1
|
Tian Y, Han Z, Li Y, Zhao H, Zeng Q, Cheng S. Pt/Al 2O 3@Ce/ZrO 2-S bifunctional catalysts prepared by mechanically milling for selective catalytic oxidation of high-concentration ammonia. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:37746-37756. [PMID: 38787474 DOI: 10.1007/s11356-024-33744-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 05/17/2024] [Indexed: 05/25/2024]
Abstract
The selective catalytic oxidation (SCO) is an effective method for removing slipped high-concentration ammonia from NH3-fueled engine exhaust gas. Herein a novel bifunctional catalyst was synthesized by mechanically mixing sulfated Ce/ZrO2 (Ce/ZrO2-S) with a small fraction of Pt/Al2O3 (Pt 0.1 wt.%) for SCO of NH3. As expected, the introduction of a small amount of Pt/Al2O3 significantly improved NH3 conversion ability of Ce/ZrO2-S catalysts toward low-temperature direction. When the mass ratio of Pt/Al2O3 to Ce/ZrO2-S was 7.5% (the corresponding mixed catalyst was denoted as P@CZS-7.5), T90 temperature was 312 °C. More importantly, P@CZS-7.5 catalyst exhibited a much better N2 selectivity (> 96%) in a wide temperature range (320 ~ 450 °C). H2-TPR results revealed that the addition of a trace amount of Pt/Al2O3 significantly led to a distinct shift of reduction temperature peak toward low-temperature direction, thereby greatly improved the low-temperature redox performance of mixed catalysts. Furthermore, NH3-TPD and BET results showed that P@CZS-7.5 catalyst exhibited a similar NH3 adsorption capacity to Ce/ZrO2-S catalyst, while the former had a relatively higher specific surface area than the latter. It was considered as a crucial factor for P@CZS-7.5 catalyst maintaining superior N2 selectivity in high-concentration NH3 (5000 ppm) removal processes. In situ DRIFTS results indicated that P@CZS-7.5 catalyst followed the internal selective catalytic reduction (i-SCR) mechanism in NH3-SCO reactions.
Collapse
Affiliation(s)
- You Tian
- Marine Engineering College, Dalian Maritime University, Dalian, 116026, China
| | - Zhitao Han
- Marine Engineering College, Dalian Maritime University, Dalian, 116026, China.
| | - Yeshan Li
- Marine Engineering College, Dalian Maritime University, Dalian, 116026, China
| | - Hongzhe Zhao
- Marine Engineering College, Dalian Maritime University, Dalian, 116026, China
| | - Qingliang Zeng
- Marine Engineering College, Dalian Maritime University, Dalian, 116026, China
| | - Shaoshi Cheng
- Marine Engineering College, Dalian Maritime University, Dalian, 116026, China
| |
Collapse
|
2
|
Wang N, Zhou X, Yu X, Song Y, Ullah S, Nie X, Wang N, Zhang L. Preparation of Solid Superacid SO 42-/ZrO 2 and SO 42-/ZrO 2-M xO y (M=Ce, Co, Mn, and Zn) and Its Application in Toluene Nitration. ACS OMEGA 2024; 9:12037-12045. [PMID: 38496941 PMCID: PMC10938450 DOI: 10.1021/acsomega.3c09663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/05/2024] [Accepted: 02/09/2024] [Indexed: 03/19/2024]
Abstract
The nitration reaction of aromatic compounds is one of the extensively studied chemical reactions that result in the manufacturing of various industrial products applied in pharmaceuticals, dyes, perfumes, and explosives. A series of modified sulfated zirconia (SZ) catalysts SO42-/ZrO2-MxOy (M=Ce, Co, Mn, Zn, and M/SZ) doped with different metal elements by a coprecipitation method were investigated in the toluene nitration reaction. Various characterization techniques (X-ray diffraction, Brunauer-Emmett-Teller, thermogravimetric analysis, X-ray photoelectron spectroscopy, and temperature-programmed desorption of ammonia) indicated that doping metal elements in SZ led to excellent catalytic properties, increasing the specific surface area of the catalyst and facilitating the formation of a stable tetragonal zirconia phase. Doping zinc and cobalt in SZ enhanced the acidity of the catalyst and formed stronger acidic sites, promoting the generation of nitronium ions and providing more active sites for the toluene nitration reaction. Additionally, it reduced the loss of sulfate ions in the catalytic system that helped in improving the stability of the catalyst. Under the same conditions, the catalytic activity of toluene nitration reaction demonstrated the following order: Zn/SZ > Ce/SZ > Co/SZ > Mn/SZ > SZ, with the zinc-doped SZ catalyst exhibiting the best catalytic performance, achieving a toluene conversion rate of 78.58% and a para/ortho nitrotoluene ratio of 0.67.
Collapse
Affiliation(s)
- Ning Wang
- School
of Chemical Engineering, East China University
of Science and Technology, Shanghai 200231, China
| | - Xiaolong Zhou
- East
China University of Science and Technology, Shanghai 200231, China
| | - Xiaoyan Yu
- School
of Chemical Engineering, East China University
of Science and Technology, Shanghai 200231, China
| | - Yueqin Song
- East
China University of Science and Technology, Shanghai 200231, China
| | - Saif Ullah
- School
of Chemical Engineering, East China University
of Science and Technology, Shanghai 200231, China
| | - Xinyao Nie
- Qingyang
Chemical Industry Corporation, Liaoyang 111000, China
| | - Ning Wang
- Qingyang
Chemical Industry Corporation, Liaoyang 111000, China
| | - Lu Zhang
- Qingyang
Chemical Industry Corporation, Liaoyang 111000, China
| |
Collapse
|
3
|
Zhang H, Lian Z, Lin C, Zhu Y, Shan W, He H. Insight into the mechanisms of activity promotion and SO 2 resistance over Fe-doped Ce-W oxide catalyst for NO x reduction. J Colloid Interface Sci 2023; 652:923-935. [PMID: 37634365 DOI: 10.1016/j.jcis.2023.08.129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/09/2023] [Accepted: 08/20/2023] [Indexed: 08/29/2023]
Abstract
Ceria-based catalysts for the selective catalytic reduction of NOx with NH3 (NH3-SCR) are always subject to deactivation by sulfur poisoning. In this study, Fe-doped Ce-W mixed oxides, which were synthesized by the co-precipitation method, improved the SCR activity and SO2 durability at low temperatures of undoped Ce-W oxides. The improved low-temperature activity was mainly due to the enhancement of redox properties at low temperatures and more active oxygen species, together with the adsorption and activation of more abundant NOx species, facilitating the "fast SCR" reaction. In the presence of SO2, doping with Fe species effectively prevented sulfate deposition on the CeW catalyst, due to the interaction between Fe, Ce, and W species inducing electron transfer among different metal sites and altering the electron distribution. The competitive adsorption behavior between NO and SO2 was changed by Fe doping, in which the adsorption and oxidation of SO2 were restrained. Besides, the elevated NO oxidation accelerated the decomposition of ammonium bisulfate, causing the SCR reaction to not be greatly suppressed. Hence, Fe-doped Ce-W oxides catalysts showed excellent sulfur resistance. This study provides an in-depth understanding of efficient Ce-based catalysts for SO2-tolerance strategies.
Collapse
Affiliation(s)
- Hui Zhang
- Center for Excellence in Regional Atmospheric Environment and Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhihua Lian
- Center for Excellence in Regional Atmospheric Environment and Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| | - Chunxi Lin
- Center for Excellence in Regional Atmospheric Environment and Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying Zhu
- Center for Excellence in Regional Atmospheric Environment and Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenpo Shan
- Center for Excellence in Regional Atmospheric Environment and Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Ningbo 315800, China
| | - Hong He
- Center for Excellence in Regional Atmospheric Environment and Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China; State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
4
|
Sharma M, K H, Gaur UK, Ganguli AK. Synthesis of mesoporous SiO 2-CeO 2 hybrid nanostructures with high catalytic activity for transamidation reaction. RSC Adv 2023; 13:13134-13141. [PMID: 37124026 PMCID: PMC10140673 DOI: 10.1039/d3ra01552a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 04/17/2023] [Indexed: 05/02/2023] Open
Abstract
Transamidation reactions catalyzed by boronic acid derivatives and metal catalysts are well known nevertheless their requirement for elevated temperatures and long reaction times were considered major obstacles in converting amides to N-alkyl amides with the coupling of primary amides and amines. The acidic-basic co-existence of ceria nanoparticles is considered a perfect choice for different catalytic activities. Mesoporous silica on the other hand is well known for its use as a supporting material for catalysts owing to its excellent characteristics like large surface area, good absorption capacity, and high-temperature stability. The SiO2-CeO2 hybrid nanocomposite was prepared by solvothermal route followed by annealing and the formation of the catalyst was confirmed by XRD, EDX, FTIR, and TEM characterization techniques. The hybrid catalyst shows high catalytic activity towards transamidation reaction at very low temperatures and in solvent-free conditions compared to pure ceria nanoparticles. The SiO2-CeO2 catalyst showed more than 99% selectivity and a remarkable catalytic activity of above 90% for the conversion of N-heptyl amine with acetamide to N-heptyl acetamide at a very low temperature of 120 °C for 3 hours. Furthermore, the catalyst remains stable and active for repeated catalytic cycles. It established 80% catalytic activity even after 4 repeated cycles making it suitable for multiple-time usages.
Collapse
Affiliation(s)
- Manu Sharma
- Central University of Gujarat Gandhinagar India
| | | | | | | |
Collapse
|
5
|
Wang Y, Wang R. Effects of chemical etching and reduction activation of CeO 2 nanorods supported ruthenium catalysts on CO oxidation. J Colloid Interface Sci 2022; 613:836-846. [PMID: 35091258 DOI: 10.1016/j.jcis.2022.01.062] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 01/09/2022] [Accepted: 01/09/2022] [Indexed: 10/19/2022]
Abstract
In this work, pristine and NaBH4 etched CeO2 nanorods supported ruthenium (Ru) catalysts were synthesized and employed to investigate the effects of chemical etching and reduction activation treatment on CO oxidation. With 1 wt% Ru loading, the CeO2 nanorods supported catalyst samples, after 6 wt% NaBH4 etching treatment, showed significantly promoted H2 consumption under 100 °C and low apparent activation energy (i.e., Ea ∼ 31.2 kJ/mol) for CO oxidation. In-situ CO-DRIFTS profiles revealed that, for the reduced sample, the observed CO adsorption at ∼ 2020 cm-1 at 40 °C may be related to a strong RuOx-CeO2 interaction induced by the NaBH4 etching treatment, which was supported by the oxygen vacancy analysis results of X-ray photoelectron spectroscopy and CO-temperature programmed desorption. The enriched surface defects on CeO2 support due to the chemical etching and reduction treatments are believed to promote the interaction between RuOx species and CeO2, which is responsible for the enhanced activity of CO oxidation.
Collapse
Affiliation(s)
- Yifan Wang
- Department of Metallurgical and Materials Engineering, The University of Alabama, Tuscaloosa, AL 35487, United States
| | - Ruigang Wang
- Department of Metallurgical and Materials Engineering, The University of Alabama, Tuscaloosa, AL 35487, United States.
| |
Collapse
|
6
|
Wang S, Li X, Ren S, Xing X, Chen L, Yang J, Liu M, Xie Y. Effects of different exposed crystal surfaces of CeO 2 loaded on an MnO 2/X catalyst for the NH 3-SCR reaction. CrystEngComm 2022. [DOI: 10.1039/d2ce00570k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
To study the effects of the loading of different exposed crystal surfaces of CeO2 on an MnO2/X catalyst for the NH3-selective catalytic reduction (SCR) reaction, Mn/X, Mn–CeNP/X, Mn–CeNC/X and Mn–CeNR/X catalysts were synthesized via a solid-state diffusion method.
Collapse
Affiliation(s)
- Shihao Wang
- College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
| | - Xiaodi Li
- College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
| | - Shan Ren
- College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
| | - Xiangdong Xing
- School of Metallurgical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, ShanXi, P.R. China
| | - Lin Chen
- College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
| | - Jie Yang
- College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
- Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland
| | - Manyi Liu
- College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
| | - Yixin Xie
- College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
| |
Collapse
|
7
|
Li C, Han Z, Hu Y, Liu T, Pan X. Synthesis of W-modified CeO 2/ZrO 2 catalysts for selective catalytic reduction of NO with NH 3. RSC Adv 2022; 12:27309-27320. [PMID: 36276006 PMCID: PMC9513439 DOI: 10.1039/d2ra04862k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 09/20/2022] [Indexed: 11/30/2022] Open
Abstract
In this paper, a series of tungsten–zirconium mixed binary oxides (denoted as WmZrOx) were synthesized via co-precipitation as supports to prepare Ce0.4/WmZrOx catalysts through an impregnation method. The promoting effect of W doping in ZrO2 on selective catalytic reduction (SCR) performance of Ce0.4/ZrO2 catalysts was investigated. The results demonstrated that addition of W in ZrO2 could remarkably enhance the catalytic performance of Ce0.4/ZrO2 catalysts in a broad temperature range. Especially when the W/Zr molar ratio was 0.1, the Ce0.4/W0.1ZrOx catalyst exhibited the widest active temperature window of 226–446 °C (NOx conversion rate > 80%) and its N2 selectivity was almost 100% in the temperature of 150–450 °C. Moreover, the Ce0.4/W0.1ZrOx catalyst also exhibited good SO2 tolerance, which could maintain more than 94% of NOx conversion efficiency after being exposed to a 100 ppm SO2 atmosphere for 18 h. Various characterization results manifested that a proper amount of W doping in ZrO2 was not only beneficial to enlarge the specific surface area of the catalyst, but also inhibited the growth of fluorite structure CeO2, which were in favor of CeO2 dispersion on the support. The presence of W was conducive to the growth of a stable tetragonal phase crystal of ZrO2 support, and a part of W and Zr combined to form W–Zr–Ox solid super acid. Both of them resulted in abundant Lewis acid sites and Brønsted acid sites, enhancing the total surface acidity, thus significantly improving NH3 species adsorption on the surface of the Ce0.4/W0.1ZrOx catalyst. Furthermore, the promoting effect of adding W on SCR performance was also related to the improved redox capability, higher Ce3+/(Ce3+ + Ce4+) ratio and abundant surface chemisorbed oxygen species. The in situ DRIFTS results indicated that nitrate species adsorbed on the surface of the Ce0.4/W0.1ZrOx catalyst could react with NH3 due to the activation of W. Therefore, the reaction pathway over the Ce0.4/W0.1ZrOx catalyst followed both Eley–Rideal (E–R) and Langmuir–Hinshelwood (L–H) mechanisms at 250 °C. Interaction of W with Zr improved NH3-SCR performance via enhancing redox and surface acidity.![]()
Collapse
Affiliation(s)
- Chenglong Li
- Marine Engineering College, Dalian Maritime University, No.1, Linghai Road, Dalian 116026, China
| | - Zhitao Han
- Marine Engineering College, Dalian Maritime University, No.1, Linghai Road, Dalian 116026, China
| | - Yuqing Hu
- Marine Engineering College, Dalian Maritime University, No.1, Linghai Road, Dalian 116026, China
| | - Tingjun Liu
- Marine Engineering College, Dalian Maritime University, No.1, Linghai Road, Dalian 116026, China
| | - Xinxiang Pan
- Marine Engineering College, Dalian Maritime University, No.1, Linghai Road, Dalian 116026, China
- School of Electronic and Information Technology, Guangdong Ocean University, Zhanjiang 524088, China
| |
Collapse
|
8
|
Li C, Han Z, Wang X, Gao Y, Wang Z, Pan X. The promoting effect of support pretreatment with sulfate acid on the Ca resistance of a CeO 2/ZrO 2 catalyst for NH 3-SCR of NO x with NH 3. NEW J CHEM 2022. [DOI: 10.1039/d2nj02919g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
CaSO4 was formed through the reaction between S and Ca to relieve the effect of Ca-poisoning on the catalyst.
Collapse
Affiliation(s)
- Chenglong Li
- Marine Engineering College, Dalian Maritime University, No. 1, Linghai Road, Dalian 116026, China
| | - Zhitao Han
- Marine Engineering College, Dalian Maritime University, No. 1, Linghai Road, Dalian 116026, China
| | - Xinxin Wang
- Marine Engineering College, Dalian Maritime University, No. 1, Linghai Road, Dalian 116026, China
| | - Yu Gao
- Marine Engineering College, Dalian Maritime University, No. 1, Linghai Road, Dalian 116026, China
| | - Zhen Wang
- Marine Engineering College, Dalian Maritime University, No. 1, Linghai Road, Dalian 116026, China
| | - Xinxiang Pan
- Marine Engineering College, Dalian Maritime University, No. 1, Linghai Road, Dalian 116026, China
- School of Electronic and Information Technology, Guangdong Ocean University, Zhanjiang 524088, China
| |
Collapse
|