1
|
Li Z, Hou M, Chen M, Deng Y, Ma C, Wang X, Duan H, Li T, Sun D, Tang Y. Engineering SmPO 4-integrated N, P-doped porous carbon nanosheets for enhanced oxygen reduction in zinc-air batteries. J Colloid Interface Sci 2025; 697:137921. [PMID: 40408945 DOI: 10.1016/j.jcis.2025.137921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2025] [Revised: 05/15/2025] [Accepted: 05/17/2025] [Indexed: 05/25/2025]
Abstract
Developing cost-effective and high-performance oxygen reduction reaction (ORR) catalysts is essential for advancing rechargeable zinc-air batteries (ZABs). Herein, we report a rationally designed catalyst composed of samarium phosphate nanoparticles uniformly embedded in nitrogen and phosphorus co-doped porous carbon nanosheets (SmPO4@PN/C). The synergistic integration of SmPO4 and N, P co-doped carbon not only enhances the electronic conductivity and surface defect density but also ensures strong interfacial interactions through robust POSm covalent bonding, effectively preventing Sm3+ leaching. The optimized SmPO4@PN/C catalyst exhibits outstanding ORR activity with a high onset potential of 1.05 V and a half-wave potential of 0.86 V in alkaline media, along with remarkable long-term electrochemical stability and structural robustness. Even after 48000 s of continuous operation, the catalyst maintains over 87 % of its initial current response. Density functional theory (DFT) calculations demonstrate favorable ORR energetics, supporting the observed catalytic activity and providing mechanistic insights. When employed as the air cathode in ZABs, the SmPO4@PN/C + RuO2 hybrid delivers a high peak power density of 133 mW·cm-2 and maintains superior cycling durability over extended operation, surpassing commercial Pt/C + RuO2-based systems. This work provides a scalable and efficient strategy for designing rare-earth phosphate-carbon hybrid catalysts and offers a promising pathway toward the development of next-generation metal-air batteries.
Collapse
Affiliation(s)
- Zhijuan Li
- School of Environmental Science, Nanjing Xiaozhuang University, Nanjing 211171, China
| | - Minghao Hou
- School of Environmental Science, Nanjing Xiaozhuang University, Nanjing 211171, China
| | - Minnan Chen
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Yuxin Deng
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Chuhan Ma
- School of Environmental Science, Nanjing Xiaozhuang University, Nanjing 211171, China
| | - Xinlong Wang
- School of Environmental Science, Nanjing Xiaozhuang University, Nanjing 211171, China
| | - Haibao Duan
- School of Environmental Science, Nanjing Xiaozhuang University, Nanjing 211171, China.
| | - Tongfei Li
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China.
| | - Dongmei Sun
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Yawen Tang
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
2
|
Gao S, Li M, Li N, Zhang L, Liu Q, Wang X, Hu G. Porous carbon-nanostructured electrocatalysts for zinc-air batteries: from materials design to applications. NANOSCALE ADVANCES 2024; 7:60-88. [PMID: 39600825 PMCID: PMC11586858 DOI: 10.1039/d4na00847b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 11/04/2024] [Indexed: 11/29/2024]
Abstract
Zinc-air batteries (ZABs) are pivotal in the evolution of sustainable energy storage solutions, distinguished by their high energy density and minimal environmental footprint. The oxygen electrode, which relies on sophisticated porous carbon materials, is critical to operational efficiency. This review scrutinizes oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) processes in ZABs through advanced porous carbon applications. It delves into innovative synthesis techniques such as templating, chemical vapor deposition, and self-assembly that tailor pore structures for peak performance. The interactions between catalytic sites and carbon nanostructures, which significantly boost electrochemical performance, are highlighted. The manuscript discusses future strategies for overcoming current challenges by advancing catalytic efficiency and electrode design, emphasizing the integration of nano-engineering and materials science to foster ZABs with superior energy capacity and adaptability. Additionally, the review projects how ongoing research into carbon material properties could unlock new applications in other energy systems, potentially broadening the scope of ZAB technology. This paper integrates recent advancements in porous carbon materials, offering pivotal insights for next-generation high-performance ZAB development.
Collapse
Affiliation(s)
- Sanshuang Gao
- Institute of Information Technology, Shenzhen Institute of Information Technology Shenzhen 518172 China
| | - Maolin Li
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University Kunming 650504 China
- School of Materials Science and Engineering, Anhui University of Science and Technology Huainan 232001 China
| | - Nianpeng Li
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University Kunming 650504 China
| | - Lei Zhang
- School of Materials Science and Engineering, Anhui University of Science and Technology Huainan 232001 China
| | - Qian Liu
- Institute for Advanced Study, Chengdu University Chengdu 610106 China
| | - Xinzhong Wang
- Institute of Information Technology, Shenzhen Institute of Information Technology Shenzhen 518172 China
| | - Guangzhi Hu
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University Kunming 650504 China
| |
Collapse
|
3
|
Wu Y, Ding Y, Chen M, Zhang H, Yu J, Jiang T, Wu M. A Photo-Assisted Zinc-Air Battery with MoS 2/Oxygen Vacancies Rich TiO 2 Heterojunction Photocathode. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2408627. [PMID: 39434472 DOI: 10.1002/smll.202408627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 10/13/2024] [Indexed: 10/23/2024]
Abstract
Converting solar energy into electrochemical energy is a sustainable strategy, but the design of photo-assisted zinc-air battery (ZAB) with efficient utilization of sunlight faces huge challenges. Herein, a photo-assisted ZAB of a three-electrode system using MoS2/oxygen vacancies-rich TiO2 heterojunction as charge cathode and Fe, N-doped carbon matrix (FeNC) as discharge cathode is constructed, where MoS2 is chosen as solar light-responsive catalytic material and TiO2 acts as electron transport layer and hole blocking layer, arising from a train of thought for efficient charging under sunlight irradiation and light-independent discharging. The introduction of oxygen vacancies in TiO2 facilitates the temporary trapping of carriers and triggers rapid carrier transfer at the interface of the heterojunction, which hinders the recombination of photogenerated holes, thereby facilitating their further participation in the oxygen evolution reaction. Moreover, FeNC exhibits superior oxygen reduction reaction performance due to strong d-π interactions. As a result, the well-built ZABs deliver a low charge voltage (0.71 V) under illumination at 0.1 mA cm-2, and a high power density (167.6 mW cm-2) in dark. This work paves a special way for the development of ZABs by directly harvesting solar energy in charging and efficiently discharging regardless of lighting conditions.
Collapse
Affiliation(s)
- Yongjian Wu
- School of Materials Science and Engineering, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei, Anhui, 230601, P. R. China
| | - Yi Ding
- School of Materials and Chemical Engineering, Anhui Jianzhu University, Hefei, Anhui, 230601, P. R. China
| | - Mengyu Chen
- School of Materials Science and Engineering, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei, Anhui, 230601, P. R. China
| | - Hui Zhang
- School of Materials Science and Engineering, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei, Anhui, 230601, P. R. China
| | - Jing Yu
- School of Physics and Electronics, Shandong Normal University, Jinan, 250014, P. R. China
| | - Tongtong Jiang
- School of Materials Science and Engineering, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei, Anhui, 230601, P. R. China
| | - Mingzai Wu
- School of Materials Science and Engineering, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei, Anhui, 230601, P. R. China
| |
Collapse
|
4
|
Qiu D, Wang H, Ma T, Huang J, Meng Z, Fan D, Bowen CR, Lu H, Liu Y, Chandrasekaran S. Promoting Electrocatalytic Oxygen Reactions Using Advanced Heterostructures for Rechargeable Zinc-Air Battery Applications. ACS NANO 2024; 18:21651-21684. [PMID: 39129497 PMCID: PMC11342935 DOI: 10.1021/acsnano.4c02289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 07/28/2024] [Accepted: 07/31/2024] [Indexed: 08/13/2024]
Abstract
In order to facilitate electrochemical oxygen reactions in electrically rechargeable zinc-air batteries (ZABs), there is a need to develop innovative approaches for efficient oxygen electrocatalysts. Due to their reliability, high energy density, material abundance, and ecofriendliness, rechargeable ZABs hold promise as next-generation energy storage and conversion devices. However, the large-scale application of ZABs is currently hindered by the slow kinetics of the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER). However, the development of heterostructure-based electrocatalysts has the potential to surpass the limitations imposed by the intrinsic properties of a single material. This Account begins with an explanation of the configurations of ZABs and the fundamentals of the oxygen electrochemistry of the air electrode. Then, we summarize recent progress with respect to the variety of heterostructures that exploit bifunctional electrocatalytic reactions and overview their impact on ZAB performance. The range of heterointerfacial engineering strategies for improving the ORR/OER and ZAB performance includes tailoring the surface chemistry, dimensionality of catalysts, interfacial charge transfer, mass and charge transport, and morphology. We highlight the multicomponent design approaches that take these features into account to create advanced highly active bifunctional catalysts. Finally, we discuss the challenges and future perspectives on this important topic that aim to enhance the bifunctional activity and performance of zinc-air batteries.
Collapse
Affiliation(s)
- Dingrong Qiu
- Guangxi
Key Laboratory of Electrochemical and Magneto-chemical, Functional
Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, P.R. China
- Guangxi
Colleges and Universities Key Laboratory of Surface and Interface
Electrochemistry, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, P.R. China
| | - Huihui Wang
- Guangxi
Key Laboratory of Electrochemical and Magneto-chemical, Functional
Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, P.R. China
- Guangxi
Colleges and Universities Key Laboratory of Surface and Interface
Electrochemistry, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, P.R. China
| | - Tingting Ma
- Guangxi
Key Laboratory of Electrochemical and Magneto-chemical, Functional
Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, P.R. China
- Guangxi
Colleges and Universities Key Laboratory of Surface and Interface
Electrochemistry, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, P.R. China
| | - Jiangdu Huang
- Guangxi
Key Laboratory of Electrochemical and Magneto-chemical, Functional
Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, P.R. China
- Guangxi
Colleges and Universities Key Laboratory of Surface and Interface
Electrochemistry, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, P.R. China
| | - Zhen Meng
- Guangxi
Key Laboratory of Electrochemical and Magneto-chemical, Functional
Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, P.R. China
- Guangxi
Colleges and Universities Key Laboratory of Surface and Interface
Electrochemistry, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, P.R. China
| | - Dayong Fan
- Guangxi
Key Laboratory of Electrochemical and Magneto-chemical, Functional
Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, P.R. China
- Guangxi
Colleges and Universities Key Laboratory of Surface and Interface
Electrochemistry, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, P.R. China
| | - Chris R. Bowen
- Department
of Mechanical Engineering, University of
Bath, BA2 7AY Bath, U.K.
| | - Huidan Lu
- Guangxi
Key Laboratory of Electrochemical and Magneto-chemical, Functional
Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, P.R. China
- Guangxi
Colleges and Universities Key Laboratory of Surface and Interface
Electrochemistry, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, P.R. China
| | - Yongping Liu
- Guangxi
Key Laboratory of Electrochemical and Magneto-chemical, Functional
Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, P.R. China
- Guangxi
Colleges and Universities Key Laboratory of Surface and Interface
Electrochemistry, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, P.R. China
| | - Sundaram Chandrasekaran
- Guangxi
Key Laboratory of Electrochemical and Magneto-chemical, Functional
Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, P.R. China
- Guangxi
Colleges and Universities Key Laboratory of Surface and Interface
Electrochemistry, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, P.R. China
| |
Collapse
|
5
|
Wang T, Zhang Q, Lian K, Qi G, Liu Q, Feng L, Hu G, Luo J, Liu X. Fe nanoparticles confined by multiple-heteroatom-doped carbon frameworks for aqueous Zn-air battery driving CO 2 electrolysis. J Colloid Interface Sci 2024; 655:176-186. [PMID: 37935071 DOI: 10.1016/j.jcis.2023.10.157] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/25/2023] [Accepted: 10/30/2023] [Indexed: 11/09/2023]
Abstract
Metal-organic frameworks (MOF) derived carbon materials are considered to be excellent conductive mass transfer substrates, and the large specific surface area provides a favorable platform for loading metal nanoparticles. Tuning the coordination of metals through polyacid doping to change the MOF structure and specific surface area is an advanced strategy for designing catalysts. Modification of Fe-doped ZIF-8 pre-curing by pyrolysis of phosphomolybdic acid hydrate (PMo), Fe nanoparticles confined by Mo and N co-doped carbon frameworks (Fe-NP/MNCF) were fabricated, and the impact of PMo doping on the shape and functionality of the catalysts was investigated. The Zn-air battery (ZAB) driven CO2 electrolysis was realized by using Fe-NP/MNCF, which was used as bifunctional oxygen reduction reaction (ORR) and carbon dioxide reduction reaction (CO2RR) catalysts. The results show that the half-wave potential (E1/2) of Fe-NP/MNCF is 0.89 V, and the limiting diffused current density (jL) is 6.4 mA cm-2. The ZAB constructed by Fe-NP/MNCF shows a high specific capacity of 794.8 mAh gZn-1, a high open-circuit voltage (OCV) of 1.475 V, and a high power density of 111.6 mW cm-2. Fe-NP/MNCF exhibited efficient CO2RR performance with high CO Faraday efficiency (FECO) of 87.5 % and current density for the generation of carbon dioxide (jCO) of 10 mA cm-2 at -0.9 V vs RHE. ZAB-driven CO2RR had strong catalytic stability. These findings provide new methods and techniques for the preparation of advanced carbon-based catalysts from MOFs.
Collapse
Affiliation(s)
- Tianwei Wang
- Institute for New Energy Materials & Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Quan Zhang
- Institute for New Energy Materials & Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China.
| | - Kang Lian
- Institute for New Energy Materials & Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China; State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, School of Resources, Environment and Materials, Guangxi University, Nanning, 530004 Guangxi, China
| | - Gaocan Qi
- School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China.
| | - Qian Liu
- Institute for Advanced Study, Chengdu University, Chengdu 610106, Sichuan, China
| | - Ligang Feng
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Guangzhi Hu
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China
| | - Jun Luo
- ShenSi Lab, Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Longhua District, Shenzhen 518110, China
| | - Xijun Liu
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, School of Resources, Environment and Materials, Guangxi University, Nanning, 530004 Guangxi, China.
| |
Collapse
|
6
|
Liu P, Fan M, Cheng Y, Pan H, Liu J, Zhang H. Highly Accessible Co-N x Active Sites-Doped Carbon Framework with Uniformly Dispersed Cobalt Nanoparticles for the Oxygen Reduction Reaction in Alkaline and Neutral Electrolytes. ACS OMEGA 2024; 9:1001-1010. [PMID: 38222526 PMCID: PMC10785075 DOI: 10.1021/acsomega.3c07229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/09/2023] [Accepted: 11/28/2023] [Indexed: 01/16/2024]
Abstract
Porous carbon materials with nitrogen-coordinated transition metal active sites have been widely regarded as appealing alternatives to replace noble metal catalysts in oxygen-based electrochemical reaction activities. However, improving the electrocatalytic activity of transition-metal-based catalysts remains a challenge for widespread application in renewable devices. Herein, we use a simple one-step pyrolysis method to construct a Co nanoparticles/Co-Nx-decorated carbon framework catalyst with a near-total external surface structure and uniform dispersion nanoparticles, which displays promising catalytic activity and superior stability for oxygen reduction reactions in both alkaline and neutral electrolytes, as evidenced by the positive shift of half-wave potential by 44 and 11 mV compared to 20% Pt/C. Excellent electrochemical performance originates from highly accessible Co nanoparticles/Co-Nx active sites at the external surface structure (this is, exposing active sites). The thus-assembled liquid zinc-air battery using the synthesized electrocatalyst as the cathode material delivers a maximum power density of 178 mW cm-2 with an open circuit potential of 1.48 V and long-term discharge stability over 150 h.
Collapse
Affiliation(s)
- Peipei Liu
- State
Key Laboratory of Advanced Technology for Materials Synthesis and
Processing, Wuhan University of Technology, Nr. 122 Luoshi Rd., Wuhan 430070, China
- Foshan
Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong
Laboratory, Foshan 528200, China
| | - Meiling Fan
- State
Key Laboratory of Advanced Technology for Materials Synthesis and
Processing, Wuhan University of Technology, Nr. 122 Luoshi Rd., Wuhan 430070, China
- Xiangyang
Polytechnic, Xiangyang 441050, China
| | - Yapeng Cheng
- State
Key Laboratory of Advanced Technology for Materials Synthesis and
Processing, Wuhan University of Technology, Nr. 122 Luoshi Rd., Wuhan 430070, China
| | - Hongfei Pan
- State
Key Laboratory of Advanced Technology for Materials Synthesis and
Processing, Wuhan University of Technology, Nr. 122 Luoshi Rd., Wuhan 430070, China
- Foshan
Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong
Laboratory, Foshan 528200, China
| | - Jin Liu
- State
Key Laboratory of Advanced Technology for Materials Synthesis and
Processing, Wuhan University of Technology, Nr. 122 Luoshi Rd., Wuhan 430070, China
- School
of Chemistry and Material Science, Hubei
Engineering University, Xiaogan 432000, People’s
Republic of China
| | - Haining Zhang
- State
Key Laboratory of Advanced Technology for Materials Synthesis and
Processing, Wuhan University of Technology, Nr. 122 Luoshi Rd., Wuhan 430070, China
- Foshan
Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong
Laboratory, Foshan 528200, China
- Hubei
Key Laboratory of Fuel Cell Technology, Wuhan University of Technology, Wuhan 430070, China
| |
Collapse
|
7
|
Pei F, Li M, Huang Y, Guo Q, Song K, Kong F, Cui X. Constructing FeS and ZnS Heterojunction on N,S-Codoped Carbon as Robust Electrocatalyst toward Oxygen Reduction Reaction. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2682. [PMID: 37836323 PMCID: PMC10574382 DOI: 10.3390/nano13192682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023]
Abstract
Highly active and cost-efficient electrocatalysts for oxygen reduction reaction (ORR) are significant for developing renewable energy conversion devices. Herein, a nanocomposite Fe/ZnS-SNC electrocatalyst with an FeS and ZnS heterojunction on N,S-codoped carbon has been fabricated via a facile one-step sulfonating of the pre-designed Zn- and Fe-organic frameworks. Benefitting from the electron transfer from FeS to adjacent ZnS at the heterointerfaces, the optimized Fe/ZnS-SNC900 catalyst exhibits excellent ORR performances, featuring the half-wave potentials of 0.94 V and 0.81 V in alkaline and acidic media, respectively, which is competitive with the commercial 20 wt.% Pt/C (0.87 and 0.76 V). The flexible Zn-air battery equipping Fe/ZnS-SNC900 affords a higher open-circuit voltage (1.45 V) and power density of 30.2 mW cm-2. Fuel cells assembled with Fe/ZnS-SNC900 as cathodic catalysts deliver a higher power output of 388.3 and 242.8 mW cm-2 in H2-O2 and -air conditions. This work proposes advanced heterostructured ORR electrocatalysts that effectively promote renewable energy conversions.
Collapse
Affiliation(s)
- Fenglai Pei
- Shanghai Motor Vehicle Inspection Certification & Tech Innovation Center Co., Ltd., Jiading District, Shanghai 201805, China;
| | - Min Li
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China; (M.L.); (Y.H.)
| | - Yifan Huang
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China; (M.L.); (Y.H.)
| | - Qiuyun Guo
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; (Q.G.); (K.S.)
| | - Kunming Song
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; (Q.G.); (K.S.)
| | - Fantao Kong
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China; (M.L.); (Y.H.)
| | - Xiangzhi Cui
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China; (M.L.); (Y.H.)
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; (Q.G.); (K.S.)
| |
Collapse
|
8
|
Nie Y, Xu X, Wang X, Liu M, Gao T, Liu B, Li L, Meng X, Gu P, Zou J. CoNi Alloys Encapsulated in N-Doped Carbon Nanotubes for Stabilizing Oxygen Electrocatalysis in Zinc-Air Battery. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13111788. [PMID: 37299692 DOI: 10.3390/nano13111788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/25/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023]
Abstract
Alloy-based catalysts with high corrosion resistance and less self-aggregation are essential for oxygen reduction/evolution reactions (ORR/OER). Here, via an in situ growth strategy, NiCo alloy-inserted nitrogen-doped carbon nanotubes were assembled on a three-dimensional hollow nanosphere (NiCo@NCNTs/HN) using dicyandiamide. NiCo@NCNTs/HN exhibited better ORR activity (half-wave potential (E1/2) of 0.87 V) and stability (E1/2 shift of only -13 mV after 5000 cycles) than commercial Pt/C. NiCo@NCNTs/HN displayed a lower OER overpotential (330 mV) than RuO2 (390 mV). The NiCo@NCNTs/HN-assembled zinc-air battery exhibited high specific-capacity (847.01 mA h g-1) and cycling-stability (291 h). Synergies between NiCo alloys and NCNTs facilitated the charge transfer to promote 4e- ORR/OER kinetics. The carbon skeleton inhibited the corrosion of NiCo alloys from surface to subsurface, while inner cavities of CNTs confined particle growth and the aggregation of NiCo alloys to stabilize bifunctional activity. This provides a viable strategy for the design of alloy-based catalysts with confined grain-size and good structural/catalytic stabilities in oxygen electrocatalysis.
Collapse
Affiliation(s)
- Yao Nie
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Xiaoqin Xu
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Xinyu Wang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Mingyang Liu
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Ting Gao
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Bin Liu
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Lixin Li
- School of Environment and Chemical Engineering, Heilongjiang University of Science and Technology, Harbin 150080, China
| | - Xin Meng
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Peng Gu
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Jinlong Zou
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| |
Collapse
|
9
|
Zheng Y, Wang L, Pang J, Sun K, Hou J, Wang G, Guo W, Chen L. Ni 3S 2/Co 9S 8 embedded poor crystallinity NiCo layered double hydroxides hierarchical nanostructures for efficient overall water splitting. J Colloid Interface Sci 2023; 637:85-93. [PMID: 36689800 DOI: 10.1016/j.jcis.2023.01.074] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/12/2023] [Accepted: 01/14/2023] [Indexed: 01/19/2023]
Abstract
Nickel-cobalt bimetallic layered double hydroxides (NiCo LDHs) are potential electrocatalysts with high performance and stability for overall water-splitting. However, its weak conductivity limits its practical applications. Herein, a simple hydrothermal in-situ conversion strategy is employed for constructing the novel heterogeneous electrocatalyst of Ni3S2/Co9S8 embedded poor crystallinity (Pc) NiCo LDH nanosheet arrays grown on the Ni foam (Pc-NiCo LDH/ Ni3S2/Co9S8), which can improve the conductivity via regulating the crystallinity. The crystallinity of NiCo LDH is well regulated by adjusting the amount of sulfur source, and the construction of Ni3S2/Co9S8 heterostructure exposes more active sites, improves the electrical conductivity, enhances the electronic interaction between NiCo LDH and Ni3S2/Co9S8, and significantly promotes the kinetics of water splitting. The optimized Pc-NiCo LDH/Ni3S2/Co9S8 hierarchical structure as both the anode and cathode exhibit the overall water splitting performance with the cell voltage of only 1.744 V to achieve the current density of 50 mA cm-2 in the alkaline media and shows the competitive H2 and O2 production rate of 6.4 and 3.1 μL s-1, respectively, suggesting its potential practical applications. This work provides a novel idea for the design of multiphase composite electrocatalysts applied in water splitting.
Collapse
Affiliation(s)
- Yang Zheng
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, China.
| | - Liping Wang
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, China.
| | - Jianxiang Pang
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, China
| | - Kaisheng Sun
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, China
| | - Juan Hou
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, China
| | - Gang Wang
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, China
| | - Wen Guo
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, China
| | - Long Chen
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, China.
| |
Collapse
|
10
|
Xu T, Long J, Wang L, Chen K, Chen J, Gou X. Core-shell template derived porous 3D-Fe/Fe2O3@NSC composites as high performance catalysts for aqueous and solid-state rechargeable Zn-air batteries. J Electroanal Chem (Lausanne) 2023. [DOI: 10.1016/j.jelechem.2023.117203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
11
|
Chen Z, Yun S, Wu L, Zhang J, Shi X, Wei W, Liu Y, Zheng R, Han N, Ni BJ. Waste-Derived Catalysts for Water Electrolysis: Circular Economy-Driven Sustainable Green Hydrogen Energy. NANO-MICRO LETTERS 2022; 15:4. [PMID: 36454315 PMCID: PMC9715911 DOI: 10.1007/s40820-022-00974-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 10/14/2022] [Indexed: 05/14/2023]
Abstract
The sustainable production of green hydrogen via water electrolysis necessitates cost-effective electrocatalysts. By following the circular economy principle, the utilization of waste-derived catalysts significantly promotes the sustainable development of green hydrogen energy. Currently, diverse waste-derived catalysts have exhibited excellent catalytic performance toward hydrogen evolution reaction (HER), oxygen evolution reaction (OER), and overall water electrolysis (OWE). Herein, we systematically examine recent achievements in waste-derived electrocatalysts for water electrolysis. The general principles of water electrolysis and design principles of efficient electrocatalysts are discussed, followed by the illustration of current strategies for transforming wastes into electrocatalysts. Then, applications of waste-derived catalysts (i.e., carbon-based catalysts, transitional metal-based catalysts, and carbon-based heterostructure catalysts) in HER, OER, and OWE are reviewed successively. An emphasis is put on correlating the catalysts' structure-performance relationship. Also, challenges and research directions in this booming field are finally highlighted. This review would provide useful insights into the design, synthesis, and applications of waste-derived electrocatalysts, and thus accelerate the development of the circular economy-driven green hydrogen energy scheme.
Collapse
Affiliation(s)
- Zhijie Chen
- Centre for Technology in Water and Wastewater (CTWW), School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Sining Yun
- Functional Materials Laboratory (FML), School of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China.
| | - Lan Wu
- Centre for Technology in Water and Wastewater (CTWW), School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Jiaqi Zhang
- Centre for Technology in Water and Wastewater (CTWW), School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Xingdong Shi
- Centre for Technology in Water and Wastewater (CTWW), School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Wei Wei
- Centre for Technology in Water and Wastewater (CTWW), School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Yiwen Liu
- Centre for Technology in Water and Wastewater (CTWW), School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Renji Zheng
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, People's Republic of China
| | - Ning Han
- Department of Materials Engineering, KU Leuven, 3001, Louvain, Belgium
| | - Bing-Jie Ni
- Centre for Technology in Water and Wastewater (CTWW), School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW, 2007, Australia.
| |
Collapse
|
12
|
Interfacial Electron Redistribution of FeCo2S4/N-S-rGO Boosting Bifunctional Oxygen Electrocatalysis Performance. Catalysts 2022. [DOI: 10.3390/catal12091002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Developing bifunctional catalysts for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) is essential for the development of zinc–air batteries (ZABs), but several challenges remain in terms of bifunctional activity. FeCo2S4/N-S-rGO was prepared by in situ homogeneous growth of bimetallic sulfide FeCo2S4 on N, S-doped reduced graphene oxide. FeCo2S4/N-S-rGO exhibits a half-wave potential of 0.89 V for ORR and an overpotential of 0.26 V at 10 mA cm−2 for OER, showing significantly bifunctional activity superior to Pt/C (0.85 V) and RuO2 (0.41 V). Moreover, the FeCo2S4/N-S-rGO assembled ZAB shows a superior specific capacity and a power density of 259.13 mW cm−2. It is demonstrated that the interfacial electron redistribution between FeCo2S4 nanoparticles and heteroatom-doped rGO matrix can efficiently improve the electrochemical performance of the catalyst. The results provide new insights into the preparation of high-capability composite catalysts combining transition metal sulfides with carbon materials for applications in ZABs.
Collapse
|
13
|
Peng Y, Zhang F, Zhang Y, Luo X, Chen L, Shi Y. N, S-doped hollow carbon nanosheet encapsulated Co9S8 nanoparticles as high-efficient bifunctional electrocatalyst for rechargeable zinc-air battery. Dalton Trans 2022; 51:12630-12640. [DOI: 10.1039/d2dt01650h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The development of non-noble metal-based oxygen reduction/evolution reaction (ORR/OER) bifunctional electrocatalyst with reasonably designed structure and inexpensive component is of practical significance for commercialization of rechargeable zinc-air batteries. Here, we...
Collapse
|