1
|
Wang H, Mao C, Ye H, Qin F, Xie H, Guan X, Xiong Z, Zhao L. Lignocellulosic herbal waste-derived hydrochar composites for activating peroxodisulfate in visible light photocatalytic degradation of minocycline. Int J Biol Macromol 2025; 310:143195. [PMID: 40250679 DOI: 10.1016/j.ijbiomac.2025.143195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 03/10/2025] [Accepted: 04/14/2025] [Indexed: 04/20/2025]
Abstract
The photocatalytic system was developed through the self-assembly of lignocellulosic-based waste Panax notoginseng residue converted into hydrochar (PHC) with the organic semiconductor perylene diimide (PDI) to facilitate the visible-light photocatalytic degradation of minocycline hydrochloride (Mino-HCl) with the assistance of peroxodisulfate (PDS). The optimal PHC/PDI ratio of 1:4 was selected for further experiments, achieving 90.8 % minocycline removal under visible light after 2 h. At the optimal ratio, the visible light photocatalytic performance of PHC/PDI composites under PDS activation was 5.18 and 8.61 times higher than that of PDI and PHC, respectively. The system also exhibited excellent mineralization of minocycline, with a mineralization rate of 73.7 %. The PHC/PDI/PDS (P-P-P) system demonstrated good stability under visible light and showed general adaptability to different environmental conditions, including pH, coexisting anions and cations, and real water matrix. Theoretical calculations identified the O5, O7, N9, C20 and C29 sites of Mino-HCl as key targets for free radical attack. Toxicity assessments indicated significant reductions in both acute and chronic toxicity, particularly for fish and algae, indicating the transformation of Mino-HCl into less harmful products. This work provided a theoretical basis and reference for the research on waste management and wastewater treatment by employing lignocellulosic-based waste residues converted into biochar and an organic semiconductor PDI composite under PDS activation for visible light photocatalysis.
Collapse
Affiliation(s)
- Haiwei Wang
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road Shenhe District, Shenyang, Liaoning 110016, PR China
| | - Chunling Mao
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road Shenhe District, Shenyang, Liaoning 110016, PR China
| | - Heng Ye
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, 103 Wenhua Road Shenhe District, Shenyang, Liaoning 110016, PR China
| | - Feng Qin
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road Shenhe District, Shenyang, Liaoning 110016, PR China
| | - Haijiao Xie
- Hangzhou Yanqu Information Technology Co., Ltd., 712 Wen'er West Road, Xihu District, Hangzhou, Zhejiang 310003, PR China
| | - Xuefeng Guan
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road Shenhe District, Shenyang, Liaoning 110016, PR China
| | - Zhili Xiong
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road Shenhe District, Shenyang, Liaoning 110016, PR China.
| | - Longshan Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road Shenhe District, Shenyang, Liaoning 110016, PR China.
| |
Collapse
|
2
|
Shan Y, Chen X, Wang R, Yang P, Huang N, Yang J, Yang M, Wang S, Han X, Zhao Y, Wang H. Self-Assembled Perylenediimide Nanoaggregates with an Alternate Stringlike Morphology as Photoanodes to Enhance the H 2O 2 Photoelectrochemical Cell Performance. ACS APPLIED MATERIALS & INTERFACES 2025; 17:19533-19542. [PMID: 40101198 DOI: 10.1021/acsami.4c21044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
A self-assembled supramolecular photocatalyst of benzoic acid-substituted perylenediimide (SA-BAPDI) is successfully prepared, forming an alternate stringlike morphology driven by intermolecular hydrogen-bonding and π-π interactions. This unusual morphology induces a strong built-in electric field and an enormous π-conjugated effect, which can promote efficient separation of photogenerated carriers. Meanwhile, SA-BAPDI photocatalyst applied as the photoanode in the H2O2 photoelectrochemical cell for the first time can facilitate photocatalytic H2O2 production by water oxidation, which can be used as fuel to generate electricity through redox reactions and further to achieve solar-chemical-electrical energy conversion. The SA-BAPDI-based cell displays the maximum light power density of 1.06 mW·cm-2 and the specific capacitance of 5025 mF·cm-2 after 0.5 h of irradiation, which can still retain the original value of 50% in the dark for 12 h of continuous operation. This study verifies that morphology regulation of self-assembled perylenediimide supramolecular photocatalytic materials benefits the design and development of a high-performance H2O2 photoelectrochemical cell.
Collapse
Affiliation(s)
- Yutong Shan
- College of Chemistry and Chemical Engineering, Northeast Petroleum University, Daqing 163318, China
| | - Xi Chen
- College of Chemistry and Chemical Engineering, Northeast Petroleum University, Daqing 163318, China
| | - Rui Wang
- College of Chemistry and Chemical Engineering, Northeast Petroleum University, Daqing 163318, China
| | - Pinyi Yang
- College of Chemistry and Chemical Engineering, Northeast Petroleum University, Daqing 163318, China
| | - Ningning Huang
- College of Chemistry and Chemical Engineering, Northeast Petroleum University, Daqing 163318, China
| | - Jiali Yang
- College of Chemistry and Chemical Engineering, Northeast Petroleum University, Daqing 163318, China
| | - Meiyu Yang
- College of Chemistry and Chemical Engineering, Northeast Petroleum University, Daqing 163318, China
| | - Shiyu Wang
- College of Chemistry and Chemical Engineering, Northeast Petroleum University, Daqing 163318, China
| | - Xinying Han
- College of Chemistry and Chemical Engineering, Northeast Petroleum University, Daqing 163318, China
| | - Yang Zhao
- College of Chemistry and Chemical Engineering, Northeast Petroleum University, Daqing 163318, China
| | - Huan Wang
- College of Chemistry and Chemical Engineering, Northeast Petroleum University, Daqing 163318, China
| |
Collapse
|
3
|
Xu Y, Luo X, Wang F, Xiang W, Zhou C, Huang W, Lu K, Li S, Zhou M, Yang K. Novel PDI-NH/PDI-COOH Supramolecular Junction for Enhanced Visible-Light Photocatalytic Phenol Degradation. Molecules 2024; 29:4196. [PMID: 39275044 PMCID: PMC11397078 DOI: 10.3390/molecules29174196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 08/28/2024] [Accepted: 09/02/2024] [Indexed: 09/16/2024] Open
Abstract
The development of efficient and environmentally friendly photocatalysts is crucial for addressing global energy and environmental challenges. Perylene diimide, an organic supramolecular material, holds great potential for applications in mineralized phenol. In this study, through the integration of different mass ratios of unmodified perylenimide (PDI-NH) into the self-assembly of amino acid-substituted perylenimide (PDI-COOH), a novel supramolecular organic heterojunction (PDICOOH/PDINH) was fabricated. The ensuing investigation focuses on its visible-light mineralized phenol properties. The results show that the optimal performance is observed with a composite mass fraction of 10%, leading to complete mineralization of 5 mg/L phenol within 5 h. The reaction exhibits one-stage kinetics with rate constants 13.80 and 1.30 times higher than those of PDI-NH and PDI-COOH, respectively. SEM and TEM reveal a heterogeneous interface between PDI-NH and PDI-COOH. Photoelectrochemical and Kelvin probe characterization confirm the generation of a built-in electric field at the interface, which is 1.73 times stronger than that of PDI-COOH. The introduction of PDI-NH promotes π-π stacking of PDI-COOH, while the built-in electric field facilitates efficient charge transfer at the interface, thereby enhancing phenol decomposition. The finding demonstrates that supramolecular heterojunctions have great potential as highly effective photocatalysts for environmental remediation applications.
Collapse
Affiliation(s)
- Yongzhang Xu
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
- Jiangxi Provincial Engineering Technology Research Center for Electronic Chemicals of Printed Circuit Boards, Ganzhou 341000, China
| | - Xingrui Luo
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - Fulin Wang
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - Wentao Xiang
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - Chensheng Zhou
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - Weiya Huang
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - Kangqiang Lu
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - Shaoyu Li
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - Man Zhou
- School of Pharmaceutical Sciences, Gannan Medical University, Ganzhou 341000, China
| | - Kai Yang
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
| |
Collapse
|
4
|
Jing L, Xu Y, Xie M, Liu Y, Du X, Hu J. Rational construction of visible-light-driven perylene diimides/Fe 2O 3@C derived from MIL-88A (Fe) heterojunction with S-scheme electron transfer pathway to activate peroxymonosulfate for degradation of antibiotics. J Colloid Interface Sci 2024; 659:520-532. [PMID: 38184994 DOI: 10.1016/j.jcis.2024.01.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/21/2023] [Accepted: 01/02/2024] [Indexed: 01/09/2024]
Abstract
The novel composite photocatalytic material perylene diimides/Fe2O3@C (PDIs/Fe2O3@C) was constructed by a simple hydrothermal-calcination method and an oil bath method. 20 % PDIs/Fe2O3@C displayed a 16.4-fold increase in the rate of tetracycline (TC) removal over Fe2O3@C at 8 min. The main factor that enhanced photocatalytic performance was due to the combination of PDIs with Fe2O3@C, which effectively improved the phenomenon during the self-assembly of highly agglomerative PDIs, increased the specific surface area of Fe2O3@C, exposed more reaction sites, and promoted the activation of peroxymonosulfate (PMS) by Fe2+/Fe3+; and secondly, the composite of two different materials, both organic and inorganic, which effectively promoted the photogenerated electron transfer and the separation of electron-hole pairs, the a new S-scheme electron transport pathway is formed, which effectively promoted the photogenerated electron transfer as well as the e--h+ separation, which was more favorable for the activation of PMS. The whole reaction pathway and product toxicity were thoroughly evaluated by Fukui function calculations, Liquid Chromatograph Mass Spectrometer (LC-MS), and Toxicity Estimation Software Tool (T.E.S.T.) simulation results, which demonstrated the rationality of the degradation pathway and the greatly reduced product toxicity. Moreover, the composites were effective and versatile for all other antibiotics (chlortetracycline (CTC), ciprofloxacin (CIP) and sulfadiazine (SDZ)). As an advanced oxidation process, the activation of PDIs/Fe2O3@C under visible light shows its potential application in pollutant degradation, which provides new perspectives and ideas for further effective treatment of real wastewater.
Collapse
Affiliation(s)
- Liquan Jing
- School of Chemistry and Chemical Engineering, School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China; Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, Alberta T2N1N4, Canada
| | - Yuanguo Xu
- School of Chemistry and Chemical Engineering, School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China.
| | - Meng Xie
- School of Chemistry and Chemical Engineering, School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China
| | - Ying Liu
- School of Chemistry and Chemical Engineering, School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China
| | - Xia Du
- School of Material Science & Chemical Engineering, Harbin University of Science and Technology, Harbin 150080, PR China
| | - Jinguang Hu
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, Alberta T2N1N4, Canada.
| |
Collapse
|
5
|
Chen R, Lou H, Pang Y, Yang D, Qiu X. Enhancing Pollutant Mineralization through Organic-Inorganic Defect-Transit Dual S-scheme with a Robust Internal Electric Field. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306354. [PMID: 37775306 DOI: 10.1002/smll.202306354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/06/2023] [Indexed: 10/01/2023]
Abstract
Achieving superior photomineralization of pollutants relies on a rational design of a dual S-scheme with a robust internal electric field (IEF). In this study, to tackle the low mineralization rate in type-II In2 O3 /In2 S3 (IO/IS) systems, an organic-inorganic dual S-scheme In2 O3 /PDI/In2 S3 (IO/PDI/IS) nanostructured photocatalyst is synthesized via a method combining solvent-induced self-assembly and electrostatic forces. Due to the unique energy band position and strong IEF, the photoinduced defect-transit dual S-scheme IO/PDI/IS facilitates the degradation of lignin and antibiotics. Notably, a promising mineralization rate of 80.9% for sodium lignosulfonate (SL) is achieved. The charge transport pathway of IO/PDI/IS are further validated through the analysis of in situ X-ray photoelectron spectroscopy (in situ XPS), density functional theory calculations, and radical trapping experiments. In-depth, two possible pathways for the photocatalytic degradation of lignin are proposed based on the intermediates monitored by liquid chromatography-mass spectrometry (LC-MS). This study presents a new strategy for the design of organic-inorganic dual S-scheme photocatalysts with a robust IEF for pollutant degradation.
Collapse
Affiliation(s)
- Runlin Chen
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product Technology, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Hongming Lou
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product Technology, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Yuxia Pang
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product Technology, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Dongjie Yang
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product Technology, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Xueqing Qiu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| |
Collapse
|
6
|
Liu X, Zhou Y, Sun S, Bao S. Study on the behavior and mechanism of NiFe-LDHs used for the degradation of tetracycline in the photo-Fenton process. RSC Adv 2023; 13:31528-31540. [PMID: 37908668 PMCID: PMC10614753 DOI: 10.1039/d3ra05475f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 10/14/2023] [Indexed: 11/02/2023] Open
Abstract
An environment-friendly 3D NiFe-LDHs photocatalyst was fabricated via a simple hydrothermal method and characterized by means of SEM, XRD, BET, XPS and FT-IR. It is a highly efficient heterogeneous photo-Fenton catalyst for the degradation of TC-HCl under visible light irradiation. After exploring the effects of catalyst dosage, initial concentration of TC-HCl, solution pH and H2O2 concentrations, the optimal reaction conditions were determined. The experiment results showed that the degradation efficiency can reach 99.11% through adding H2O2 to constitute a photo-Fenton system after adsorption for 30 min and visible light for 60 min. After four cycles, the degradation rate decay is controlled within 21.2%, indicating that NiFe-LDHs have excellent reusable performance. The experimental results of environmental factors indicate that Fe2+ and Ca2+ promoted the degradation of TC-HCl, both Cl- and CO32- inhibited the degradation of TC-HCl. Two other antibiotics (OTC and FT) were selected for research and found to be effectively removed in this system, achieving effective degradation of a variety of typical new pollutants. The radical trapping tests and ESR detection showed that ·OH and ·O2- were the main active substances for TC degradation in the photo-Fenton system. By further measuring the intermediate products of photodegradation, the degradation pathway of TC-HCl was inferred. The toxicity analysis demonstrated that the overall toxicity of the identified intermediates was reduced in this system. This study provides a theoretical and practical basis for the removal of TC in aquatic environments.
Collapse
Affiliation(s)
- Xia Liu
- Changchun Univ. Sci. & Technol., Sch Chem. & Environm. Engn. Changchun 130022 P. R. China
| | - Yuting Zhou
- Changchun Univ. Sci. & Technol., Sch Chem. & Environm. Engn. Changchun 130022 P. R. China
| | - Shuanghui Sun
- Changchun Univ. Sci. & Technol., Sch Chem. & Environm. Engn. Changchun 130022 P. R. China
| | - Siqi Bao
- Changchun Univ. Sci. & Technol., Sch Chem. & Environm. Engn. Changchun 130022 P. R. China
| |
Collapse
|
7
|
Zhang X, Li Y, Jiang S, Pun EYB, Lin H. Heterojunction Photocatalyst Loaded on Electrospun Nanofibers for Synergistic Enhanced Photocatalysis and Real-Time Temperature Monitoring. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:14344-14356. [PMID: 37755730 DOI: 10.1021/acs.langmuir.3c01671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
Bi2WO6:Ho3+, Yb3+/g-C3N4 (BHY/CN) photocatalysts are successfully loaded on polyacrylonitrile (PAN) nanofibers by electrospinning technology, which combines an upconversion effect and heterojunctions to achieve dual-functional characteristics. Polymer-modified photocatalytic materials offer a large specific surface area of 24.1 m2/g and a pore volume of 0.1 cm3/g, promoting the utility of solar energy. The introduction of rare earth ions and g-C3N4 optimizes the structural band gap, which broadens the light absorption range and promotes electron transfer. Moreover, the heterojunction between Bi2WO6 and g-C3N4 has suppressed the complexation of photoinduced carriers, further improving catalytic performance. The optimized photocatalysts have higher photocatalytic activity with degrading 92.6% tetracycline-hydrochloride (120 min) under simulated sunlight irradiation. The optical thermometry has also been achieved based on the fluorescence intensity ratio technique, where the maximum absolute and relative sensitivity values of BHY/CN-1:6@PAN are 3.322% K-1 and 0.842% K-1, respectively. This dual-functional nanofibers with excellent mechanical properties provide noncontact temperature feedback and efficient catalytic performance for better wastewater treatment and ecological restoration in extreme harsh environments.
Collapse
Affiliation(s)
- Xiaolin Zhang
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Yue Li
- Department of Electrical Engineering and State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong, Hong Kong Special Administrative Region 999077, P. R. China
| | - Shuwen Jiang
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Edwin Yue Bun Pun
- Department of Electrical Engineering and State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong, Hong Kong Special Administrative Region 999077, P. R. China
| | - Hai Lin
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034, P. R. China
- Department of Electrical Engineering and State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong, Hong Kong Special Administrative Region 999077, P. R. China
| |
Collapse
|
8
|
Shi K, Zhou M, Wang F, Li X, Huang W, Lu K, Yang K, Yu C. Perylene diimide/iron phthalocyanine Z-scheme heterojunction with strong interfacial charge transfer through π-π interaction: Efficient photocatalytic degradation of tetracycline hydrochloride. CHEMOSPHERE 2023; 329:138617. [PMID: 37037355 DOI: 10.1016/j.chemosphere.2023.138617] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 05/03/2023]
Abstract
The development of an all-organic Z-scheme heterojunction photocatalyst with the matched band structure, efficient electron transfer and excellent photocatalytic performance is valuable for a sustainable future. A novel perylene diimide/phthalocyanine iron (PDI/FePc) heterojunctions with strong π-π interaction were synthesized by a self-assembled method, which exhibited strong visible-light-driven photocatalytic degradation activities of tetracycline hydrochloride (TC). The TC removal rate over PDI/FePc was achieved three times and 87.5 times higher than that of PDI and FePc. PDI/FePc (131.1 mv·dec-1) presented a lower Taffel slope than that of PDI (228.6 mv·dec-1) for the oxidation. This may be due to the strong π-π interactions between PDI and FePc, which can reduce the layer spacing of the supramolecular structure and facilitate the separation and transfer of photogenerated carriers in the built-in electric field. In addition, radical quenching tests revealed that superoxide radicals (•O2-) acted as a dominant role in photocatalytic oxidation. An increscent specific surface area of PDI decorated by FePc also gave the rapid pathway for charge transfer and enhanced the adsorption ability. This provides a new idea for the formation of heterojunction to improve the photocatalytic activity of organic supramolecular materials.
Collapse
Affiliation(s)
- Kaiyang Shi
- School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, Jiangxi, China
| | - Man Zhou
- School of Pharmaceutical Sciences, Gannan Medical University, Ganzhou, 341000, Jiangxi, China
| | - Fulin Wang
- School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, Jiangxi, China
| | - Xiangwei Li
- School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, Jiangxi, China
| | - Weiya Huang
- School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, Jiangxi, China
| | - Kangqiang Lu
- School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, Jiangxi, China
| | - Kai Yang
- School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, Jiangxi, China.
| | - Changlin Yu
- School of Chemical Engineering, Guangdong University of Petrochemical Technology, Maoming, 525000, Guangdong, China.
| |
Collapse
|
9
|
Liu J, Peng Q, Yang R, Wang B, Zhang X, Wang R, Zhu X, Cheng M, Xu H, Li H. Incorporating Fe, Co co-doped graphene with PDI supermolecular for promoted photocatalytic activity: A story of electron transfer. J Colloid Interface Sci 2023; 637:94-103. [PMID: 36689801 DOI: 10.1016/j.jcis.2022.12.145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/15/2022] [Accepted: 12/27/2022] [Indexed: 12/31/2022]
Abstract
Iron-cobalt dual single-atom anchoring on nitrogen-doped graphene (FexCoy-NG) improves the efficiency of migration and separation of photo-generated carriers. In this work, the perylene diimide (PDI) is self-assembled on the FexCoy-NG to form the FexCoy-NG/PDI composites by π-π interaction, which is reported for the first time. The bisphenol A (BPA) degradation of optimized 20% Fe0.2Co0.8-NG/PDI are nearly 100%, and the degradation rate is 1.5 and 12.7 times that of the self-assembled PDI and commercial-grade PDI. The high degradation performance by FexCoy-NG/PDI are mainly due to: (i) regulating the proportion of Fe-Co dual active sites content, so that it can achieve the synergistic interaction to facilitate the transfer of electrons in the catalytic reaction. (ii) PDI is uniformly dispersed by adding the FexCoy-NG, which increases the specific surface area of composites to adsorb more pollutants. Free radical trapping experiments and electron spin-resonance spectroscopy characterization confirmed that the O2-, OH, 1O2 and h+ are the main reactive species (RSs) for BPA degradation. Under the attack of RSs, BPA completes the processes of hydroxylation, demethylation, aromatization, ring-opening, and finally complete mineralization into CO2 and H2O. These results revealed that Fe0.2Co0.8-NG/PDI photocatalysts may be efficiently applied for the remediation of phenol contaminated natural waters.
Collapse
Affiliation(s)
- Jinyuan Liu
- School of Chemistry and Chemical Engineering, Institute for Energy Research, Jiangsu University, Zhenjiang 212013, Jiangsu, PR China
| | - Qichang Peng
- School of Chemistry and Chemical Engineering, Institute for Energy Research, Jiangsu University, Zhenjiang 212013, Jiangsu, PR China
| | - Ruizhe Yang
- School of Chemistry and Chemical Engineering, Institute for Energy Research, Jiangsu University, Zhenjiang 212013, Jiangsu, PR China
| | - Bin Wang
- School of Chemistry and Chemical Engineering, Institute for Energy Research, Jiangsu University, Zhenjiang 212013, Jiangsu, PR China; Department of Physics, Department of Materials Science and Engineering, and Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Xiaolin Zhang
- Department of Physics, Department of Materials Science and Engineering, and Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Rong Wang
- School of Chemistry and Chemical Engineering, Institute for Energy Research, Jiangsu University, Zhenjiang 212013, Jiangsu, PR China
| | - Xingwang Zhu
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225009, Jiangsu, PR China
| | - Ming Cheng
- School of Chemistry and Chemical Engineering, Institute for Energy Research, Jiangsu University, Zhenjiang 212013, Jiangsu, PR China.
| | - Hui Xu
- School of Chemistry and Chemical Engineering, Institute for Energy Research, Jiangsu University, Zhenjiang 212013, Jiangsu, PR China.
| | - Huaming Li
- School of Chemistry and Chemical Engineering, Institute for Energy Research, Jiangsu University, Zhenjiang 212013, Jiangsu, PR China
| |
Collapse
|
10
|
Jin P, Cao Z, He B. Cu 0@CuO x-NC modified Zn 2In 2S 5 for photo-self-Fenton system coupling H 2O 2 in-situ production and decomposition. CHEMOSPHERE 2023; 332:138820. [PMID: 37137391 DOI: 10.1016/j.chemosphere.2023.138820] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/28/2023] [Accepted: 04/29/2023] [Indexed: 05/05/2023]
Abstract
Although many concerns have been put into photocatalytic hydrogen peroxide (H2O2) production, multifunctional catalysis suitable for continuously in-situ H2O2 consumption in the field has rarely been investigated. Herein, Cu0@CuOx@nitrogen-doped graphitic carbon (Cu0@CuOx-NC) decorated Zn2In2S5 was successfully prepared for in-situ production and activation H2O2, which could achieve effectively photocatalytic self-Fenton degradation of tetracycline (TC). Under visible light irradiation, 5wt% Cu0@CuOx-NC/Zn2In2S5 (CuZS-5) efficiently generated a high yield of H2O2 (0.13 mmol L-1), and Cu0@CuOx-NC could in-situ consume H2O2 to generate hydroxyl radicals (•OH), accelerating the oxidation of TC. As a result, the 5 wt% Cu0@CuOx-NC/Zn2In2S5 degraded about 89.3% of TC within 60 min, and the cycle experiments also exhibited sufficient stability. This study achieves a delicate combination of in-situ production and activation of H2O2, which is regarded as a promising strategy to eco-friendly promote pollutant degradation in wastewater.
Collapse
Affiliation(s)
- Pengfei Jin
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, Henan, 453007, PR China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China
| | - Zhiguo Cao
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, Henan, 453007, PR China.
| | - Bin He
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, Henan, 453007, PR China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China.
| |
Collapse
|
11
|
Zhuang H, Wang F, Shi K, Yang K. Designed Synthesis of PDI/BiOCl-BiPO4 Composited Material for Boosted Photocatalytic Contaminant Degradation. Catalysts 2023. [DOI: 10.3390/catal13040688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023] Open
Abstract
Enhancing the photocatalytic performance for contaminant degradation to accelerate the large-scale application of photocatalysis still is an enduring challenge. Herein, ternary PDI/BiOCl-BiPO4 composited materials with the different contents of PDI were designed and constructed by the multi-step compound method. The tetracycline hydrochloride and rhodamine B were chosen as targeted pollutants to investigate the photocatalytic performance of PDI/BiOCl-BiPO4 composited materials. The structure and component of BiOCl-BiPO4 and PDI/BiOCl-BiPO4 samples were detailedly characterized by a sequence of physical and chemical characterizations. The optimized PDI/BiOCl-BiPO4 sample, namely PDI(5%)/BiOCl-BiPO4, exhibited the excellent photocatalytic activity for tetracycline hydrochloride and rhodamine B degradation. The major active species that were holes (h+) and superoxide radicals (•O2−) also can be determined in the photocatalytic degradation process by active species trapping experiments. Furthermore, the photoelectrochemical and fluorescence measurements manifest the crucial role of PDI material. It can reduce the recombination of photo-excited charge carrier and improve the separation and transfer of photo-generated electron-hole pairs, which is beneficial to the photocatalytic reaction process. It is anticipated that our work would provide a counterpart to prepare the high-efficiency composited material in heterogeneous photocatalysis.
Collapse
Affiliation(s)
- Huaqiang Zhuang
- College of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou 362000, China
| | - Fulin Wang
- School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - Kaiyang Shi
- School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - Kai Yang
- School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
| |
Collapse
|
12
|
Jing L, Xie M, Xu Y, Tong C, Song Y, Du X, Zhao H, Zhong N, Li H, Gates ID, Hu J. O-doped and nitrogen vacancies 3D C3N4 activation of peroxydisulfate for pollutants degradation and transfer hydrogenation of nitrophenols with water. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
13
|
Wudil Y, Ahmad U, Gondal M, Al-Osta MA, Almohammedi A, Said R, Hrahsheh F, Haruna K, Mohammed J. Tuning of Graphitic Carbon Nitride (g-C3N4) for Photocatalysis: A Critical Review. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
14
|
Xue J, Shi L, Wang P, Cheng W, Long M, Sheng M, Bi Q. Efficient Degradation of VOCs using Semi-coke Activated Carbon Loaded 2D Z-Scheme g-C3N4-Bi2WO6 Photocatalysts Composites under Visible Light Irradiation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
15
|
Zhang X, Yuan N, Chen T, Li B, Wang Q. Fabrication of hydrangea-shaped Bi 2WO 6/ZIF-8 visible-light responsive photocatalysts for degradation of methylene blue. CHEMOSPHERE 2022; 307:135949. [PMID: 35961452 DOI: 10.1016/j.chemosphere.2022.135949] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/30/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
In this paper, the hydrangea-shaped Bi2WO6/ZIF-8 (BWOZ) visible light photocatalysts have been prepared via a facile synthetic strategy for the first time. The constructed BWOZ composites were systematically studied by a series of characterization techniques. The SEM results manifested the octahedral ZIF-8 coated the flower-like Bi2WO6 uniformly and the composition of BWOZ composites had been confirmed by XPS measurement. And the photocatalytic activity was evaluated by eliminating methylene blue with the help of visible light. The results showed that 7%-BWOZ (7.0 wt% Bi2WO6) exhibited better photodegradation capability than pure Bi2WO6 and ZIF-8. Compared with Bi2WO6, the photocatalytic degradation of methylene blue by 7%-BWOZ could reach 85.7%. In addition, the pseudo-first-order kinetic constant of 7%-BWOZ was 23.00 and 1.61 times that of pristine Bi2WO6 and ZIF-8, respectively. The improved photocatalytic ability of BWOZ systems may be due to the construction of heterojunctions between Bi2WO6 and ZIF-8, which resulted in the rapid separation of photogenerated carriers. Additionally, the specific surface area of the formed BWOZ system was also improved in comparison with the flower-shaped Bi2WO6, and thus more active sites could be provided to contact with methylene blue molecules, thereby achieving better removal capacity. Moreover, trapping experiments and electron spin resonance results further illustrated that the coexistence of multiple free radicals realized efficient degradation of methylene blue. More importantly, the photocatalytic property of the 7%-BWOZ composite remained even after three cycles. Furthermore, a feasible photodegradation mechanism was also explored in depth.
Collapse
Affiliation(s)
- Xinling Zhang
- School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing, 100083, China
| | - Ning Yuan
- School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing, 100083, China.
| | - Tianxiang Chen
- School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing, 100083, China
| | - Bowen Li
- School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing, 100083, China
| | - Qibao Wang
- School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing, 100083, China
| |
Collapse
|