1
|
Gao N, Xiao J, Wang H, Li X, Fan J, Yu X, Yang X. Structural characterization of cage clusters assembled borophene and implication for cathode electrocatalysts in Li-O 2 batteries. J Colloid Interface Sci 2025; 682:22-30. [PMID: 39612760 DOI: 10.1016/j.jcis.2024.11.176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/20/2024] [Accepted: 11/22/2024] [Indexed: 12/01/2024]
Abstract
The successful fabrication of quasi-freestanding bilayer borophene in experiments, combined with its superior metallic character, has propelled it to a rising star among two-dimensional materials, making it highly promising for applications in micro-electronic devices. Using first-principles calculations, we comprehensively explore and characterize cage cluster assembled borophenes through various methods for experimental references. The simulated scanning tunneling microscope (STM) images under diverse bias voltages exhibit distinct morphologies and closely associated with the partial densities of states (PDOS) of the surface boron atoms. High-resolution and large-scale simulated transmission electron microscope (TEM) images are investigated to detect the internal crystal structures, facilitating better identification of non-monolayer borophenes. The partial densities of states, electronic localization functions and Mulliken bond populations have been calculated to analyze the differences of morphology in STM and TEM images. Furthermore, simulated X-ray diffraction (XRD), Raman, and infrared (IR) spectra are characterized to further assist in distinguishing the phases of borophene. In light of ultrahigh stability and excellent metallic character, cluster assembled borophene of P3¯m1 symmetry act as cathode materials of Li-O2 battery with lower overpotential in oxygen evolution reaction (OER) than oxygen reduction reaction (ORR) processes. The overpotential is closely related to the adsorption strength of LiO2 and Li2O2 intermediates on surface of boron sheets. These theoretical results offer crucial guidance for the experimental identification of borophenes and suggest that the new type of cluster assembled systems might be suitable for the cathode materials of future Li-O2 batteries.
Collapse
Affiliation(s)
- Nan Gao
- School of Materials Science and Engineering, Taizhou University, Taizhou 318000, China
| | - Jingyi Xiao
- Instrumental Analysis Center, Dalian University of Technology, Dalian 116024, China
| | - Haibo Wang
- School of Materials Science and Engineering, Taizhou University, Taizhou 318000, China
| | - Xiaojie Li
- School of Materials Science and Engineering, Taizhou University, Taizhou 318000, China
| | - Junyu Fan
- Department of Physics, Taiyuan Normal University, Jinzhong 030619,China
| | - Xueke Yu
- College of Physics Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Xiaowei Yang
- Key Laboratory of Materials Modification By Laser, Ion and Electron Beams (Dalian University of Technology), Ministry of Education, Dalian 116024, China.
| |
Collapse
|
2
|
Su G, Zhang X, Xiao M, Wang S, Huang S, Han D, Meng Y. Polymeric Electrolytes for Solid-state Lithium Ion Batteries: Structure Design, Electrochemical Properties and Cell Performances. CHEMSUSCHEM 2024; 17:e202300293. [PMID: 37771268 DOI: 10.1002/cssc.202300293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 09/23/2023] [Accepted: 09/27/2023] [Indexed: 09/30/2023]
Abstract
Solid-state electrolytes are key to achieving high energy density, safety, and stability for lithium-ion batteries. In this Review, core indicators of solid polymer electrolytes are discussed in detail including ionic conductivity, interface compatibility, mechanical integrity, and cycling stability. Besides, we also summarize how above properties can be improved by design strategies of functional monomers, groups, and assembly of batteries. Structures and properties of polymers are investigated here to provide a basis for all-solid-state electrolyte design strategies of multi-component polymers. In addition, adjustment strategies of quasi-solid-state polymer electrolytes such as adding functional additives and carrying out structural design are also investigated, aiming at solving problems caused by simply adding liquids or small molecular plasticizer. We hope that fresh and established researchers can achieve a general perspective of solid polymer electrolytes via this Review and spur more extensive interests for exploration of high-performance lithium-ion batteries.
Collapse
Affiliation(s)
- Gang Su
- School of Chemical Engineering and Technology, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Xin Zhang
- School of Chemical Engineering and Technology, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Min Xiao
- The Key Laboratory of Low-carbon Chemistry & Energy Conservation of Guangdong Province/State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Shuanjin Wang
- The Key Laboratory of Low-carbon Chemistry & Energy Conservation of Guangdong Province/State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Sheng Huang
- The Key Laboratory of Low-carbon Chemistry & Energy Conservation of Guangdong Province/State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Dongmei Han
- School of Chemical Engineering and Technology, Sun Yat-sen University, Guangzhou, 510275, P. R. China
- The Key Laboratory of Low-carbon Chemistry & Energy Conservation of Guangdong Province/State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Yuezhong Meng
- School of Chemical Engineering and Technology, Sun Yat-sen University, Guangzhou, 510275, P. R. China
- The Key Laboratory of Low-carbon Chemistry & Energy Conservation of Guangdong Province/State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, P. R. China
- Institute of Chemistry, Henan Academy of Sciences, Zhengzhou, 450000, P. R. China
- Research Center of Green Catalysts, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| |
Collapse
|
3
|
Structurally integrated asymmetric polymer electrolyte with stable Janus interface properties for high-voltage lithium metal batteries. J Colloid Interface Sci 2023; 638:595-605. [PMID: 36774873 DOI: 10.1016/j.jcis.2023.01.125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/04/2023] [Accepted: 01/25/2023] [Indexed: 01/28/2023]
Abstract
Solid-state polymer electrolytes are outstanding candidates for next-generation lithium metal batteries in the realm of high specific energy densities, high safeties and tight contact with electrodes. However, their applications are still hindered by the limitations that no single polymer is electrochemically stable with the oxidizing high-voltage cathode and the highly reductive Li anode, simultaneously. Herein, a bilayer asymmetric polymer electrolyte (SL-SPE) without accessional interface resistance that using poly (ethylene glycol) diacrylate (PEGDA) as a "bridge" to connect the sulfonyl (OS = O)-contained oxidation-tolerated layer and polyether-derived reduction-tolerated layer (SPE), is proposed and synthesized by sequential two-step UV polymerizations. SL-SPE can provide widened electrochemical stability window up to 5 V, while simultaneously deploying a stable Janus interface property. Eventually, the superior high-voltage (4.4 V) cycling durability can be displayed in LiNi0.6Co0.2Mn0.2O2|SL-SPE|Li batteries. This finding provides a bran-new idea for designing multifunctional polymer electrolytes in the application of solid-state batteries.
Collapse
|
4
|
Xia Y, Wang Q, Liu Y, Zhang J, Xia X, Huang H, Gan Y, He X, Xiao Z, Zhang W. Three-dimensional polyimide nanofiber framework reinforced polymer electrolyte for all-solid-state lithium metal battery. J Colloid Interface Sci 2023; 638:908-917. [PMID: 36737351 DOI: 10.1016/j.jcis.2023.01.138] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/15/2023] [Accepted: 01/29/2023] [Indexed: 02/01/2023]
Abstract
The replacement of traditional liquid electrolytes with polyethylene oxide (PEO) based composite polymer electrolytes (CPEs) is an important strategy to address the current flammability and explosiveness of lithium batteries since PEO CPEs have high flexibility, excellent processability and moderate cost. However, the insufficient ionic conductivity and inferior mechanical strength of PEO CPEs do not suit the operating requirements of all-solid-state lithium metal batteries at room temperature. Herein, three-dimensional (3D) framework composed of interweaved high-modulus polyimide (PI) nanofibers along with functional succinonitrile (SN) plasticizers are employed to synergistically reinforce the ionic conductivity and mechanical strength of PEO CPEs. Impressively, benefitting from the synergistic effects of 3D PI framework and SN plasticizer, PI-PEO-SN CPEs exhibits high ionic conductivity of 1.03 × 10-4 S cm-1 at 30 °C, remarkable tensile strength of 4.52 MPa, and superior Li dendrites blocking ability (>400 h at 0.1 mA cm-2). Such favorable features of PI-PEO-SN CPEs endow LiFePO4/PI-PEO-SN/Li solid-state prototype cells with high specific capacity (151.2 mA h g-1 at 0.2 C), long cycling lifespan (>150 cycles with 91.7 % capacity retention), and superior operating safety even under bending, folding and cutting harsh conditions. This work will pave the avenues to design and fabricate new high-performance PEO CPEs for the high energy density and safety all-solid-state batteries.
Collapse
Affiliation(s)
- Yang Xia
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Qiyue Wang
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yaning Liu
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jun Zhang
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xinhui Xia
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Hui Huang
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yongping Gan
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xinping He
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Zhen Xiao
- Key Laboratory of Rare Earth Optoelectronic Materials and Devices of Zhejiang Province, Institute of Optoelectronic Materials and Devices, China Jiliang University, Hangzhou 310018, China.
| | - Wenkui Zhang
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
5
|
Kang L, Wang X, Liu S, Zhang Q, Zou J, Gong Z, Jun SC, Zhang J. Bio-inspired interface engineering of Ag2O rooted on Au, Ni-modified filter paper for highly robust Zn–Ag2O batteries. J Colloid Interface Sci 2022; 623:744-751. [DOI: 10.1016/j.jcis.2022.05.106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/12/2022] [Accepted: 05/17/2022] [Indexed: 10/18/2022]
|
6
|
Cai C, Xiong F, Dong M, Tao Y, Xiong J, Song C, Chao J, Li P, Huang X, Li S. Scalable synthesis of hydroxyl-functionalized boron nanosheets for high ion-conductive solid-state electrolyte applications. Chem Commun (Camb) 2022; 58:5586-5589. [PMID: 35438117 DOI: 10.1039/d2cc00690a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A hydroxyl-functionalized boron nanosheet is developed as the filler material for the solid-state electrolyte (SSE) of lithium batteries. The nanosheet exhibits good oxidation resistance and thermal stability. Its composite SSE shows high ionic conductivity, and the resulting batteries present much enhanced capacities, rate capability and cycling performance, proving the electrochemical advances of the boron nanosheet.
Collapse
Affiliation(s)
- Chengjie Cai
- Institute of Advanced Materials, Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, P. R. China.
| | - Fei Xiong
- Institute of Advanced Materials, Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, P. R. China.
| | - Mengwei Dong
- Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Yaquan Tao
- Institute of Advanced Materials, Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, P. R. China.
| | - Jinxin Xiong
- Institute of Advanced Materials, Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, P. R. China.
| | - Chunyuan Song
- Institute of Advanced Materials, Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, P. R. China.
| | - Jie Chao
- Institute of Advanced Materials, Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, P. R. China.
| | - Pan Li
- Institute of Advanced Materials, Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, P. R. China.
| | - Xiao Huang
- Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Shaozhou Li
- Institute of Advanced Materials, Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, P. R. China.
| |
Collapse
|