexible AZIESSs. This review delves into the engineering of desirable hydrogel electrolytes for flexible AZIESSs from the perspective of electrolyte designers. Detailed descriptions of hydrogel electrolytes in basic characteristics, Zn anode, and cathode stabilization effects as well as their functional properties are provided. Moreover, the application of hydrogel electrolyte-based flexible AZIESSs in wearable electronics is discussed, expecting to accelerate their strides toward lives. Finally, the corresponding challenges and future development trends are also presented, with the hope of inspiring readers.
Collapse
Affiliation(s)
- Gao Weng
- Soochow Institute of Energy and Material Innovations, Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, College of Energy, Soochow University, Suzhou, 215006, P. R. China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215006, P. R. China
| | - Xianzhong Yang
- Institute of Energy Materials Science (IEMS), University of Shanghai for Science and Technology, Shanghai, 200093, P. R. China
| | - Zhiqi Wang
- Soochow Institute of Energy and Material Innovations, Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, College of Energy, Soochow University, Suzhou, 215006, P. R. China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215006, P. R. China
| | - Yan Xu
- Soochow Institute of Energy and Material Innovations, Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, College of Energy, Soochow University, Suzhou, 215006, P. R. China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215006, P. R. China
| | - Ruiyuan Liu
- Soochow Institute of Energy and Material Innovations, Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, College of Energy, Soochow University, Suzhou, 215006, P. R. China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215006, P. R. China
| |
Collapse
|
4
|
Jiang W, Wang W, Shi H, Hu R, Hong J, Tong Y, Ma J, Jing Liang C, Peng J, Xu Z. Homogeneous regulation of arranged polymorphic manganese dioxide nanocrystals as cathode materials for high-performance zinc-ion batteries. J Colloid Interface Sci 2023; 647:124-133. [PMID: 37247476 DOI: 10.1016/j.jcis.2023.05.148] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 05/17/2023] [Accepted: 05/22/2023] [Indexed: 05/31/2023]
Abstract
Rechargeable aqueous zinc-ion batteries have emerged as attractive energy storage devices by virtue of their low cost, high safety and eco-friendliness. However, zinc-ion cathodes are bottlenecked by their vulnerable crystal structures in the process of zinc embedding and significant capacity fading during long-term cycling. Herein, we report the rational and homogeneous regulation of polycrystalline manganese dioxide (MnO2) nanocrystals as zinc cathodes via a surfactant template-assisted strategy. Benefiting from the homogeneous regulation, MnO2 nanocrystals with an ordered crystal arrangement, including nanorod-like polyvinylpyrrolidone-manganese dioxide (PVP-MnO2), nanowire-like sodium dodecyl benzene sulfonate-manganese dioxide and nanodot-like cetyltrimethylammonium bromide-manganese dioxide, are obtained. Among these, the nanorod-like PVP-MnO2 nanocrystals exhibit stable long-life cycling of 210 mAh g-1 over 180 cycles at a high rate of 0.3 A g-1 and with a high capacity retention of 84% over 850 cycles at a high rate of 1 A g-1. The good performance of this cathode significantly results from the facile charge and mass transfer at the interface between the electrode and electrolyte, featuring the crystal stability and uniform morphology of the arranged MnO2 nanocrystals. This work provides crucial insights into the development of advanced MnO2 cathodes for low-cost and high-performance rechargeable aqueous zinc-ion batteries.
Collapse
Affiliation(s)
- Wanwei Jiang
- Jiangsu Advanced Textile Engineering Technology Center, Jiangsu College of Engineering and Technology, Jiangsu 226007, China.
| | - Wei Wang
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Haiting Shi
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Renzong Hu
- School of Materials Science and Engineering, Guangdong Provincial Key Laboratory of Advanced Energy Storage Materials, South China University of Technology, Guangzhou 510640, China.
| | - Jie Hong
- Jiangsu Advanced Textile Engineering Technology Center, Jiangsu College of Engineering and Technology, Jiangsu 226007, China
| | - Yun Tong
- Jiangsu Advanced Textile Engineering Technology Center, Jiangsu College of Engineering and Technology, Jiangsu 226007, China
| | - Jun Ma
- Jiangsu Advanced Textile Engineering Technology Center, Jiangsu College of Engineering and Technology, Jiangsu 226007, China
| | - Cheng Jing Liang
- Jiangsu Advanced Textile Engineering Technology Center, Jiangsu College of Engineering and Technology, Jiangsu 226007, China
| | - Jingfu Peng
- Jiangsu Advanced Textile Engineering Technology Center, Jiangsu College of Engineering and Technology, Jiangsu 226007, China
| | - Zhiwei Xu
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China.
| |
Collapse
|
5
|
Qin G, Liu Y, Zhang W, He W, Su X, Lv Q, Yu X, Chen Q, Yang J. Integrated supercapacitor with self-healing, arbitrary deformability and anti-freezing based on gradient interface structure from electrode to electrolyte. J Colloid Interface Sci 2023; 635:427-440. [PMID: 36599241 DOI: 10.1016/j.jcis.2022.12.164] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/18/2022] [Accepted: 12/30/2022] [Indexed: 01/02/2023]
Abstract
Flexible supercapacitors have attracted more and more attention because of their promising applications in wearable electronics, however, it is still important to harmonize their mechanical and electrochemical properties for practical applications. In the present work, a seamless transition between polyaniline (PANI) electrode and NH4VO3_FeSO4 dual redox-mediated gel polymer electrolyte (GPE) is presented through in situ formation of gradient interface structure. Multiple physical interactions make the GPE excellent mechanical and self-healing properties. Meanwhile, double role functions of Fe2+ ions greatly relieve the traditional contradiction between mechanical and electrochemical properties of GPE. Moreover, benefiting from the structure and reversible redox reactions of VO3- and Fe2+, the integrated supercapacitor delivers an exceptional specific capacitance of 441.8 mF/cm2, a high energy density of 63.1 μWh/cm2, remarkable cyclic stability. Simultaneously, the gradient structure from PANI electrode to GPE greatly improves the electrode/electrolyte interface compatibility and ion transport, which endows the supercapacitor with stable electrochemical performance. Furthermore, the supercapacitor well-maintains the specific capacitance even at -20 °C with over 89.19 % retention after 6 cutting/healing cycles. The gradient interface structure design will promote the development of high-performance supercapacitor.
Collapse
Affiliation(s)
- Gang Qin
- School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454003, China
| | - Yongcun Liu
- School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454003, China
| | - Wenye Zhang
- School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454003, China
| | - Wenjie He
- School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454003, China
| | - Xiaoxiang Su
- School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454003, China
| | - Qianqian Lv
- School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454003, China
| | - Xiang Yu
- College of Materials Engineering, Henan University of Engineering, Zhengzhou 454000, China.
| | - Qiang Chen
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 352001, China.
| | - Jia Yang
- School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454003, China
| |
Collapse
|
6
|
Cui Y, He Y, Yu W, Shang W, Yu J, Tan P. Tailoring the Electrochemical Deposition of Zn by Tuning the Viscosity of the Liquid Electrolyte. ACS APPLIED MATERIALS & INTERFACES 2023; 15:3028-3036. [PMID: 36598510 DOI: 10.1021/acsami.2c19965] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The issues during Zn deposition in rechargeable Zn-based batteries greatly hinder cycling stability. In this work, a simple and inexpensive approach to tailor the Zn electrodeposition is proposed by tuning the viscosity of the liquid electrolyte (LE). First, the growth mechanisms of Zn deposition under different electrolyte properties are investigated by numerical simulation, from which the bottom deposition tends to fuse with each other when there are more deposition sites, and the mass-transfer coefficient is lower, thus achieving uniform deposition. Besides, the whole process of Zn deposition in charging-discharging cycling is in situ observed by an optical microscope. It is found that the cause of the poor stability in the LE is due to the uneven Zn deposition, resulting in weak bonding between the deposition and the electrode surface, which is also the reason for the formation of dead Zn. In contrast, when an appropriate amount of the polymer is added to the LE to increase the viscosity, an appropriate overpotential can be created, generating more deposition sites. In addition, the viscosity reduces the mass-transfer coefficient, making the distance from the ion to the deposition sites the main controlling factor. The Zn ions are more inclined to move in the direction of electric field lines, which results in a uniform and dense deposition layer. Furthermore, the effectiveness of this method is demonstrated in a Zn-LiFePO4 battery, from which the battery with the modified electrolyte condition still works properly even in the Zn utilization of 100% and shows a capacity retention rate (35%) of nearly twice that in the original LE condition (18%) after 10 cycles. This work provides a theoretical basis for Zn deposition and provides ideas for the future development of high-performance Zn-based batteries.
Collapse
Affiliation(s)
- Yifan Cui
- Department of Thermal Science and Energy Engineering, University of Science and Technology of China (USTC), Hefei230026, Anhui, China
| | - Yi He
- Department of Thermal Science and Energy Engineering, University of Science and Technology of China (USTC), Hefei230026, Anhui, China
| | - Wentao Yu
- Department of Thermal Science and Energy Engineering, University of Science and Technology of China (USTC), Hefei230026, Anhui, China
| | - Wenxu Shang
- Department of Thermal Science and Energy Engineering, University of Science and Technology of China (USTC), Hefei230026, Anhui, China
| | - Jianwen Yu
- Department of Thermal Science and Energy Engineering, University of Science and Technology of China (USTC), Hefei230026, Anhui, China
| | - Peng Tan
- Department of Thermal Science and Energy Engineering, University of Science and Technology of China (USTC), Hefei230026, Anhui, China
| |
Collapse
|
7
|
He S, Guo B, Sun X, Shi M, Zhang H, Yao F, Sun H, Li J. Bio-Inspired Instant Underwater Adhesive Hydrogel Sensors. ACS APPLIED MATERIALS & INTERFACES 2022; 14:45869-45879. [PMID: 36165460 DOI: 10.1021/acsami.2c13371] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Underwater adhesion plays an essential role in soft electronics for the underwater interface. Although hydrogel-based electronics are of great interest, because of their versatility, water molecules prevent hydrogels from adhering to substrates, thus bottlenecking further applications. Herein, inspired by the barnacle proteins, MXene/PHMP hydrogels with strong repeatable underwater adhesion are developed through the random copolymerization of 2-phenoxyethyl acrylate, 2-methoxyethyl acrylate, and N-(2-hydroxyethyl) acrylamide with the presence of MXene nanosheets. The hydrogels are mechanically tough (elastic modulus of 32 kPa, fracture stress of 0.11 MPa), and 2-phenoxyethyl acrylate (PEA) with aromatic groups endows the hydrogel with nonswelling property and prevents water molecules from invading the adhesive interface, rendering the hydrogels an outstanding adhesive behavior toward various substrates (including glass, iron, polyethylene terephthalate (PET), porcine). Besides, dynamic physical interactions allow for instant and repeatable underwater adhesion. Furthermore, the MXene/PHMP hydrogels exhibit a high conductivity (0.016 S/m), fast responsiveness, and superior sensitivity as a strain sensor (gauge factor = 7.17 at 200%-500% strain) and pressure sensor (0.63 kPa-1 at 0-70 kPa). The underwater applications of bionic hydrogel-based sensors have been demonstrated, such as human motion, pressure sensing, and holding objects. It is anticipated that the instant and repeatable underwater adhesive hydrogel-based sensors extend the underwater applications of hydrogel electronics.
Collapse
Affiliation(s)
- Shaoshuai He
- School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, 063210, China
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Bingyan Guo
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Xia Sun
- Sustainable Functional Biomaterials Laboratory, Department of Wood Science, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Mingyue Shi
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Hong Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300350, China
| | - Fanglian Yao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300350, China
| | - Hong Sun
- School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, 063210, China
| | - Junjie Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300350, China
| |
Collapse
|
8
|
Jiang Z, Zhai S, Shui L, Shi Y, Chen X, Wang G, Chen F. Dendrite-free Zn anode supported with 3D carbon nanofiber skeleton towards stable zinc ion batteries. J Colloid Interface Sci 2022. [DOI: 10.1016/j.jcis.2022.05.058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
9
|
Zhu Y, Lin X, Jin X, Han T, Zhang H, Liu J. A flexible self-healing Zn3V2O7(OH)2·2H2O-based Zn-ion battery under continuous folding and twisting. Chem Commun (Camb) 2022; 58:8117-8120. [DOI: 10.1039/d2cc02561b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Engineering flexible and self-healing batteries is significant for wearable electronics. Here, we develop a flexible self-healing Zn-ion battery with a three-dimensional Zn3V2O7(OH)2·2H2O cathode working with polyvinyl alcohol and Zn2+/Mn2+ ions-based...
Collapse
|