1
|
Ahmed MA, Mahmoud SA, Mohamed AA. Interfacially engineered metal oxide nanocomposites for enhanced photocatalytic degradation of pollutants and energy applications. RSC Adv 2025; 15:15561-15603. [PMID: 40365192 PMCID: PMC12068376 DOI: 10.1039/d4ra08780a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Accepted: 04/14/2025] [Indexed: 05/15/2025] Open
Abstract
Escalating global energy demands and environmental pollution necessitate innovative solutions for sustainable development. Conventional methods often prove inadequate, driving research towards advanced materials and technologies. This review critically analyzes existing industrial wastewater treatment approaches, highlighting their merits and limitations, before focusing on the recent advancements in metal oxide-based nanocomposite photocatalysis for both pollutant degradation and energy generation. Moreover, the structural, electronic, and optical properties of metal oxides (MOx) are elucidated. The review discusses various MOx synthesis routes and their nanocomposites and elucidates the underlying photocatalytic mechanisms, emphasizing the influence of operational parameters on photocatalytic efficiency. Moreover, it explores how MOx can be utilized for photocatalytic energy generation, in addition to their role in pollutant degradation. Furthermore, it delves into the synergistic effects achieved by combining MOx with complementary nanomaterials (carbon-based structures, polymers, non-metals, semiconductors, and metal sulfides) to create hybrid nanocomposites with enhanced photocatalytic activity for both applications. A cost analysis and SWOT analysis are presented to assess the economic and technological feasibility of this trend. This comprehensive overview provides valuable insights for developing efficient, sustainable, and scalable wastewater treatment solutions using MOx-based nanocomposites, ultimately contributing to improved environmental remediation and water resource management while simultaneously exploring opportunities for energy production.
Collapse
Affiliation(s)
- Mahmoud A Ahmed
- Chemistry Department, Faculty of Science, Ain Shams University Cairo-11566 Egypt
| | - Safwat A Mahmoud
- Center for Scientific Research and Entrepreneurship, Northern Border University Arar 73213 Saudi Arabia
| | - Ashraf A Mohamed
- Chemistry Department, Faculty of Science, Ain Shams University Cairo-11566 Egypt
| |
Collapse
|
2
|
Liu X, Zhang Y, Zhang W, Cheng G, Tian F, Li W, Xiong J. Type II/Schottky heterojunctions-triggered multi-channels charge transfer in Pd-TiO 2-Cu 2O hybrid promotes photocatalytic hydrogen production. J Colloid Interface Sci 2025; 685:173-185. [PMID: 39842307 DOI: 10.1016/j.jcis.2025.01.091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 01/10/2025] [Accepted: 01/12/2025] [Indexed: 01/24/2025]
Abstract
Rapid charge recombination, limited light response, and slow surface reactions were observed in the photocatalysts, thereby limiting their future-oriented applications in photocatalytic hydrogen production through water splitting. Constructing a multi-channel charge separation photocatalysis system could solve those questions. In this study, Pd-TiO2-Cu2O composites were successfully accomplished via a facile chemical reduction method. The Pd-TiO2-Cu2O composite exhibited improved photocatalytic hydrogen production (13069.7 μmolg-1h-1), which was over 6 times as much as that of pure TiO2. Based on the photo/electrochemical measurements, it was proposed that a Type II heterojunction was formed at the TiO2-Cu2O interface under light irradiation, and concurrently, a Schottky barrier was established between Pd and TiO2. Accordingly, the Type II heterojunction-created built-in electric field would facilitate the separation of photogenerated charges. Simultaneously, the introduction of Pd accelerates the accumulation of electrons and further enhances the charge transfer rate. The combination of such a Type II heterojunction and Schottky junction synergistically created a multi-channel charge separation system, optimizing surface reactions and thus improving photocatalytic efficiency. This work provided a rational approach for building efficient multi-component photocatalysis systems featuring Type II heterojunction/Schottky junction for photocatalytic hydrogen evolution.
Collapse
Affiliation(s)
- Xiao Liu
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Donghu New & High Technology Development Zone, Wuhan 430205, PR China
| | - Yanjun Zhang
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Donghu New & High Technology Development Zone, Wuhan 430205, PR China
| | - Wuxia Zhang
- College of Chemistry and Chemical Engineering, Hubei Key Laboratory of Biomass Fibers and Ecodyeing & Finishing, Wuhan Textile University, Wuhan 430200, PR China
| | - Gang Cheng
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Donghu New & High Technology Development Zone, Wuhan 430205, PR China.
| | - Fan Tian
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Donghu New & High Technology Development Zone, Wuhan 430205, PR China
| | - Wei Li
- College of Chemistry and Chemical Engineering, Hubei Key Laboratory of Biomass Fibers and Ecodyeing & Finishing, Wuhan Textile University, Wuhan 430200, PR China
| | - Jinyan Xiong
- College of Chemistry and Chemical Engineering, Hubei Key Laboratory of Biomass Fibers and Ecodyeing & Finishing, Wuhan Textile University, Wuhan 430200, PR China.
| |
Collapse
|
3
|
Chen G, Zhang C, Shi X, Tian K, Chen M, Wang Z, An P, Zhang J, Li Y, Liu SF, Lee ST, Yan J. In 2S 3-BaTiO 3 S-Type Heterojunction Photocatalyst for Efficient Antibiotic Degradation and Hydrogen Generation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2412631. [PMID: 40270315 DOI: 10.1002/smll.202412631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 04/01/2025] [Indexed: 04/25/2025]
Abstract
Quinolone antibiotics, particularly moxifloxacin (MOX), are increasingly contaminating aquatic ecosystems, posing significant threats to both the environment and human health. Due to its hydrophilicity and stability, traditional water treatment methods are ineffective in degrading MOX. In this study, a novel S-type heterojunction photocatalyst, In-Ba-10, is introduced which combines barium titanate (BaTiO3) and indium sulfide (In2S3) to address this challenge. The In-Ba-10 catalyst demonstrates excellent photocatalytic performance, with a hydrogen production rate of 2050 µmol g-1 h-1 and a MOX degradation rate constant (k) of 0.049 min-1. Compared to BaTiO3 alone, the performance is enhanced by 48- and 49-fold, respectively. Comprehensive characterization, including Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and electron microscopy, reveals that the S-type heterojunction effectively promotes charge separation and transfer, reduces electron-hole recombination, and improves catalytic efficiency. First-principles calculations further confirm the role of In2S3 as the reduction site and BaTiO3 as the oxidation site. In addition to its high activity, In2S3-BaTiO3 shows stability over multiple cycles, making it a promising candidate for sustainable wastewater treatment. This study highlights the potential of S-type heterojunction photocatalysts for sustainable environmental remediation and energy applications.
Collapse
Affiliation(s)
- Guilin Chen
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, Shaanxi, 710119, P. R. China
| | - Changle Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Xintong Shi
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, Shaanxi, 710119, P. R. China
| | - Kaige Tian
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, Shaanxi, 710119, P. R. China
| | - Mingjun Chen
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, Shaanxi, 710119, P. R. China
| | - Zhennan Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, Shaanxi, 710119, P. R. China
| | - Pengfei An
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jing Zhang
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Youyong Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Shengzhong Frank Liu
- Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, P. R. China
| | - Shuit-Tong Lee
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Junqing Yan
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, Shaanxi, 710119, P. R. China
| |
Collapse
|
4
|
Zhang G, Fu G, Lv T, Liu W, Han X, Yi J. A regulated TiO 2@NC@ZCS photocatalyst for efficient hydrogen evolution: insights into the role of carbon layer positioning. Chem Commun (Camb) 2025; 61:4987-4990. [PMID: 40052366 DOI: 10.1039/d5cc00340g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
In this study, a TiO2@NC@ZCS ternary photocatalyst with a well-defined hexahedral morphology was synthesized via MOF-derived pyrolysis and sulfidation methods, and its photocatalytic hydrogen production performance was thoroughly investigated. The results demonstrated that the unique interface design of TiO2@NC@ZCS significantly enhanced light absorption, charge separation, and catalytic performance, achieving a remarkable hydrogen evolution rate of 10.244 mmol g-1 h-1. Comparative studies revealed that the precise placement of the carbon layer (NC) at the interface between TiO2 and ZCS was critical for efficient charge transfer and uniform distribution of active sites, whereas samples with NC coating the ZCS surface exhibited significantly reduced charge separation efficiency and catalytic activity.
Collapse
Affiliation(s)
- Guoxiang Zhang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China.
| | - Guangwen Fu
- China Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Material Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China.
| | - Tiaolong Lv
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China.
| | - Wei Liu
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China.
| | - Xiguang Han
- China Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Material Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China.
| | - Jianjian Yi
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China.
| |
Collapse
|
5
|
Chen L, Lei Y, Yang Y, Huang J, Zhang W, Hoong Ng K, Lai Y. Metal organic framework-assisted copper-modified titania (Cu/TiO 2) with abundant exposed active sites and highly accessible pore channels for an enhanced photo-generation of hydrogen. J Colloid Interface Sci 2025; 677:647-656. [PMID: 39159519 DOI: 10.1016/j.jcis.2024.08.081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 08/06/2024] [Accepted: 08/12/2024] [Indexed: 08/21/2024]
Abstract
Metal-doping is a common strategy for establishing active sites on photocatalyst, but appropriately exposing them for maximized atomic utilization remains a great challenge in photocatalytic research. Herein, we propose a metal organic framework (MOF)-assisted approach to synthesis copper-modified titania (Cu-TiO2/Cu) photocatalyst with homogenously distributed and highly accessible active sites in its matrix. Significantly, an MOF precursor, namely NH2-MIL-125, with co-chelation of titania (Ti) and copper (Cu) was subjected to mild calcination, subsequently results in Cu-modified TiO2 with highly accessible channels to its inner surface. These channels provide not only a large reactive surface (>400 m2 g-1); they also enable facile modifying route for the pre-deposited Cu in prior to photoreaction. Specifically, NH3 treatment was applied to partially reduce deposited Cu ions (Cu+ and Cu2+) into Cu nanoparticles, where their interplays realize improved optical properties and charge separation during photoreactions. Furthermore, the NH3-induced Cu nanoparticles could also serve as the adsorptive site for H+, thereby enabling 5629 μmol h-1 g-1 H2 generation over the optimum photocatalyst of Cu20/TiO2/Cu500. Such performance is associated to 35.44 and 1.71-fold improvements compared to pure TiO2 (Cu0/TiO2) and untreated Cu-ion modified TiO2 (Cu20/TiO2), respectively. This work offers a new synthetic strategy for obtaining photocatalyst with evenly distributed and highly accessible active sites, thus improving the commensurability of photocatalytic H2 generation from the industrial perspective.
Collapse
Affiliation(s)
- Lejun Chen
- College of Chemical Engineering, Fuzhou University, Fuzhou 350116, PR China; Qingyuan Innovation Laboratory, Quanzhou 362801, PR China
| | - Yonggang Lei
- College of Chemistry and Chemical Engineering, Hexi University, Zhangye 734000, PR China
| | - Yue Yang
- College of Chemical Engineering, Fuzhou University, Fuzhou 350116, PR China
| | - Jianying Huang
- College of Chemical Engineering, Fuzhou University, Fuzhou 350116, PR China; Qingyuan Innovation Laboratory, Quanzhou 362801, PR China.
| | - Weiying Zhang
- College of Chemical Engineering, Fuzhou University, Fuzhou 350116, PR China
| | - Kim Hoong Ng
- Department of Chemical Engineering, Ming Chi University of Technology, New Taipei 24301, Taiwan.
| | - Yuekun Lai
- College of Chemical Engineering, Fuzhou University, Fuzhou 350116, PR China; Qingyuan Innovation Laboratory, Quanzhou 362801, PR China.
| |
Collapse
|
6
|
Lin YY, Liu FY, Chen IC, Tsai HY, Huang JW, Lin JH, Chen CC. Photocatalytic reduction of carbon dioxide by BiTeX (X = Cl, Br, I) under visible-light irradiation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 365:121536. [PMID: 38909577 DOI: 10.1016/j.jenvman.2024.121536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/15/2024] [Accepted: 06/17/2024] [Indexed: 06/25/2024]
Abstract
In this study, a series of BiTeX (X = Cl, Br, I) photocatalysts were successfully synthesized via a simple hydrothermal method. The synthesis process involved dissolving BiX3 and Te powder in toluene to identify the most efficient material for photocatalytic activity. The main objective of this approach is to facilitate the conversion of carbon dioxide into sustainable solar fuels, such as alcohols and hydrocarbons, offering an appealing solution to address environmental concerns and energy crises. The BiTeX photocatalysts demonstrated significant proficiency in converting CO2 into CH4, particularly BiTeCl exhibited a notable photocatalytic conversion rate of up to 0.51 μmolg-1h-1. The optimized BiTeX photocatalysts displayed a gradual and selective transition from CO2 to CH4, ultimately producing valuable hydrocarbons (C2+). Furthermore, owing to their ability to reduce CO2, these photocatalysts show promise as materials for mitigating environmental pollution.
Collapse
Affiliation(s)
- Yu-Yun Lin
- Department of Science Education and Application, National Taichung University of Education, Taichung, 403, Taiwan
| | - Fu-Yu Liu
- Department of Science Education and Application, National Taichung University of Education, Taichung, 403, Taiwan; Department of Chemistry, National Tsing Hua University, Hsinchu, 300, Taiwan
| | - I-Chia Chen
- Department of Chemistry, National Tsing Hua University, Hsinchu, 300, Taiwan
| | - Hwei-Yan Tsai
- Department of Medical Applied Chemistry, Chung Shan Medical University, Taichung, 402, Taiwan; Department of Medical Education, Chung Shan Medical University Hospital, Taichung, 402, Taiwan
| | - Jhen-Wei Huang
- Department of Medical Applied Chemistry, Chung Shan Medical University, Taichung, 402, Taiwan
| | - Jia-Hao Lin
- Department of Science Education and Application, National Taichung University of Education, Taichung, 403, Taiwan
| | - Chiing-Chang Chen
- Department of Science Education and Application, National Taichung University of Education, Taichung, 403, Taiwan.
| |
Collapse
|
7
|
Li Y, Zhang Y, Zhang C, Deng L, Li S, Zhuang C. Self-healing of oxygen vacancies and phase transition-induced built-in electric field regulate H 2 and H 2O 2 production. J Colloid Interface Sci 2024; 655:12-22. [PMID: 37924587 DOI: 10.1016/j.jcis.2023.10.090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/16/2023] [Accepted: 10/18/2023] [Indexed: 11/06/2023]
Abstract
Oxygen vacancies in photocatalysts are an important parameter for improving their catalytic activities. However, this study found that oxygen vacancies do not always help with photocatalytic properties. MXene nanosheets were annealed at different temperatures to prepare nanosheets of titanium dioxide (TiO2) with anatase or rutile phase. Photo-induced self-healing of oxygen vacancies in MXene nanosheets annealed at 400 °C promoted the efficient photocatalytic evolution of hydrogen (H2) with a ∼ 6.8 mmol/g optimized yield. In contrast, the photo-induced increase of oxygen vacancies in MXene nanosheets annealed at 500 °C corresponded to an optimized ∼ 1.8 mmol/g/h yield of hydrogen peroxide (H2O2). Spectroscopic and electrochemical methods revealed that the built-in electric field between the anatase and rutile TiO2 facilitated the fast charge separation from the anatase to rutile TiO2. The photo-induced self-healing of oxygen vacancies and the phase transition-induced built-in electric field regulated the photocatalytic selectivity of H2 and H2O2 production.
Collapse
Affiliation(s)
- Yuanli Li
- Institute of Microstructure and Property of Advanced Materials, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China
| | - Yihong Zhang
- Institute of Microstructure and Property of Advanced Materials, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China
| | - Can Zhang
- Institute of Microstructure and Property of Advanced Materials, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China
| | - Lichun Deng
- Institute of Microstructure and Property of Advanced Materials, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China
| | - Shijie Li
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan, Zhejiang Province 316022, China.
| | - Chunqiang Zhuang
- Institute of Microstructure and Property of Advanced Materials, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China.
| |
Collapse
|
8
|
Liu W, Xiong Y, Liu Q, Chang X, Tian J. The construction of S-scheme heterostructure in ultrathin WS 2/Zn 3In 2S 6 nanosheets for enhanced photocatalytic hydrogen evolution. J Colloid Interface Sci 2023; 651:633-644. [PMID: 37562305 DOI: 10.1016/j.jcis.2023.07.200] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/04/2023] [Accepted: 07/30/2023] [Indexed: 08/12/2023]
Abstract
Metal sulfide based photocatalysts are considered to be economic, environmentally benign and renewable. The rapid recombination of photogenerated electrons and holes and low solar energy utilization efficiency, however, remain a huge bottleneck. Herein, two-dimensional/two-dimensional (2D/2D) S-scheme WS2/Zn3In2S6 heterostructure with ultrathin nanosheets intervening between neighboring component has been designed. The large and intimate S-scheme heterojunctions facilitate interfacial charge separation/transfer and optimize the available redox potential. Besides, the ultrathin 2D/2D heterostructure ensures large specific surface area, maximized interface synergistic interaction, and effective exposure of surface active sites. As a result, 2 wt% WS2/Zn3In2S6 exhibits a high photocatalytic hydrogen production rate of 30.21 mmol·g-1·h-1 under simulated solar light illumination with an apparent quantum efficiency of 56.1% at 370 nm monochromatic light, far exceeding pristine Zn3In2S6 (6.65 mmol·g-1·h-1). Our work underscores the significance of integrating morphology engineering and S-scheme heterojunctions design for high-efficient and low-cost photocatalysts.
Collapse
Affiliation(s)
- Wendi Liu
- School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, Shandong, PR China
| | - Ya Xiong
- School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, Shandong, PR China.
| | - Qian Liu
- School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, Shandong, PR China
| | - Xiao Chang
- College of Physics, Qingdao University, Qingdao 266071, Shandong, PR China
| | - Jian Tian
- School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, Shandong, PR China.
| |
Collapse
|
9
|
Shenoy S, Chuaicham C, Shanmugam M, Okumura T, Balijapalli U, Li W, Balakumar V, Sasaki K, Sekar K. Tailoring Interfacial Physicochemical Properties in Cu 2O-TiO 2@rGO Heterojunction: Insights from EXAFS and Electron Trap Distribution Analysis. ACS APPLIED MATERIALS & INTERFACES 2023; 15:54105-54118. [PMID: 37948059 DOI: 10.1021/acsami.3c12130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
In this study, a solution-based synthesis technique was utilized to produce Cu2O nanoparticles (NPs) on TiO2 nanofibers (TNF), which were then subsequently coated with reduced graphene oxide (rGO) nanosheets. In the absence of any cocatalyst, CTNF@rGO-3% composite displayed an ideal photocatalytic H2 evolution rate of 96 μmol g-1 h-1 under visible light irradiation, this was 10 times higher than that of pure TNF. At 420 nm, the apparent quantum efficiency of this composite reached a maximum of 7.18%. Kelvin probe force microscopy demonstrated the formation of an interfacial electric field that was oriented from CTNF to rGO and served as the driving force for interfacial electron transfer. The successful establishment of an intimate interface between CTNF@rGO facilitated the efficient transfer of charges and suppressed the rate of recombination of photogenerated electron-hole pairs, leading to a substantial enhancement in photocatalytic performance. X-ray photoelectron spectroscopy, photoluminescence spectra, and electrochemical characterization provide further confirmation that formation of a heterojunction between CTNF@rGO leads to an extension in the lifetimes of the photogenerated charge carriers. The experimental evidence suggests that a p-n heterojunction is the mechanism responsible for the significant photocatalytic activity observed in the CTNF@rGO composite during H2 evolution.
Collapse
Affiliation(s)
- Sulakshana Shenoy
- Department of Earth Resources Engineering, Kyushu University, Fukuoka 819-0395, Japan
| | - Chitiphon Chuaicham
- Department of Earth Resources Engineering, Kyushu University, Fukuoka 819-0395, Japan
| | - Mariyappan Shanmugam
- Sustainable Energy and Environmental Research Laboratory, Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Takamasa Okumura
- Faculty of Information Science and Electrical Engineering, Kyushu University, Fukuoka 819-035, Japan
| | - Umamahesh Balijapalli
- Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, 744 Motooka, Nishiku, Fukuoka 819-0395, Japan
| | - Wei Li
- School of Engineering, Institute for Materials & Processes, The University of Edinburgh, Robert Stevenson Road, Edinburgh EH9 3FB, United Kingdom
| | - Vellaichamy Balakumar
- Department of Chemistry, Sri Ramakrishna College of Arts & Science, Coimbatore 641006, Tamil Nadu, India
| | - Keiko Sasaki
- Department of Earth Resources Engineering, Kyushu University, Fukuoka 819-0395, Japan
| | - Karthikeyan Sekar
- Sustainable Energy and Environmental Research Laboratory, Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| |
Collapse
|
10
|
Geng L, Li W, Dong M, Ma X, Khan A, Li Y, Li M. Synergistic effect of excellent carriers separation and efficient high level energy electron utilization on Bi 3+-Ce 2Ti 2O 7/ZnIn 2S 4 heterostructure for photocatalytic hydrogen production. J Colloid Interface Sci 2023; 650:2035-2048. [PMID: 37541023 DOI: 10.1016/j.jcis.2023.07.164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/21/2023] [Accepted: 07/26/2023] [Indexed: 08/06/2023]
Abstract
The separation of photogenerated carriers and the efficient utilization of high-level energy electrons (HLEEs) are the key processes for improving the performance of photocatalysts. Herein, Ce2Ti2O7/ZnIn2S4 (CTOZIS) and Bi3+-doped Ce2Ti2O7/ZnIn2S4 (BCTOZIS) photocatalyst were successfully synthesized through hydrothermal method. The photocatalytic hydrogen production of CTOZIS and BCTOZIS was 1233.7 μmol g-1 and 4168.5 μmol g-1 under visible light irradiation (λ ≥ 420 nm) within 5 h, which was 2.3 and 7.6 times than that of pure ZnIn2S4, respectively. X-ray photoelectron spectroscopy, photoluminescence spectroscopy and electrochemical characterization demonstrated that after Bi3+ doping, the electron-hole pairs recombination of BCTOZIS was inhibited, which may be ascribed to the establishment of a Z-scheme heterojunction and the presence of oxygen vacancy and Ce4+/Ce3+ redox center. The doping of Bi3+ resulted in the adjustment of the valence band position of Ce2Ti2O7 from 1.98 V to 1.92 V. This adjustment enabled direct transfer of HLEEs generated in Ce2Ti2O7 to the conduction band of ZnIn2S4 for hydrogen production with a wavelength below 423 nm. The synergistic effect of conventional Z-scheme electron transfer and the unique utilization of HLEEs boosted the photocatalytic performance of BCTOZIS. This study affords an innovative insight for designing visible-light-driven photocatalysts with high photocatalytic activity.
Collapse
Affiliation(s)
- Liang Geng
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, University of Science and Technology Beijing, Beijing 100083, China
| | - Wenjun Li
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, University of Science and Technology Beijing, Beijing 100083, China.
| | - Mei Dong
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, University of Science and Technology Beijing, Beijing 100083, China
| | - Xiaohui Ma
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, University of Science and Technology Beijing, Beijing 100083, China
| | - Ajmal Khan
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, University of Science and Technology Beijing, Beijing 100083, China
| | - Yanyan Li
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, University of Science and Technology Beijing, Beijing 100083, China
| | - Mengchao Li
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
11
|
Su Q, Zuo C, Liu M, Tai X. A Review on Cu 2O-Based Composites in Photocatalysis: Synthesis, Modification, and Applications. Molecules 2023; 28:5576. [PMID: 37513448 PMCID: PMC10384216 DOI: 10.3390/molecules28145576] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
Photocatalysis technology has the advantages of being green, clean, and environmentally friendly, and has been widely used in CO2 reduction, hydrolytic hydrogen production, and the degradation of pollutants in water. Cu2O has the advantages of abundant reserves, a low cost, and environmental friendliness. Based on the narrow bandgap and strong visible light absorption ability of Cu2O, Cu2O-based composite materials show infinite development potential in photocatalysis. However, in practical large-scale applications, Cu2O-based composites still pose some urgent problems that need to be solved, such as the high composite rate of photogenerated carriers, and poor photocatalytic activity. This paper introduces a series of Cu2O-based composites, based on recent reports, including pure Cu2O and Cu2O hybrid materials. The modification strategies of photocatalysts, critical physical and chemical parameters of photocatalytic reactions, and the mechanism for the synergistic improvement of photocatalytic performance are investigated and explored. In addition, the application and photocatalytic performance of Cu2O-based photocatalysts in CO2 photoreduction, hydrogen production, and water pollution treatment are discussed and evaluated. Finally, the current challenges and development prospects are pointed out, to provide guidance in applying Cu2O-based catalysts in renewable energy utilization and environmental protection.
Collapse
Affiliation(s)
- Qian Su
- College of Chemistry & Chemical and Environmental Engineering, Weifang University, Weifang 261061, China
| | - Cheng Zuo
- College of Chemistry & Chemical and Environmental Engineering, Weifang University, Weifang 261061, China
| | - Meifang Liu
- College of Chemistry & Chemical and Environmental Engineering, Weifang University, Weifang 261061, China
| | - Xishi Tai
- College of Chemistry & Chemical and Environmental Engineering, Weifang University, Weifang 261061, China
| |
Collapse
|
12
|
Chen X, Xu Z, Chen J, Yao L, Xie W, He J, Li N, Li J, Xu S, Zhu Y, Chen X, Zhu R. Continuous surface Z-Scheme and Schottky heterojunction Au/La2Ti2O7/Ag3PO4 catalyst with boosted charge separation through dual channels for excellent photocatalysis: Highlight influence factors regulation and catalytic system applicability. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
13
|
Chen Z, Zhu X, Xiong J, Wen Z, Cheng G. A p-n Junction by Coupling Amine-Enriched Brookite-TiO 2 Nanorods with Cu xS Nanoparticles for Improved Photocatalytic CO 2 Reduction. MATERIALS (BASEL, SWITZERLAND) 2023; 16:960. [PMID: 36769965 PMCID: PMC9918986 DOI: 10.3390/ma16030960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/14/2023] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
Photocatalytic CO2 reduction is a promising technology for reaching the aim of "carbon peaking and carbon neutrality", and it is crucial to design efficient photocatalysts with a rational surface and interface tailoring. Considering that amine modification on the surface of the photocatalyst could offer a favorable impact on the adsorption and activation of CO2, in this work, amine-modified brookite TiO2 nanorods (NH2-B-TiO2) coupled with CuxS (NH2-B-TiO2-CuxS) were effectively fabricated via a facile refluxing method. The formation of a p-n junction at the interface between the NH2-B-TiO2 and the CuxS could facilitate the separation and transfer of photogenerated carriers. Consequently, under light irradiation for 4 h, when the CuxS content is 16%, the maximum performance for conversion of CO2 to CH4 reaches at a rate of 3.34 μmol g-1 h-1 in the NH2-B-TiO2-CuxS composite, which is approximately 4 times greater than that of pure NH2-B-TiO2. It is hoped that this work could deliver an approach to construct an amine-enriched p-n junction for efficient CO2 photoreduction.
Collapse
Affiliation(s)
- Zhangjing Chen
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Donghu New & High Technology Development Zone, Wuhan 430205, China
| | - Xueteng Zhu
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Donghu New & High Technology Development Zone, Wuhan 430205, China
| | - Jinyan Xiong
- College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Zhipan Wen
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China
| | - Gang Cheng
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Donghu New & High Technology Development Zone, Wuhan 430205, China
| |
Collapse
|
14
|
Fast photocatalytic oxidation of ciprofloxacin over Co3O4@CeO2 heterojunctions under visible-light. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2022.104563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Yang G, Xiong J, Lu M, Wang W, Li W, Wen Z, Li S, Li W, Chen R, Cheng G. Co-embedding oxygen vacancy and copper particles into titanium-based oxides (TiO 2, BaTiO 3, and SrTiO 3) nanoassembly for enhanced CO 2 photoreduction through surface/interface synergy. J Colloid Interface Sci 2022; 624:348-361. [PMID: 35660903 DOI: 10.1016/j.jcis.2022.05.092] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 05/14/2022] [Accepted: 05/16/2022] [Indexed: 10/18/2022]
Abstract
Photocatalytic CO2 reduction into valuable fuel and chemical production has been regarded as a prospective strategy for tackling with the issues of the increasing of greenhouse gases and shortage of sustainable energy. A composite photocatalysis system employing a semiconductor enriched with oxygen vacancy and coupled with metallic cocatalyst can facilitate charge separation and transfer electrons. In this work, mesoporous TiO2 and titanium-based perovskite oxides (BaTiO3 and SrTiO3) nanoparticle assembly incorporated with abundant oxygen vacancy and copper particles have been successfully synthesized for CO2 photoreduction. As an example, the TiO2 decorated with different amounts of Cu particles has an impact on photocatalytic CO2 reduction into CH4 and CO. Particularly, the optimal TiO2/Cu-0.1 exhibits nearly 13.5 times higher CH4 yield (22.27 μmol g-1 h-1) than that of pristine TiO2 (1.65 μmol g-1 h-1). The as-obtained BaTiO3/Cu-0.1 and SrTiO3/Cu-0.1 also show enhanced CH4 yields towards photocatalytic CO2 reduction compared with pristine ones. Based on the temperature programmed desorption (TPD) and photo/electrochemical measurements, the co-embedding of Cu particles and abundant oxygen vacancy into the titanium-based oxides could promote CO2 adsorption capacity as well as separation and transfer of photoinduced electron-hole pairs, and finally result in efficient CO2 photoreduction upon the TiO2/Cu, SrTiO3/Cu, and BaTiO3/Cu composites.
Collapse
Affiliation(s)
- Ge Yang
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Donghu New & High Technology Development Zone, Wuhan 430205, PR China
| | - Jinyan Xiong
- College of Chemistry and Chemical Engineering, Hubei Key Laboratory of Biomass Fibers and Ecodyeing & Finishing, Wuhan Textile University, Wuhan 430200, PR China.
| | - Mengjie Lu
- College of Chemistry and Chemical Engineering, Hubei Key Laboratory of Biomass Fibers and Ecodyeing & Finishing, Wuhan Textile University, Wuhan 430200, PR China
| | - Weiming Wang
- College of Chemistry and Chemical Engineering, Hubei Key Laboratory of Biomass Fibers and Ecodyeing & Finishing, Wuhan Textile University, Wuhan 430200, PR China
| | - Wei Li
- College of Chemistry and Chemical Engineering, Hubei Key Laboratory of Biomass Fibers and Ecodyeing & Finishing, Wuhan Textile University, Wuhan 430200, PR China
| | - Zhipan Wen
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Donghu New & High Technology Development Zone, Wuhan 430205, PR China
| | - Shaozhong Li
- National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, Huaiyin Institute of Technology, 1# Meicheng Road, Huaian 223003, PR China
| | - Weijie Li
- Institute for Superconducting and Electronic Materials, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Rong Chen
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Donghu New & High Technology Development Zone, Wuhan 430205, PR China; Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450002, PR China
| | - Gang Cheng
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Donghu New & High Technology Development Zone, Wuhan 430205, PR China; National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, Huaiyin Institute of Technology, 1# Meicheng Road, Huaian 223003, PR China.
| |
Collapse
|
16
|
Huang J, Zhou T, Zhao W, Cui S, Guo R, Li D, Reddy Kadasala N, Han D, Jiang Y, Liu Y, Liu H. Multifunctional magnetic Fe 3O 4/Cu 2O-Ag nanocomposites with high sensitivity for SERS detection and efficient visible light-driven photocatalytic degradation of polycyclic aromatic hydrocarbons (PAHs). J Colloid Interface Sci 2022; 628:315-326. [PMID: 35998457 DOI: 10.1016/j.jcis.2022.08.036] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 07/19/2022] [Accepted: 08/06/2022] [Indexed: 12/17/2022]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) with carcinogenic, teratogenic and mutagenic properties are persistent organic pollutants in the environment. Herein, the novel multifunctional Fe3O4/Cu2O-Ag nanocomposites (NCs) have been established for ultra-sensitive surface-enhanced Raman scattering (SERS) detection and visible light-driven photocatalytic degradation of PAHs. Fe3O4/Cu2O-Ag NCs with different amounts of Ag nanocrystals were synthesized, and the effect of Ag contents on SERS performance was studied by finite-difference time-domain (FDTD) algorithm. The synergistic interplay of electromagnetic and chemical enhancement was responsible for excellent SERS sensitivity of Fe3O4/Cu2O-Ag NCs. The limit of detection (LOD) of optimal SERS substrates (FCA-2 NCs) for Nap, BaP, Pyr and Ant was as low as 10-9, 10-9, 10-9 and 10-10 M, respectively. The SERS detection of PAHs in actual soil environment was also studied. Moreover, a simple SERS method was used to monitor the photocatalytic process of PAHs. The recovery and reuse of Fe3O4/Cu2O-Ag NCs were achieved through magnetic field, and the outstanding SERS and photocatalytic performance were still maintained even after eight cycles. This magnetic multifunctional NCs provide a unique idea for the integration of ultra-sensitive SERS detection and efficient photocatalytic degradation of PAHs, and thus will have more hopeful prospects in the field of environmental protection.
Collapse
Affiliation(s)
- Jie Huang
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, PR China
| | - Tianxiang Zhou
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, PR China
| | - Wenshi Zhao
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, PR China; Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Sicheng Cui
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, PR China
| | - Rui Guo
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, PR China
| | - Dan Li
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, PR China
| | | | - Donglai Han
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun 130022, PR China
| | - Yuhong Jiang
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, PR China
| | - Yang Liu
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, PR China; Key Laboratory of Novel Materials for Sensor of Zhejiang Province, Hangzhou Dianzi University, Hangzhou 310012, PR China.
| | - Huilian Liu
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, PR China.
| |
Collapse
|