1
|
Liu LL, Liu L, Wang CY, Zhang L, Feng JJ, Gao YJ, Wang AJ. Strong coupling Fe 2VO 4 nanoparticles/3D N-doped interconnected porous carbon derived from MOFs by confined adsorption-assembly-pyrolysis for greatly boosting oxygen reduction. J Colloid Interface Sci 2025; 684:10-20. [PMID: 39813908 DOI: 10.1016/j.jcis.2025.01.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/21/2024] [Accepted: 01/08/2025] [Indexed: 01/18/2025]
Abstract
Low-cost and effective electrocatalysts are critical for energy storage and conversion. Herein, iron(III) and vanadium(III) acetylacetonates were first adsorbed and confined in porous zeolitic imidazolate framework-8 (ZIF-8), which further cross-linked together by the methanol-induced-assembly. Following the pyrolysis, the Fe2VO4 nanoparticles were efficiently encapsulated within three-dimensional (3D) N-doped interconnected porous carbon, termed Fe2VO4/NIPC. The obtained Fe2VO4/NIPC displayed outstanding catalytic properties in the alkaline media for oxygen reduction reaction with a half-wave potential of 0.86 V. In the parallel, density functional theory (DFT) calculations were performed to illustrate the catalytic mechanism. Moreover, the Fe2VO4/NIPC assembled Zn-air battery showed a high peak power density of 107.7 mW cm-2 and excellent long-cycle stability over a duration of 250 h, which outperformed commercial Pt/C catalyst in the control group. The strong coupling and synergistic effects between the Fe2VO4 nanoparticles and N-doped carbon improved the catalytic performance, coupled by promoting the stability. This study opens a prospect way to develop high-efficiency carbon-based electrocatalysts in energy storage and conversion devices.
Collapse
Affiliation(s)
- Ling-Ling Liu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004 PR China
| | - Lu Liu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004 PR China; Zhejiang Engineering Laboratory for Green Syntheses and Applications of Fluorine-Containing Specialty Chemicals, Institute of Advanced Fluorine-Containing Materials, Zhejiang Normal University 321004 Jinhua, PR China
| | - Chen-Yang Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004 PR China
| | - Lu Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004 PR China
| | - Jiu-Ju Feng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004 PR China
| | - Yi-Jing Gao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004 PR China; Zhejiang Engineering Laboratory for Green Syntheses and Applications of Fluorine-Containing Specialty Chemicals, Institute of Advanced Fluorine-Containing Materials, Zhejiang Normal University 321004 Jinhua, PR China.
| | - Ai-Jun Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004 PR China.
| |
Collapse
|
2
|
Lian Y, Xu J, Zhou W, Lin Y, Bai J. Research Progress on Atomically Dispersed Fe-N-C Catalysts for the Oxygen Reduction Reaction. Molecules 2024; 29:771. [PMID: 38398523 PMCID: PMC10892989 DOI: 10.3390/molecules29040771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 01/31/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
The efficiency and performance of proton exchange membrane fuel cells (PEMFCs) are primarily influenced by ORR electrocatalysts. In recent years, atomically dispersed metal-nitrogen-carbon (M-N-C) catalysts have gained significant attention due to their high active center density, high atomic utilization, and high activity. These catalysts are now considered the preferred alternative to traditional noble metal electrocatalysts. The unique properties of M-N-C catalysts are anticipated to enhance the energy conversion efficiency and lower the manufacturing cost of the entire system, thereby facilitating the commercialization and widespread application of fuel cell technology. This article initially delves into the origin of performance and degradation mechanisms of Fe-N-C catalysts from both experimental and theoretical perspectives. Building on this foundation, the focus shifts to strategies aimed at enhancing the activity and durability of atomically dispersed Fe-N-C catalysts. These strategies encompass the use of bimetallic atoms, atomic clusters, heteroatoms (B, S, and P), and morphology regulation to optimize catalytic active sites. This article concludes by detailing the current challenges and future prospects of atomically dispersed Fe-N-C catalysts.
Collapse
Affiliation(s)
- Yuebin Lian
- School of Optoelectronic Engineering, Changzhou Institute of Technology, Changzhou 213032, China
| | - Jinnan Xu
- School of Chemistry and Environmental Engineering, Jiangsu University of Technology, Changzhou 213001, China; (J.X.)
| | - Wangkai Zhou
- School of Chemistry and Environmental Engineering, Jiangsu University of Technology, Changzhou 213001, China; (J.X.)
| | - Yao Lin
- Research Center of Secondary Resources and Environment, School of Chemical Engineering and Materials, Changzhou Institute of Technology, Changzhou 213022, China;
| | - Jirong Bai
- Research Center of Secondary Resources and Environment, School of Chemical Engineering and Materials, Changzhou Institute of Technology, Changzhou 213022, China;
| |
Collapse
|
3
|
Mao YW, Zhang X, Li HB, Pei S, Wang AJ, Zhao T, Jin Z, Feng JJ. Confined synthesis of ternary FeCoMn single-atom nanozyme in N-doped hollow mesoporous carbon nanospheres for synergistic chemotherapy and chemodynamic cancer therapy. BIOMATERIALS ADVANCES 2023; 154:213618. [PMID: 37725871 DOI: 10.1016/j.bioadv.2023.213618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/19/2023] [Accepted: 09/03/2023] [Indexed: 09/21/2023]
Abstract
Recently, nanozymes show increasing biological applications and promising possibilities for therapeutic intervention, while their mediated therapeutic outcomes are severely compromised due to their insufficient catalytic activity and specificity. Herein, ternary FeCoMn single atoms were incorporated into N-doped hollow mesoporous carbon nanospheres by in situ confinement pyrolysis at 800 °C as high-efficiency nanozyme. The confinement strategy endows the as-prepared nanozyme with the enhanced catalase- and oxidase-like activities. Specifically, the FeCoMn TSAs/N-HCSs nanozyme can decompose intracellular H2O2 to generate O2 and subsequently convert O2 to cytotoxic superoxide radicals (O2∙-), which can initiate cascade enzymatic reactions in tumor microenvironment (TME) for chemodynamic therapy (CDT). Moreover, the cancer therapy was largely enhanced by loading with doxorubicin (DOX). Impressively, the FeCoMn TSAs/N-HCSs nanozyme-mediated CDT and the DOX-induced chemotherapy endow the DOX@FeCoMn TSAs/N-HCSs with effective tumor inhibition, showing the superior therapeutic efficacy.
Collapse
Affiliation(s)
- Yan-Wen Mao
- Key laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Life Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Xu Zhang
- Key laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Life Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China; Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou 310015, China
| | - Heng-Bo Li
- Key laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Life Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Song Pei
- Key laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Life Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Ai-Jun Wang
- Key laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Life Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Tiejun Zhao
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou 310015, China
| | - Zhigang Jin
- Key laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Life Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Jiu-Ju Feng
- Key laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Life Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| |
Collapse
|
4
|
Feng R, Ruan QD, Feng JJ, Yao YQ, Li LM, Zhang L, Wang AJ. Facile pyrolysis synthesis of abundant FeCo dual-single atoms anchored on N-doped carbon nanocages for synergistically boosting oxygen reduction reaction. J Colloid Interface Sci 2023; 654:1240-1250. [PMID: 39491913 DOI: 10.1016/j.jcis.2023.10.134] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 10/19/2023] [Accepted: 10/25/2023] [Indexed: 11/05/2024]
Abstract
Single-atom transition metal-based nitrogen-doped carbon (M-Nx-C) is regarded as high-efficiency and cost-effectiveness alternatives to replace noble metal catalysts for oxygen reduction reaction (ORR) in renewable energy storage and conversion devices. In this work, rich FeCo dual-single atoms were efficiently entrapped into N-doped carbon nanocages (FeCo DSAs-NCCs) by simple pyrolysis of the bimetallic precursors doped zeolitic imidazolate framework-8 (ZIF-8), as affirmed by a series of characterizations. The graphitization degree of the N-doping carbon substrate was regulated by modulating the pyrolysis temperature and the types of the metal salts. The typical catalyst substantially improved the alkaline ORR performance, with the onset potential (Eonset) of 0.99 V (vs. RHE) and half-wave potential (E1/2) of 0.88 V (vs. RHE). Ultimately, the catalyst-assembled Zn-air battery possessed a higher open-circuit voltage of 1.501 V, larger power density of 123.7 mW cm-2, and outstanding durability for 150 h. This study provides a guide on developing ORR catalysts for electrochemical energy conversion and storage technology.
Collapse
Affiliation(s)
- Rui Feng
- College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Key laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, PR China
| | - Qi-Dong Ruan
- College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Key laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, PR China
| | - Jiu-Ju Feng
- College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Key laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, PR China
| | - You-Qiang Yao
- Zhejiang Provincial Key Laboratory of Robotics and Intelligent Manufacturing Equipment Technology, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, PR China
| | - Lin-Mei Li
- College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Key laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, PR China
| | - Lu Zhang
- College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Key laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, PR China.
| | - Ai-Jun Wang
- College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Key laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, PR China.
| |
Collapse
|
5
|
FeCo alloy entrapped in N-doped graphitic carbon nanotubes-on-nanosheets prepared by coordination-induced pyrolysis for oxygen reduction reaction and rechargeable Zn-air battery. J Colloid Interface Sci 2023; 639:424-433. [PMID: 36812858 DOI: 10.1016/j.jcis.2023.02.061] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 02/05/2023] [Accepted: 02/12/2023] [Indexed: 02/17/2023]
Abstract
Oxygen reduction reaction (ORR) on cathode severely suffers from sluggish kinetics in zinc-air batteries. Therefore, substantial efforts have been made to prepare advanced electrocatalysts for facilitating the ORR. Herein, we synthesized FeCo alloyed nanocrystals entrapped in N-doped graphitic carbon nanotubes on nanosheets (FeCo-N-GCTSs) by 8-aminoquinoline coordination-induced pyrolysis, whose morphology, structures, and property were characterized in details. Impressively, the obtained FeCo-N-GCTSs catalyst showed a positive onset potential (Eonset = 1.06 V) and half-wave potential (E1/2 = 0.88 V), revealing excellent ORR activity. Further, the FeCo-N-GCTSs assembled zinc-air battery displayed the maximum power density of 133 mW cm-2 and negligible gap change in the discharge-charge voltage plot over 288 h (ca. 864 cycles) at 5 mA cm-2, outperforming the Pt/C + RuO2 based counterpart. This work provides a facile route for construction of high-efficiency, durable and low-cost nanocatalysts for the ORR in fuel cells and rechargeable Zn-air batteries.
Collapse
|
6
|
Wu DH, Huang H, Ul Haq M, Zhang L, Feng JJ, Wang AJ. Lignin-derived iron carbide/Mn, N, S-codoped carbon nanotubes as a high-efficiency catalyst for synergistically enhanced oxygen reduction reaction and rechargeable zinc-air battery. J Colloid Interface Sci 2023; 647:1-11. [PMID: 37236099 DOI: 10.1016/j.jcis.2023.05.111] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/15/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023]
Abstract
Design of efficient and durable oxygen reduction reaction (ORR) electrocatalysts still remains challenge in sustainable energy storage and conversion devices. To achieve sustainable development, it is of importance to prepare high-quality carbon-derived ORR catalysts from biomass. Herein, Fe5C2 nanoparticles (NPs) were facilely entrapped in Mn, N, S-codoped carbon nanotubes (Fe5C2/Mn, N, S-CNTs) by a one-step pyrolysis of the mixed lignin, metal precursors and dicyandiamide. The resulting Fe5C2/Mn, N, S-CNTs had open and tubular structures, which exhibited positive shifts in the onset potential (Eonset = 1.04 V) and high half-wave potential (E1/2 = 0.85 V), showing excellent ORR characteristics. Further, the typical catalyst-assembled Zn-air battery showed a high power density (153.19 mW cm-2) and good cycling performance as well as obvious cost advantage. The research provides some valuable insights for rational construction of low-cost and environmentally sustainable ORR catalysts in clean energy field, coupled by offering some valuable insights for reusing biomass wastes.
Collapse
Affiliation(s)
- Dong-Hui Wu
- College of Geography and Environmental Sciences, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, China
| | - Hong Huang
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China
| | - Mahmood Ul Haq
- College of Geography and Environmental Sciences, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, China
| | - Lu Zhang
- College of Geography and Environmental Sciences, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, China
| | - Jiu-Ju Feng
- College of Geography and Environmental Sciences, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, China
| | - Ai-Jun Wang
- College of Geography and Environmental Sciences, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, China.
| |
Collapse
|
7
|
Ruan QD, Feng R, Feng JJ, Gao YJ, Zhang L, Wang AJ. High-Activity Fe 3 C as pH-Universal Electrocatalyst for Boosting Oxygen Reduction Reaction and Zinc-Air Battery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2300136. [PMID: 36970814 DOI: 10.1002/smll.202300136] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/26/2023] [Indexed: 06/18/2023]
Abstract
Transition metal catalysts are regarded as one of promising alternatives to replace traditional Pt-based catalysts for oxygen reduction reaction (ORR). In this work, an efficient ORR catalyst is synthesized by confining Fe3 C nanoparticles into N, S co-doped porous carbon nanosheets (Fe3 C/N,S-CNS) via high-temperature pyrolysis, in which 5-sulfosalicylic acid (SSA) demonstrates as an ideal complexing agent for iron (ΙΙΙ) acetylacetonate while g-C3 N4 behaves as a nitrogen source. The influence of the pyrolysis temperature on the ORR performance is strictly examined in the controlled experiments. The obtained catalyst exhibits excellent ORR performance (E1/2 = 0.86 V; Eonset = 0.98 V) in alkaline electrolyte, coupled by exhibiting the superior catalytic activity and stability (E1/2 = 0.83 V, Eonset = 0.95 V) to Pt/C in acidic media. In parallel, its ORR mechanism is carefully illustrated by the density functional theory (DFT) calculations, especially the role of the incorporated Fe3 C played in the catalytic process. The catalyst-assembled Zn-air battery also exhibits a much higher power density (163 mW cm-2 ) and ultralong cyclic stability in the charge-discharge test for 750 h with a gap increase down to 20 mV. This study provides some constructive insights for preparation of advanced ORR catalysts in green energy conversion units correlated systems.
Collapse
Affiliation(s)
- Qi-Dong Ruan
- College of Geography and Environmental Sciences, Key laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, 321004, P. R. China
| | - Rui Feng
- College of Geography and Environmental Sciences, Key laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, 321004, P. R. China
| | - Jiu-Ju Feng
- College of Geography and Environmental Sciences, Key laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, 321004, P. R. China
| | - Yi-Jing Gao
- Zhejiang Engineering Laboratory for Green Syntheses and Applications of Fluorine-Containing Specialty Chemicals, Institute of Advanced Fluorine-Containing Materials, Zhejiang Normal University, Jinhua, 321004, P. R. China
| | - Lu Zhang
- College of Geography and Environmental Sciences, Key laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, 321004, P. R. China
| | - Ai-Jun Wang
- College of Geography and Environmental Sciences, Key laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, 321004, P. R. China
| |
Collapse
|
8
|
Tin-nitrogen coordination boosted lithium-storage sites and electrochemical properties in covalent-organic framework with layer-assembled hollow structure. J Colloid Interface Sci 2022; 622:591-601. [DOI: 10.1016/j.jcis.2022.04.166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/12/2022] [Accepted: 04/27/2022] [Indexed: 11/22/2022]
|
9
|
Rich edge-hosted single-atomic Cu-N4 sites for highly efficient oxygen reduction reaction performance. J Colloid Interface Sci 2022; 622:209-217. [DOI: 10.1016/j.jcis.2022.04.098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/13/2022] [Accepted: 04/17/2022] [Indexed: 11/22/2022]
|
10
|
Zhang W, Liang Z, Tian W, Liu Y, Du Y, Chen M, Cao D. 3D porous carbon conductive network with highly dispersed Fe-N xsites catalysts for oxygen reduction reaction. NANOTECHNOLOGY 2022; 33:455701. [PMID: 35896089 DOI: 10.1088/1361-6528/ac8487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
Intrinsic activity and reactive numbers are considered two important factors in oxygen reduction reaction (ORR) catalysts. Herein, we report the rational design and synthesis of a strongly coupled hybrid material comprising of FeZn nanoparticles (FeZn NPs) supported by a three-dimensional carbon conductive network (FeZn NPs@3D-CN) for increased ORR performance. Fe-N-C sites can offer high intrinsic activity owing to the unique bonding and oxygen vacancies, and the carbon conductive network facilitating the exposure to active sites, and increasing electron transport. Because of the synergetic effect of the conductive networks containing Fe-N-C and polyaniline, the catalysts exhibited ORR activity in an alkaline medium via a four-electron transfer process. FeZn NPs@3D-CN exhibited outstanding performance with a limited current density (6.2 mA cm-2), the Tafel slope (81.19 mV dec-1), and stability (23 mV negative shift after 2000 cycles), which were superior to those of 20% Pt/C (5.7 mA cm-2, 75.1 mV dec-1, 36 mV negative shift after 2000 cycles). This research highlights the effect of conductive networks expanding pathways and reducing the resistance of mass transport, which is a facile method to generate superior ORR electrocatalysts.
Collapse
Affiliation(s)
- Wenxin Zhang
- School of Physics and Electronic Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Zhiwei Liang
- School of Physics and Electronic Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Wensheng Tian
- School of Physics and Electronic Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Yuan Liu
- School of Physics and Electronic Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Yuanzhen Du
- School of Physics and Electronic Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Mingming Chen
- School of Physics and Electronic Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Dawei Cao
- School of Physics and Electronic Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| |
Collapse
|
11
|
Ruan QD, Liu LL, Wu DH, Feng JJ, Zhang L, Wang AJ. Cobalt phosphide nanoparticles encapsulated in manganese, nitrogen co-doped porous carbon nanosheets with rich nanoholes for high-efficiency oxygen reduction reaction. J Colloid Interface Sci 2022; 627:630-639. [PMID: 35872420 DOI: 10.1016/j.jcis.2022.07.061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/06/2022] [Accepted: 07/09/2022] [Indexed: 01/18/2023]
Abstract
It is a challenging task to research oxygen reduction electrocatalysts with cost-effectiveness, high-performance and ultra-stability to replace traditional noble metal catalysts in renewable energy conversion/storage devices. Herein, cobalt phosphide (Co2P) nanoparticles encapsulated in Mn, N co-doped porous carbon nanosheets with abundant nanoholes (Co2P/Mn,N-PCNS) were prepared by a alizarin complexone coordination regulated pyrolysis at 800 °C. In the controlled experiments, the pyrolysis temperature and metal types were investigated in details. The resultant catalyst exhibited rapid mass/charge transfer and superior oxygen reduction reaction (ORR) performance (Eonset = 0.96 V; E1/2 = 0.86 V vs RHE), surpassing commercial Pt/C. This work presents some constructive guidelines for synthesis of appealing ORR electrocatalysts in renewable energy technology.
Collapse
Affiliation(s)
- Qi-Dong Ruan
- College of Geography and Environmental Sciences, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Ling-Ling Liu
- College of Geography and Environmental Sciences, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Dong-Hui Wu
- College of Geography and Environmental Sciences, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Jiu-Ju Feng
- College of Geography and Environmental Sciences, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Lu Zhang
- College of Geography and Environmental Sciences, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Ai-Jun Wang
- College of Geography and Environmental Sciences, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China.
| |
Collapse
|