1
|
Liao L, Yuan R, Li Z, Zhou W. Nanocatalysts encapsulated in metal-organic frameworks: Size control and positive influences. Adv Colloid Interface Sci 2025; 341:103485. [PMID: 40147211 DOI: 10.1016/j.cis.2025.103485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 01/18/2025] [Accepted: 03/19/2025] [Indexed: 03/29/2025]
Abstract
Beyond traditional porous materials, metal-organic frameworks (MOFs) have attracted considerable attention for fabricating encapsulated nanocatalysts in the pores/cavities/channels of MOFs due to the high surface area, porous structure, and a large variety of organic linkers. As the host for nanocatalyst encapsulation, MOFs can provide uniform hierarchical pores and channels that can accelerate the mass transfer and migration of reactants or products and various metal‑oxygen clusters and organic linkers, which may interact strongly with nanocatalysts. Herein, state-of-the-art advancements in the encapsulation of nanocatalysts, including catalyst nanoparticles, clusters, quantum dots, and single-atom catalysts, have been summarized. The synthetic methods for nanocatalysts in MOFs and the enhanced properties are especially discussed. Then, positive effects upon the encapsulation of nanocatalysts in MOFs, including tunable chemical environment and encapsulation effects have been explored. Notably, the catalytic activity and product selectivity can be much improved by regulating the chemical environment around nanocatalysts and the interaction between the active nanocatalysts and metal nodes or organic linkers. Finally, challenges and future perspectives in encapsulated nanocatalysts in MOFs are proposed. This review could shed light on the construction of stable nanocatalysts encapsulation in MOFs with maximum exposed active sites and excellent activity in significant reactions.
Collapse
Affiliation(s)
- Lijun Liao
- Shandong Provincial Key Laboratory of Molecular Engineering School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250353, PR China
| | - Ruting Yuan
- Shandong Provincial Key Laboratory of Molecular Engineering School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250353, PR China.
| | - Zhenzi Li
- Shandong Provincial Key Laboratory of Molecular Engineering School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250353, PR China.
| | - Wei Zhou
- Shandong Provincial Key Laboratory of Molecular Engineering School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250353, PR China.
| |
Collapse
|
2
|
Napal J, López R, Aguilar-Galindo F, Artetxe B, Beobide G, Castillo O, Luque A, Pérez-Yáñez S. Heterogeneous Photocatalytic Systems Formed by Compound [Zr 6O 4(OH) 4(C 6H 5COO) 8(H 2O) 8][SiW 12O 40] in Combination with Inorganic Cocatalysts for the CO 2 Reduction to Alcohols in Water. CHEMSUSCHEM 2025:e202402694. [PMID: 40111268 DOI: 10.1002/cssc.202402694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/06/2025] [Accepted: 02/17/2025] [Indexed: 03/22/2025]
Abstract
The photoreduction of CO2 to methanol and ethanol is a highly sought-after reaction due to the economic and environmental implications of these products. Both methanol and ethanol are versatile chemical feedstock and renewable fuels. The ionic hybrid compound [Zr6O4(OH)4(C6H5COO)8(H2O)8][SiW12O40] (Zr6W12) provides effective separation of the generated electron-hole pair during exposure to UV radiation through a Z-scheme disposition of the HOMO-LUMO levels of each discrete ionic entity. However, this compound does not promote the CO2 reduction. In contrast, the incorporation of selected inorganic cocatalysts, such as AgI, Bi2O3, CeO2, CuI, CuO, Cu2O, In2O3, PbO, Sb2O3, SnO, TiO2 or ZnO, to the photocatalytic system can enable the activation and reduction of CO2, leveraging their electronic properties and interactions with Zr6W12. Some of these heterogeneous photocatalytic systems perform well for the photoreduction of CO2 into methanol and/or ethanol in water and without the need of any sacrificial chemical reagent, achieving maximum production levels of 163 μg g-1 h-1 and 144 μg g-1 h-1 for methanol and ethanol, respectively, for the Zr6W12/CuI photocatalytic mixture. Theoretical calculations have been conducted to determine how the relative disposition of the HOMO/LUMO energy levels of Zr6W12 and the band structure of the inorganic cocatalysts impact on the CO2 photocatalytic reduction to alcohols.
Collapse
Affiliation(s)
- Jon Napal
- Department of Organic and Inorganic Chemistry, University of the Basque Country, UPV/EHU, P.O. 644, E-48080, Bilbao, Spain
| | - Raquel López
- Department of Organic and Inorganic Chemistry, University of the Basque Country, UPV/EHU, P.O. 644, E-48080, Bilbao, Spain
| | - Fernando Aguilar-Galindo
- Department of Chemistry, Autonomous University of Madrid, UAM, 28049, Madrid, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Autonomous University of Madrid, UAM, 28049, Madrid, Spain
| | - Beñat Artetxe
- Department of Organic and Inorganic Chemistry, University of the Basque Country, UPV/EHU, P.O. 644, E-48080, Bilbao, Spain
| | - Garikoitz Beobide
- Department of Organic and Inorganic Chemistry, University of the Basque Country, UPV/EHU, P.O. 644, E-48080, Bilbao, Spain
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, E-48940, Leioa, Spain
| | - Oscar Castillo
- Department of Organic and Inorganic Chemistry, University of the Basque Country, UPV/EHU, P.O. 644, E-48080, Bilbao, Spain
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, E-48940, Leioa, Spain
| | - Antonio Luque
- Department of Organic and Inorganic Chemistry, University of the Basque Country, UPV/EHU, P.O. 644, E-48080, Bilbao, Spain
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, E-48940, Leioa, Spain
| | - Sonia Pérez-Yáñez
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, E-48940, Leioa, Spain
- Department of Organic and Inorganic Chemistry, University of the Basque Country, UPV/EHU, E-01006, Vitoria-Gasteiz, Spain
| |
Collapse
|
3
|
Ding W, Yang Y, Li X, Yuan S, Shi R, Liu Z, Luo M. Single-Atom Mo Supported by TiO 2 for Photocatalytic Nitrogen Fixation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:340-349. [PMID: 39728404 DOI: 10.1021/acs.langmuir.4c03624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
The challenge of achieving efficient photocatalysts for the fixation of ambient nitrogen to ammonia persists. The utilization efficiency of single-metal-atom catalysts leads to an increased number of active sites, while their distinctive geometrical and electronic characteristics contribute to enhancing the intrinsic activity of each individual site. In this study, we present a method using an organic molecule to assist in loading TiO2 with Mo single atoms for the purpose of photocatalytic nitrogen fixation. By adjusting the number of Mo single atoms loaded, we were able to regulate the microenvironment surrounding the catalytic center. Our results demonstrate that TiO2-Mo10 achieved a remarkable photocatalytic nitrogen fixation performance of 42.05 μmol·g-1·h-1 at room temperature while maintaining excellent structural stability and cycle life. The incorporation of Mo single atoms effectively enhanced electron separation and migration within TiO2, leading to a significant weakening of the N≡N bond. This research highlights the potential for predesigning TiO2-based single-atom photocatalysts with tailored structures for efficient nitrogen fixation through photocatalysis. These findings offer valuable insights for the future development and rational design of single-atom photocatalysts.
Collapse
Affiliation(s)
- Wenming Ding
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, Ningxia 750021, PR China
| | - Yang Yang
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, Ningxia 750021, PR China
| | - Xiaoman Li
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, Ningxia 750021, PR China
| | - Shengbo Yuan
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, Ningxia 750021, PR China
| | - Ruyue Shi
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, Ningxia 750021, PR China
| | - Zhenyu Liu
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, Ningxia 750021, PR China
| | - Min Luo
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, Ningxia 750021, PR China
| |
Collapse
|
4
|
Yao W, Xing H, Ni S, Liu Y, Wang W, Liu H, Yang L. In-situ assembly of polyoxometalate-based metal-organic framework for high-efficiency recovery of uranium. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135985. [PMID: 39342846 DOI: 10.1016/j.jhazmat.2024.135985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/14/2024] [Accepted: 09/26/2024] [Indexed: 10/01/2024]
Abstract
Extracting uranium from water is crucial for environmental protection and the sustainable nuclear power industry. However, high-efficiency extraction and mild desorption condition still poses significant challenges. Herein, a polyoxometalate-based metal-organic framework (POMOF) for high-performance uranium extraction is prepared by in situ confined encapsulating H3[PW12O40] (PW12) into MIL-101(Cr). The highly dispersed PW12 enables adsorption sites to be sufficiently exposed, supports the pore structure of MIL-101(Cr), while being protected by spatial confinement. Furthermore, its abundant oxygen groups form high-affinity coordination with uranium and provide the pH-dependent conformation switch to achieve selective adsorption and instantaneous structural transformation. The assembly of structure and function makes POMOF exhibit substantial synergistic stability and adsorption capacity. Consequently, the constructed MIL-101(Cr)@PW12 exhibits excellent uranium adsorption ability of 461.88 mg/g, as well as superior selectivity towards a wide variety of metal ions. Remarkably, instantaneous desorption can be achieved in 2 s under mild desorption conditions of 0.005 mol/L HCl, and the adsorption capacity remained at 94.30 % after 8 adsorption cycles. POMOF demonstrates the vast potential for uranium capture from water and offers new insight into designing structure and functional synergistic materials for the selective adsorption and instantaneous desorption of uranium.
Collapse
Affiliation(s)
- Wang Yao
- Key Laboratory of Green and High-end Utilization of Salt Lake Resources, State Key Laboratory of Petroleum Molecular & Process Engineering (RIPP, SINOPEC), CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huifang Xing
- Key Laboratory of Green and High-end Utilization of Salt Lake Resources, State Key Laboratory of Petroleum Molecular & Process Engineering (RIPP, SINOPEC), CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Shan Ni
- Key Laboratory of Green and High-end Utilization of Salt Lake Resources, State Key Laboratory of Petroleum Molecular & Process Engineering (RIPP, SINOPEC), CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yafeng Liu
- Key Laboratory of Green and High-end Utilization of Salt Lake Resources, State Key Laboratory of Petroleum Molecular & Process Engineering (RIPP, SINOPEC), CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wengjie Wang
- Key Laboratory of Green and High-end Utilization of Salt Lake Resources, State Key Laboratory of Petroleum Molecular & Process Engineering (RIPP, SINOPEC), CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huizhou Liu
- Key Laboratory of Green and High-end Utilization of Salt Lake Resources, State Key Laboratory of Petroleum Molecular & Process Engineering (RIPP, SINOPEC), CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liangrong Yang
- Key Laboratory of Green and High-end Utilization of Salt Lake Resources, State Key Laboratory of Petroleum Molecular & Process Engineering (RIPP, SINOPEC), CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
5
|
Yang M, Li J, Hui K, Ying J, Tian A. The applications of Keggin-based metal-organic compounds in sensing and catalysis. Dalton Trans 2024; 53:15412-15420. [PMID: 39162704 DOI: 10.1039/d4dt01894j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Environmental pollution and energy problems caused by excessive use of fossil fuels deviate from the theme of green and sustainable development. It is very promising to detect small molecules or catalyze the conversion of pollutants to obtain renewable energy by using photoelectric technology. Therefore, there is an urgent requirement to develop materials with low detection limits and high catalytic performance. Keggin polyoxometalate-based metal-organic compounds (POMOCs) hold great promise for sensing, and catalytic applications due to their controllable structure, remarkable reversible multi-electron transfer capability and multi-component synergistic activity. In this review, the applications of Keggin POMOCs in photocatalytic/electrocatalytic conversion of energy materials and the detection of metal ion/inorganic molecule are introduced. The different mechanisms of Keggin POM units and MOF units in sensors and catalysis are discussed. Additionally, the prospects of the Keggin POMOCs as electrode materials or catalysts for enhancing the performance of sensors and catalysts are discussed, which will provide a platform for further development of advanced Keggin POMOC material-based sensors and catalytic systems.
Collapse
Affiliation(s)
- Mengle Yang
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121013, P. R. China.
| | - Jiaxing Li
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121013, P. R. China.
| | - Kaili Hui
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121013, P. R. China.
| | - Jun Ying
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121013, P. R. China.
| | - Aixiang Tian
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121013, P. R. China.
| |
Collapse
|
6
|
Zhang L, Hou L, Cai HH, Sun B, Han DM, Chen FZ. Cascading CRISPR/Cas and Nanozyme for Enhanced Organic Photoelectrochemical Transistor Detection with Triple Signal Amplification. Anal Chem 2024; 96:14283-14290. [PMID: 39176473 DOI: 10.1021/acs.analchem.4c03220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Innovative signal amplification and transduction play pivotal roles in bioanalysis. Herein, cascading CRISPR/Cas and the nanozyme are integrated with electronic amplification in an organic photoelectrochemical transistor (OPECT) to enable triple signal amplification, which is exemplified by the miRNA-triggered CRISPR/Cas13a system and polyoxometalate nanozyme for OPECT detection of miRNA-21. The CRISPR/Cas13a-enabled release of glucose oxidase could synergize with peroxidase-like SiW12 to induce catalytic precipitation on the photogate, inhibiting the interfacial mass transfer and thus the significant suppression of the channel current. The as-developed OPECT sensor demonstrates good sensitivity and selectivity for miRNA-21 detection, with a linear range from 1 fM to 10 nM and an ultralow detection limit of 0.53 fM. This study features the integration of bio- and nanoenzyme cascade and electronic triple signal amplification for OPECT detection.
Collapse
Affiliation(s)
- Lin Zhang
- School of Science, China University of Geosciences (Beijing), Beijing 100083, China
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou 318000, China
| | - Lu Hou
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou 318000, China
| | - Hui-Hui Cai
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou 318000, China
| | - Bing Sun
- School of Science, China University of Geosciences (Beijing), Beijing 100083, China
| | - De-Man Han
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou 318000, China
| | - Feng-Zao Chen
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou 318000, China
| |
Collapse
|
7
|
Cui D, Yang X, Zhang T, Li M, Li F. Construction of Fe(III) Active Sites on Phenanthroline-Grafted g-C 3N 4: Reduced Work Function and Enhanced Intramolecular Charge Transfer for Efficient N 2 Photofixation. ACS APPLIED MATERIALS & INTERFACES 2024; 16:30040-30054. [PMID: 38813971 DOI: 10.1021/acsami.4c03370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Photocatalytic nitrogen fixation is one of the important pathways for green and sustainable ammonia synthesis, but the extremely high bonding energy of the N≡N triple bond makes it difficult for conventional nitrogen fixation photocatalysts to directly activate and hydrogenate. Given this, we covalently grafted the phenanthroline unit onto graphitic carbon nitride nanosheets (CN) by the simple thermal oxidation method and complexed it with transition metal Fe3+ ions to obtain stable dispersed Fe active sites, which can significantly improve the photocatalytic activity. The Fe(III)-4-P-CN photocatalyst morphology consists of porous lamellar structures internally connected by nanowires. The special morphology of the catalysts gives them excellent nitrogen fixation performance, with an average NH3 yield of 492.9 μmol g-1 h-1, which is 6.5 times higher than that of the pristine CN, as well as better photocatalytic cycling stability. Comprehensive experiments and density-functional theory results show that Fe(III)-4-P-CN is more favorable than pristine CN for *N2 activation, effectively lowering the reaction energy barrier. Moreover, other byproducts (such as nitrate and H2O2) are also produced during the photocatalytic nitrogen fixation process, which also provides a new way for nitrogen-fixing photocatalysts to achieve multifunctional applications.
Collapse
Affiliation(s)
- Donghui Cui
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, College of Chemistry, Northeast Normal University, Changchun 130024, P. R. China
| | - Xue Yang
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, College of Chemistry, Northeast Normal University, Changchun 130024, P. R. China
| | - Tingting Zhang
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, College of Chemistry, Northeast Normal University, Changchun 130024, P. R. China
| | - Meixi Li
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, College of Chemistry, Northeast Normal University, Changchun 130024, P. R. China
| | - Fengyan Li
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, College of Chemistry, Northeast Normal University, Changchun 130024, P. R. China
| |
Collapse
|
8
|
Wang J, Liu Y, Yuan Z, Li L, Ma P, Wang J, Niu J. Visible-Light-Responsive Polyoxometalate@Metal-Organic Frameworks Involving Ir Metalloligands for Highly Selective Photocatalytic Oxidation of Sulfides to Sulfoxide. Chemistry 2024; 30:e202303401. [PMID: 38057690 DOI: 10.1002/chem.202303401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 12/08/2023]
Abstract
The synthesis of highly efficient visible-light-responsive photocatalysts is fundamental to solving the problems of low efficiency and poor selectivity in photocatalytic organic synthesis reactions. We synthesized a crystalline polyoxometalate @metal-organic framework material {Zn4 (H2 O)8 [Ir(ppy)2 (dcbpy)]4 [SiW12 O40 ]} ⋅ 4H2 O (Ir-SiW) by self-assembly of Ir metalloligands with POMs. The introduction of Ir metalloligands extends the light absorbing range to visible light, improving the efficient utilization of solar energy. The transfer of photogenerated electrons from Ir metalloligands to SiW12 was observed under visible light irradiation, which boosted the carrier separation efficiency. The synergistic effect of the two components increased the photocatalytic thioether oxidation activity, and the product methyl phenyl sulfoxide for 2.5 h under visible light irradiation (λ >400 nm) reached 99.5 %, which was higher than those of other POM-based photocatalysts. Meanwhile, the yield of methyl phenyl sulfoxide was still higher than 97 % after three cycles, demonstrating the high stability and reusability of Ir-SiW.
Collapse
Affiliation(s)
- Jing Wang
- Henan Key Laboratory of Polyoxometalate Chemistry College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan, 475004, P. R. China
| | - Yanan Liu
- Henan Key Laboratory of Polyoxometalate Chemistry College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan, 475004, P. R. China
- Puyang Institute of Technology, Henan University, Puyang, Henan, 457000, P. R. China
| | - Zelong Yuan
- Henan Key Laboratory of Polyoxometalate Chemistry College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan, 475004, P. R. China
| | - Luoning Li
- Henan Key Laboratory of Polyoxometalate Chemistry College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan, 475004, P. R. China
| | - Pengtao Ma
- Henan Key Laboratory of Polyoxometalate Chemistry College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan, 475004, P. R. China
| | - Jingping Wang
- Henan Key Laboratory of Polyoxometalate Chemistry College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan, 475004, P. R. China
| | - Jingyang Niu
- Henan Key Laboratory of Polyoxometalate Chemistry College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan, 475004, P. R. China
| |
Collapse
|
9
|
Yao L, Yu Y, Xu X, Du Z, Yang T, Hu J, Huang H. In-situ construction of WS 2/ZIF-8 composites with an electron-rich interface for enhancing nitrogen photofixation. J Colloid Interface Sci 2024; 654:189-200. [PMID: 37839236 DOI: 10.1016/j.jcis.2023.10.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/26/2023] [Accepted: 10/06/2023] [Indexed: 10/17/2023]
Abstract
Photocatalytic nitrogen reduction reaction (PNRR) is an environmentally friendly synthesis method. It has been regarded as a promising approach for future NH3 preparation, which can reduce the natural fuel consumption and pollution of the Haber Bosch process. Nevertheless, this method exists poor activity for mass production, so it is urgent but challenging to explore highly efficient catalysts. Here, the novel WS2/ZIF-8 composites are reported, DFT and XPS indicate the transfer direction of electrons is from ZIF-8 to WS2, forming an electron-rich interface between WS2 and ZIF-8, thus it endows the more powerful photocatalytic nitrogen reduction ability for 2-WS2/ZIF-8 than monomer material. Meanwhile, 2-WS2/ZIF-8 exhibits admirable photocatalytic nitrogen reduction performance under real and simulated sunlight or in tap water, further attesting its excellent stability and practicability.
Collapse
Affiliation(s)
- Lin Yao
- State Key Laboratory of Metastable Materials Science & Technology, Hebei Key Laboratory of Heavy Metal Deep Remediation in Water and Resource Reuse, Hebei Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao 066004, PR China.
| | - Yanming Yu
- State Key Laboratory of Metastable Materials Science & Technology, Hebei Key Laboratory of Heavy Metal Deep Remediation in Water and Resource Reuse, Hebei Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao 066004, PR China.
| | - Xin Xu
- State Key Laboratory of Metastable Materials Science & Technology, Hebei Key Laboratory of Heavy Metal Deep Remediation in Water and Resource Reuse, Hebei Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao 066004, PR China.
| | - Zhenhang Du
- State Key Laboratory of Metastable Materials Science & Technology, Hebei Key Laboratory of Heavy Metal Deep Remediation in Water and Resource Reuse, Hebei Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao 066004, PR China.
| | - Tao Yang
- Jiangxi Province Engineering Research Center of Ecological Chemical Industry, Jiujiang University, Jiujiang 332005, PR China.
| | - Jie Hu
- State Key Laboratory of Metastable Materials Science & Technology, Hebei Key Laboratory of Heavy Metal Deep Remediation in Water and Resource Reuse, Hebei Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao 066004, PR China.
| | - Hao Huang
- State Key Laboratory of Metastable Materials Science & Technology, Hebei Key Laboratory of Heavy Metal Deep Remediation in Water and Resource Reuse, Hebei Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao 066004, PR China.
| |
Collapse
|
10
|
Song Y, Fang Q, Liu B, Hu B, Su Z. Efficient Proton Conductor Based on Bismuth Oxide Clusters and Polyoxometalates. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:14511-14518. [PMID: 37782751 DOI: 10.1021/acs.langmuir.3c01441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Developing new solid-state electrolyte materials for improving the proton conductivity remains an important challenge. Herein, a novel two-dimensional layered solid-state proton conductor Bi2O2-SiW12 nanocomposite, based on silicotungstic acid (H4SiW12O40) and Bi(NO3)3·5H2O, was synthesized and characterized. The composite consists of a layered cation framework [Bi2O2]2+ and interlayer-embedded counteranionic [SiW12O40]4-, which forms continuous hydrogen bond (O-H···O) networks through the interaction of adjacent oxygen atoms on the surface of the [Bi2O2]2+ and oxygen atoms of the H4SiW12O40. Facile proton transfer along these pathways endows the Bi2O2-SiW12 (30:1) nanocomposite with an excellent proton conductivity of 3.61 mS cm-1 at 90 °C and 95% relative humidity, indicating that the nanocomposite has good prospects as a highly efficient proton conductor.
Collapse
Affiliation(s)
- Yingjie Song
- Jilin Provincial International Joint Research Center of Photo-functional Materials and Institution Chemistry, School of Chemistry and Environmental Engineering, Jilin Provincial Science and Technology Innovation Centre of Optical Materials and Chemistry, Changchun University of Science and Technology, Changchun 130022, China
| | - Qing Fang
- Jilin Provincial International Joint Research Center of Photo-functional Materials and Institution Chemistry, School of Chemistry and Environmental Engineering, Jilin Provincial Science and Technology Innovation Centre of Optical Materials and Chemistry, Changchun University of Science and Technology, Changchun 130022, China
| | - Bailing Liu
- Jilin Provincial International Joint Research Center of Photo-functional Materials and Institution Chemistry, School of Chemistry and Environmental Engineering, Jilin Provincial Science and Technology Innovation Centre of Optical Materials and Chemistry, Changchun University of Science and Technology, Changchun 130022, China
| | - Bo Hu
- National & Local United Engineering Laboratory for Power Battery, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Zhongmin Su
- Jilin Provincial International Joint Research Center of Photo-functional Materials and Institution Chemistry, School of Chemistry and Environmental Engineering, Jilin Provincial Science and Technology Innovation Centre of Optical Materials and Chemistry, Changchun University of Science and Technology, Changchun 130022, China
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130021, China
| |
Collapse
|
11
|
Zhu J, Cen Y, Ma H, Lian W, Liu J, Ou H, Ouyang F, Zhang L, Zhang W. Pt single atoms meet metal-organic frameworks to enhance electrocatalytic hydrogen evolution activity. NANOSCALE HORIZONS 2023; 8:1273-1281. [PMID: 37465873 DOI: 10.1039/d3nh00159h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
The electrochemical hydrogen evolution reaction (HER) effectively produces clean, renewable, and sustainable hydrogen; however, the development of efficient electrocatalysts is required to reduce the high energy barrier of the HER. Herein, we report two excellent single-atom (SA)/metal-organic framework (MOF) composite electrocatalysts (PtSA-MIL100(Fe) and PtSA-MIL101(Cr)) for HER. The obtained PtSA-MIL100(Fe) and PtSA-MIL101(Cr) electrocatalysts exhibit overpotentials of 60 and 61 mV at 10 mA cm-2, respectively, which are close to that of commercial Pt/C (38 mV); they exhibit overpotentials of 310 and 288 mV at 200 mA cm-2, respectively, which are comparable to that of commercial Pt/C (270 mV). Theoretical simulations reveal that Pt SAs modulate the electronic structures of the MOFs, leading to the optimization of the binding strength for H* and significant enhancement of the HER activity. This study describes a novel strategy for preparing desirable HER electrocatalysts based on the synergy between SAs and MIL-series MOFs. Using MIL-series MOFs to support SAs could be valuable for future catalyst design.
Collapse
Affiliation(s)
- Jingting Zhu
- State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen 518060, China.
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China
- SIAMC Advanced Materials Co., Ltd, 313100, Huzhou, China
| | - Yingqian Cen
- State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen 518060, China.
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China
| | - Haibin Ma
- SIAMC Advanced Materials Co., Ltd, 313100, Huzhou, China
| | - Weiguang Lian
- State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen 518060, China.
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China
| | - Jidong Liu
- State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen 518060, China.
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China
| | - Haohui Ou
- State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen 518060, China.
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China
| | - Fangping Ouyang
- School of Physics and Electronics, Central South University, Changsha 410083, China
| | - Lifu Zhang
- State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen 518060, China.
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China
| | - Wenjing Zhang
- State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen 518060, China.
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
12
|
Liu Y, Li L, Meng S, Wang J, Xu Q, Ma P, Wang J, Niu J. Fabrication of Polyoxometalate-Based Metal-Organic Frameworks Integrating Paddlewheel Rh 2(OAc) 4 for Visible-Light-Driven Oxidative Coupling of Amines. Inorg Chem 2023; 62:12954-12964. [PMID: 37531454 DOI: 10.1021/acs.inorgchem.3c01749] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
The development of visible-light-responsive, environmentally friendly, and reusable photocatalysts for organic oxidation reactions is of vital significance. Herein, four polyoxometalate-based metal-organic frameworks (POMOFs) were synthesized and systematically characterized by assembling the paddlewheel complex Rh2(OAc)4 and various polyoxometalates (POMs). Single-crystal X-ray diffraction analysis revealed that the four POMOFs were isomorphic and possessed rare structural features among the POMOFs, with POMs as nodes and Rh2(OAc)4 as linkers. As expected, the activities of the four POMOFs for the photocatalytic oxidative coupling of benzylamine were better than that of Rh2(OAc)4 or POMs individually, which was ascribed to the synergistic effect between them, and the intrinsic reasons for the difference in the activity were explained via electrochemical measurements. In particular, the product imine yield reached 96.1% with NaRh-SiW12 as the catalyst and a turnover number and a turnover frequency of 480.5 and 120.5 h-1, respectively, while the product yield remained as high as 92% after three repetitions, evidencing its high stability. Moreover, the higher activities of the four POMOFs for the selective epoxidation of various alkenes reaffirm the synergistic effect between Rh2(OAc)4 and POMs.
Collapse
Affiliation(s)
- Yanan Liu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, P. R. China
- Puyang Institute of Technology, Henan University, Puyang, Henan 457000, P. R. China
| | - Luoning Li
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Sha Meng
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Jing Wang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Qian Xu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Pengtao Ma
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Jingping Wang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Jingyang Niu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, P. R. China
| |
Collapse
|
13
|
Cheng Y, Sun C, Chang Y, Wu J, Zhang Z, Liu Y, Ge S, Li Z, Li X, Sun L, Zang D. Photoelectrochemical biosensor based on SiW 12@CdS quantum dots for the highly sensitive detection of HPV 16 DNA. Front Bioeng Biotechnol 2023; 11:1193052. [PMID: 37388766 PMCID: PMC10303914 DOI: 10.3389/fbioe.2023.1193052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 06/02/2023] [Indexed: 07/01/2023] Open
Abstract
A highly sensitive biosensor for detecting HPV 16 DNA was prepared based on Keggin-type polyoxometalate (SiW12)-grafted CdS quantum dots (SiW12@CdS QDs) and colloidal gold nanoparticles (Au NPs), which exhibited remarkable selectivity and sensitivity upon target DNA detection because of its excellent photoelectrochemical (PEC) response. Here, an enhanced photoelectronic response ability was achieved with the strong association of SiW12@CdS QDs by polyoxometalate modification, which was developed through a convenient hydrothermal process. Furthermore, on Au NP-modified indium tin oxide slides, a multiple-site tripodal DNA walker sensing platform coupled with T7 exonuclease was successfully fabricated with SiW12@CdS QDs/NP DNA as a probe for detecting HPV 16 DNA. Due to the remarkable conductivity of Au NPs, the photosensitivity of the as-prepared biosensor was improved in an I3-/I- solution and avoided the use of other regents toxic to living organisms. Finally, under optimized conditions, the as-prepared biosensor protocol demonstrated wide linear ranges (15-130 nM), with a limit of detection of 0.8 nM and high selectivity, stability, and reproducibility. Moreover, the proposed PEC biosensor platform offers a reliable pathway for detecting other biological molecules with nano-functional materials.
Collapse
Affiliation(s)
- Yao Cheng
- National Key Laboratory of Advanced Drug Delivery and Release System, NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Key Lab for Rare and Uncommon Diseases of Shandong Province, School of Pharmacy and Pharmaceutical Sciences, Institute of Materia Medica, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Chaoyue Sun
- National Key Laboratory of Advanced Drug Delivery and Release System, NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Key Lab for Rare and Uncommon Diseases of Shandong Province, School of Pharmacy and Pharmaceutical Sciences, Institute of Materia Medica, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan, China
| | - Yuhua Chang
- Shandong Provincial Maternal and Child Healthcare Hospital, Jinan, China
| | - Jiayin Wu
- National Key Laboratory of Advanced Drug Delivery and Release System, NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Key Lab for Rare and Uncommon Diseases of Shandong Province, School of Pharmacy and Pharmaceutical Sciences, Institute of Materia Medica, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Zhihao Zhang
- National Key Laboratory of Advanced Drug Delivery and Release System, NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Key Lab for Rare and Uncommon Diseases of Shandong Province, School of Pharmacy and Pharmaceutical Sciences, Institute of Materia Medica, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Yunqing Liu
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan, China
| | - Shenguang Ge
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan, China
| | - Zhao Li
- Suzhou KunTao Intelligent Manufacturing Technology Co., Ltd., Suzhou, China
| | - Xiao Li
- NMPA Key Laboratory for Quality Evaluation of Medical Materials and Biological Protective Devices, Jinan, China
- Shandong Institute of Medical Device and Pharmaceutical Packaging Inspection, Jinan, China
| | - Liang Sun
- National Key Laboratory of Advanced Drug Delivery and Release System, NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Key Lab for Rare and Uncommon Diseases of Shandong Province, School of Pharmacy and Pharmaceutical Sciences, Institute of Materia Medica, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Dejin Zang
- National Key Laboratory of Advanced Drug Delivery and Release System, NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Key Lab for Rare and Uncommon Diseases of Shandong Province, School of Pharmacy and Pharmaceutical Sciences, Institute of Materia Medica, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
14
|
Su S, Li X, Liu Z, Ding W, Cao Y, Yang Y, Su Q, Luo M. Microchemical environmental regulation of POMs@MIL-101(Cr) promote photocatalytic nitrogen to ammonia. J Colloid Interface Sci 2023; 646:547-554. [PMID: 37210902 DOI: 10.1016/j.jcis.2023.05.069] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 04/28/2023] [Accepted: 05/10/2023] [Indexed: 05/23/2023]
Abstract
The polyoxometalates (POMs) have been shown to be highly effective as reactive sites for photocatalytic nitrogen fixation reactions. However, the effect of POMs regulation on catalytic performance has not been reported yet. Herein, a series of composites (SiW9M3@MIL-101(Cr) (M = Fe, Co, V, Mo) and D-SiW9Mo3@MIL-101(Cr), D, Disordered) were obtained by regulating transition metal compositions and arrangement in the POMs. The ammonia production rate of SiW9Mo3@MIL-101(Cr) is much higher than that of other composites, reaching 185.67 μmol·h-1·g-1cat in N2 without sacrificial agents. The structural characterization of composites reveals that the increase of the electron cloud density of W atom in composites is the key to improve the photocatalytic performance. In this paper, the microchemical environment of POMs was regulated by transition metal doping method, thereby promoting the efficiency of photocatalytic ammonia synthesis for the composites, which provides new insights into the design of POM-based photocatalysts with high catalytic activity.
Collapse
Affiliation(s)
- Senda Su
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Xiaoman Li
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, Ningxia 750021, China.
| | - Zhenyu Liu
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Wenming Ding
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Yue Cao
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Yang Yang
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Qin Su
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Min Luo
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, Ningxia 750021, China.
| |
Collapse
|
15
|
Ding W, Li X, Su S, Liu Z, Cao Y, Meng L, Yuan S, Wei W, Luo M. Cationic vacancy engineering of p-TiO 2 for enhanced photocatalytic nitrogen fixation. NANOSCALE 2023; 15:4014-4021. [PMID: 36727644 DOI: 10.1039/d2nr06821d] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Defect engineering is one of the effective strategies to regulate and control catalyst properties. Constructing appropriate catalytically active centers effectively tunes the electronic and surface properties of the catalyst to achieve further enrichment of photogenerated electrons, enhances the electronic feedback of the catalytically active center to the anti-bonding orbitals of the nitrogen molecule, and enhances N2 adsorption while weakening the NN bond. In this study, titanium vacancy (VTi)-rich undoped anatase p-TiO2 was successfully synthesized to investigate the effect of its metal vacancies on photocatalytic nitrogen reduction reaction (NRR) performance. The cation vacancies of VTi-rich p-TiO2 lead to local charge defects that enhance carrier separation and transport while trapping electrons to activate N2, allowing effective reduction of the excited electrons to NH3. This work provides a viable strategy for driving the efficiency of photocatalytic nitrogen fixation processes by altering the structural properties of semiconductors through cationic vacancies, offering new opportunities and challenges for the design and preparation of titanium dioxide-based materials.
Collapse
Affiliation(s)
- Wenming Ding
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, Ningxia 750021, PR China.
| | - Xiaoman Li
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, Ningxia 750021, PR China.
| | - Senda Su
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, Ningxia 750021, PR China.
| | - Zhenyu Liu
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, Ningxia 750021, PR China.
| | - Yue Cao
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, Ningxia 750021, PR China.
| | - Linghu Meng
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, Ningxia 750021, PR China.
| | - Shengbo Yuan
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, Ningxia 750021, PR China.
| | - Wenhui Wei
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, Ningxia 750021, PR China.
| | - Min Luo
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, Ningxia 750021, PR China.
| |
Collapse
|
16
|
Epoxidation of Fatty Acid Methyl Esters with Hydrogen Peroxide Catalyzed by Peroxopolyoxotungstate PW4 Encapsulated in the MIL-100(Cr) Framework. Catalysts 2023. [DOI: 10.3390/catal13010138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The MIL-100(Cr), PW12@MIL-100(Cr) and PW4@MIL-100(Cr) catalysts were prepared and characterized through XRD, FTIR, BET, SEM, EDS and Raman spectroscopy. A comparison of the catalytic properties of the synthesized materials in the epoxidation of FAMEs with hydrogen peroxide was made. The PW4@MIL-100(Cr) catalyst exhibited the highest catalytic activity and provided a high selectivity for the formation of epoxides. The effects of the reaction temperature, catalyst loading, reaction time and FAME:hydrogen peroxide molar ratio on the reaction performance were investigated, and the optimal process conditions were determined. An epoxide yield of 73% with a selectivity of 77% could be obtained using PW4@MIL-100(Cr) after 4 h at 40 °C. The catalytic stability test showed that PW4@MIL-100(Cr) could be easily separated and reused without any treatment for at least five consecutive cycles without a loss of activity or selectivity.
Collapse
|
17
|
Pan Y, Sanati S, Nadafan M, Abazari R, Gao J, Kirillov AM. Postsynthetic Modification of NU-1000 for Designing a Polyoxometalate-Containing Nanocomposite with Enhanced Third-Order Nonlinear Optical Performance. Inorg Chem 2022; 61:18873-18882. [PMID: 36375112 PMCID: PMC9775467 DOI: 10.1021/acs.inorgchem.2c02709] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
For the advancement of laser technologies and optical engineering, various types of new inorganic and organic materials are emerging. Metal-organic frameworks (MOFs) reveal a promising use in nonlinear optics, given the presence of organic linkers, metal cluster nodes, and possible delocalization of π-electron systems. These properties can be further enhanced by the inclusion of solely inorganic materials such as polyoxometalates as prospective low-cost electron-acceptor species. In this study, a novel hybrid nanocomposite, namely, SiW12@NU-1000 composed of SiW12 (H4SiW12O40) and Zr-based MOF (NU-1000), was assembled, completely characterized, and thoroughly investigated in terms of its nonlinear optical (NLO) performance. The third-order NLO behavior of the developed system was assessed by Z-scan measurements using a 532 nm laser. The effect of two-photon absorption and self-focusing was significant in both NU-1000 and SiW12@NU-1000. Experimental studies suggested a much superior NLO performance of SiW12@NU-1000 if compared to that of NU-1000, which can be assigned to the charge-energy transfer between SiW12 and NU-1000. Negligible light scattering, good stability, and facile postsynthetic fabrication method can promote the applicability of the SiW12@NU-1000 nanocomposite for various optoelectronic purposes. This research may thus open new horizons to improve and enhance the NLO performance of MOF-based materials through π-electron delocalization and compositing metal-organic networks with inorganic molecules as electron acceptors, paving the way for the generation of novel types of hybrid materials for prospective NLO applications.
Collapse
Affiliation(s)
- Yangdan Pan
- The
Key Laboratory of Advanced Textile Materials and Manufacturing Technology
of Ministry of Education, National Engineering Lab for Textile Fiber
Materials and Processing Technology, School of Materials Science and
Engineering, Zhejiang Sci-Tech University, Hangzhou310018, China
| | - Soheila Sanati
- Department
of Chemistry, Faculty of Science, University
of Maragheh, 55181-83111Maragheh, Iran
| | - Marzieh Nadafan
- Department
of Physics, Shahid Rajaee Teacher Training
University, 16788-15811Tehran, Iran
| | - Reza Abazari
- Department
of Chemistry, Faculty of Science, University
of Maragheh, 55181-83111Maragheh, Iran,
| | - Junkuo Gao
- The
Key Laboratory of Advanced Textile Materials and Manufacturing Technology
of Ministry of Education, National Engineering Lab for Textile Fiber
Materials and Processing Technology, School of Materials Science and
Engineering, Zhejiang Sci-Tech University, Hangzhou310018, China,
| | - Alexander M. Kirillov
- Centro
de Química Estrutural, Institute of Molecular Sciences, Departamento
de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001Lisbon, Portugal,
| |
Collapse
|
18
|
Recent advances in metal–organic frameworks and their derivatives for electrocatalytic nitrogen reduction to ammonia. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
19
|
Hui X, Wang L, Yao Z, Hao L, Sun Z. Recent progress of photocatalysts based on tungsten and related metals for nitrogen reduction to ammonia. Front Chem 2022; 10:978078. [PMID: 36072702 PMCID: PMC9441816 DOI: 10.3389/fchem.2022.978078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 07/15/2022] [Indexed: 11/22/2022] Open
Abstract
Photocatalytic nitrogen reduction reaction (NRR) to ammonia holds a great promise for substituting the traditional energy-intensive Haber–Bosch process, which entails sunlight as an inexhaustible resource and water as a hydrogen source under mild conditions. Remarkable progress has been achieved regarding the activation and solar conversion of N2 to NH3 with the rapid development of emerging photocatalysts, but it still suffers from low efficiency. A comprehensive review on photocatalysts covering tungsten and related metals as well as their broad ranges of alloys and compounds is lacking. This article aims to summarize recent advances in this regard, focusing on the strategies to enhance the photocatalytic performance of tungsten and related metal semiconductors for the NRR. The fundamentals of solar-to-NH3 photocatalysis, reaction pathways, and NH3 quantification methods are presented, and the concomitant challenges are also revealed. Finally, we cast insights into the future development of sustainable NH3 production, and highlight some potential directions for further research in this vibrant field.
Collapse
Affiliation(s)
| | | | | | | | - Zhenyu Sun
- *Correspondence: Leiduan Hao, ; Zhenyu Sun,
| |
Collapse
|