1
|
Hou L, Zhang Z, Li S, Bai L. Specific extraction of S-adenosylhomocysteine from urine with boronate affinity mechanism based on a tube-tip adsorbent. Anal Chim Acta 2025; 1348:343811. [PMID: 40057311 DOI: 10.1016/j.aca.2025.343811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 02/08/2025] [Accepted: 02/16/2025] [Indexed: 05/13/2025]
Abstract
BACK GROUND The concentration of S-adenosylhomocysteine in human urine is associated with atherosclerosis and may be used as an early marker of atherosclerosis, and accurate quantitative analysis of S-adenosylhomocysteine in high-risk group urine is significant for the prevention and early diagnosis. Therefore, monitoring of S-adenosylhomocysteine in the urine of high-risk groups may provide some reference for the prevention and early diagnosis of atherosclerosis. Due to the complexity of biological samples and the low content of target component, sample pretreatment is a prerequisite to ensure the accuracy of quantitative analysis results. RESULTS In this study, we developed an adsorbent having phenylboronic acid group in a tube-tip through polymerization reaction using 4-allylcarbamoylphenylboronic acid as the monomer, aiming to the cis-diol structure of the S-adenosylhomocysteine. The prepared adsorbent not only has a macro-porous structure, but also has a high specific surface area of 428 m2/g, which is beneficial to improve the mass transfer and enhance the sample load. The synthesized adsorbent was used for the extraction of S-adenosylhomocysteine from the human urine, and the results indicated that the S-adenosylhomocysteine concentration in the urine of atherosclerosis patients is much higher than that of healthy. Furthermore, the adsorbent exhibited specific selectivity due to the boron affinity interaction force between the phenylboronic acid group on the surface of the adsorbent and the cis-diol structure of S-adenosylhomocysteine: the cis-diol structure of S-adenosylhomocysteine can form a five-membered cyclic esters with the phenylboronic acid in the adsorbent surface under a basic condition, and the five-membered cyclic esters opens and releases the cis-diol structure under acidic condition. SIGNIFICANCE The methodological validation showed that the present method is feasible for the quantitative analysis of S-adenosylhomocysteine in human urine. This work presents a robust method for the specific extraction of S-adenosylhomocysteine from human urine and offers a valuable approach for the extraction of other components having cis-diol structure from biological samples.
Collapse
Affiliation(s)
- Liyue Hou
- College of Pharmaceutical Sciences, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei Key Laboratory of Public Health Safety, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Hebei University, Baoding, China
| | - Zhen Zhang
- College of Pharmaceutical Sciences, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei Key Laboratory of Public Health Safety, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Hebei University, Baoding, China
| | - Siqi Li
- College of Pharmaceutical Sciences, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei Key Laboratory of Public Health Safety, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Hebei University, Baoding, China
| | - Ligai Bai
- College of Pharmaceutical Sciences, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei Key Laboratory of Public Health Safety, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Hebei University, Baoding, China.
| |
Collapse
|
2
|
Diao Y, Gao J, Ma Y, Pan G. Epitope-imprinted biomaterials with tailor-made molecular targeting for biomedical applications. Bioact Mater 2025; 45:162-180. [PMID: 39634057 PMCID: PMC11616479 DOI: 10.1016/j.bioactmat.2024.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/07/2024] [Accepted: 11/07/2024] [Indexed: 12/07/2024] Open
Abstract
Molecular imprinting technology (MIT), a synthetic strategy to create tailor-made molecular specificity, has recently achieved significant advancements. Epitope imprinting strategy, an improved MIT by imprinting the epitopes of biomolecules (e.g., proteins and nucleic acids), enables to target the entire molecule through recognizing partial epitopes exposed on it, greatly expanding the applicability and simplifying synthesis process of molecularly imprinted polymers (MIPs). Thus, epitope imprinting strategy offers promising solutions for the fabrication of smart biomaterials with molecular targeting and exhibits wide applications in various biomedical scenarios. This review explores the latest advances in epitope imprinting techniques, emphasizing selection of epitopes and functional monomers. We highlight the significant improvements in specificity, sensitivity, and stability of these materials, which have facilitated their use in bioanalysis, clinical therapy, and pharmaceutical development. Additionally, we discuss the application of epitope-imprinted materials in the recognition and detection of peptides, proteins, and cells. Despite these advancements, challenges such as template complexity, imprinting efficiency, and scalability remain. This review addresses these issues and proposes potential directions for future research to overcome these barriers, thereby enhancing the efficacy and practicality of epitope molecularly imprinting technology in biomedical fields.
Collapse
Affiliation(s)
- Youlu Diao
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, 301 Xuefu Rd, Zhenjiang, Jiangsu, 212013, China
| | - Jia Gao
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, 301 Xuefu Rd, Zhenjiang, Jiangsu, 212013, China
| | - Yue Ma
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Rd, Zhenjiang, Jiangsu, 212013, China
| | - Guoqing Pan
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, 301 Xuefu Rd, Zhenjiang, Jiangsu, 212013, China
| |
Collapse
|
3
|
Dong H, Tong L, Cheng M, Hou S. Utilizing electrospun molecularly imprinted membranes for food industry: Opportunities and challenges. Food Chem 2024; 460:140695. [PMID: 39098194 DOI: 10.1016/j.foodchem.2024.140695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/24/2024] [Accepted: 07/27/2024] [Indexed: 08/06/2024]
Abstract
Molecularly imprinted polymers (MIPs) have been widely studied in environmental protection and food industry, owing to their excellent specific recognition and structural stability. However, MIPs prepared by conventional methods suffer from low adsorption capacity and slow mass transfer rate. To date, the combination of electrostatic spinning technology and molecular imprinting technology has been proposed to prepare molecularly imprinted membranes (MIMs) with specific recognition capability, and has shown great attraction in the separation and detection of food additives, as well as the extraction and release of active ingredients. In recent years, MIPs and electrostatic spinning technologies have been investigated and evaluated. However, there is no review of electrostatically spun MIMs for food field. In this review, we focus on the fabrication methods and applications of electrostatically spun MIMs in the food, discuss the challenges in practical food applications, and emphasize the promising applications of electrostatically spun MIMs in food field.
Collapse
Affiliation(s)
- Hao Dong
- College of Food Science and Engineering, Shandong Agricultural University, Taian 271018, Shandong, PR China.
| | - Liping Tong
- College of Chemistry and Material Science, Shandong Agricultural University, Taian 271018, Shandong, PR China.
| | - Mengmeng Cheng
- College of Chemistry and Material Science, Shandong Agricultural University, Taian 271018, Shandong, PR China.
| | - Shifeng Hou
- College of Chemistry and Material Science, Shandong Agricultural University, Taian 271018, Shandong, PR China; Key Laboratory of Agricultural Membrane Application of Ministry of Agriculture and Rural Affairs, Taian 271018, Shandong, PR China.
| |
Collapse
|
4
|
Yin H, Hang Q, Xue T, Yuan Y, Qin F, Xiong Z. A dual-recognition strategy based on pH-responsive molecularly imprinted membrane for highly selective capture of catecholamines: From construction to practical application. Anal Chim Acta 2024; 1327:343173. [PMID: 39266064 DOI: 10.1016/j.aca.2024.343173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/22/2024] [Accepted: 08/27/2024] [Indexed: 09/14/2024]
Abstract
BACKGROUND Catecholamines (CAs) are involved in a wide range of physiological and pathological processes in the body and are progressively being used as important biomarkers for a variety of diseases. It is of great significance for accurate quantification of CAs to the diagnosis and treatment of diseases. However, the separation of CAs from complex biological matrices is still a great challenge due to the trace levels of CAs and the limited selectivity of existing pretreatment methods. RESULTS In this work, a dual-recognition imprinted membrane (BA-MIM) was developed to utilize the synergistic action of pH-responsive boron affinity and molecular imprinted cavities for highly selective capture and release of CAs. The prepared BA-MIM possessed remarkable adsorption capacity (maximum capacity, 43.3 mg g-1), desirable surface hydrophilicity (46.2°), superior selectivity (IF = 6.2, α = 14.3), as well as favorable reusability (number of cycles, 6 times). On this basis, an integrated analytical method based on BA-MIM extraction combined with ultrahigh-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) was innovatively developed to highly selective separation, enrichment, and detection of CAs in rat brain tissue. Under the optimum conditions, a low quantitation limits (0.05-0.10 ng mL-1), wide linear range (10-1000 ng mL-1), good linearity (r2 > 0.99), and satisfactory recoveries (88.5%-98.5 %) were obtained for CAs. The proven method was further applied to kidney-yang-deficiency-syndrome (KYDS) group rat model, revealed the intrinsic connection between kidney disease and catecholamine metabolism. SIGNIFICANCE This work provides an excellent reference paradigm for the effective construction of dual-recognition functional membrane material to the high-selective analysis of trace targets in complex matrices. Additionally, this integrated analytical strategy demonstrates its efficiency, sustainability, versatility, and convenience, showing remarkable prospect in a variety of applications for biological sample analysis.
Collapse
Affiliation(s)
- Huawen Yin
- School of Pharmacy, Shenyang Pharmaceutical University, No.26 Huatuo Rd, High & New Tech Development Zone, 117004, Benxi, Liaoning Province, PR China
| | - Qian Hang
- School of Pharmacy, Shenyang Pharmaceutical University, No.26 Huatuo Rd, High & New Tech Development Zone, 117004, Benxi, Liaoning Province, PR China
| | - Tianyi Xue
- School of Pharmacy, Shenyang Pharmaceutical University, No.26 Huatuo Rd, High & New Tech Development Zone, 117004, Benxi, Liaoning Province, PR China
| | - Yue Yuan
- School of Pharmacy, Shenyang Pharmaceutical University, No.26 Huatuo Rd, High & New Tech Development Zone, 117004, Benxi, Liaoning Province, PR China
| | - Feng Qin
- School of Pharmacy, Shenyang Pharmaceutical University, No.26 Huatuo Rd, High & New Tech Development Zone, 117004, Benxi, Liaoning Province, PR China
| | - Zhili Xiong
- School of Pharmacy, Shenyang Pharmaceutical University, No.26 Huatuo Rd, High & New Tech Development Zone, 117004, Benxi, Liaoning Province, PR China.
| |
Collapse
|
5
|
Tang X, Li Y, Zhao W, Bo C. Zwitterionic polymers grafting of metal organic framework encapsulated boronic acid carbon dots as antibiofouling fluorescent probe for baicalin monitoring. Talanta 2024; 278:126521. [PMID: 38996559 DOI: 10.1016/j.talanta.2024.126521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/02/2024] [Accepted: 07/05/2024] [Indexed: 07/14/2024]
Abstract
The sensitivity and accuracy of fluorescence probes for biological samples are affected by not only interfering molecule compounds but also the nonspecific adsorption of proteins and other macromolecules. Herein, fluorescence probe based on zwitterionic sulfobetaine methacrylate polymer (PSBMA) as an antibiofouling layer and amino boric acid carbon dots encapsulated in the metal-organic framework UiO-66-NH2 (UiO-66-NH2/BN-CDs) as a target recognition site was designed for the detection of baicalin (BAI). Owing to the introduction of BN-CDs into UiO-66-NH2 with high specific surface area, the prepared UiO-66-NH2/BN-CDs@PSBMA probe exhibited a high adsorption capacity of 78.9 mg g-1, while presented fluorescence enhancing and superior fluorescence selectivity to BAI at excitation and emission wavelengths of 400 and 425 nm, respectively. Connecting PSBMA with good hydrophilicity to UiO-66-NH2, resulted in an anti-protein capacity of over 96.3 %, effectively inhibiting protein interference with the fluorescence signal. By virtue of its good antibiofouling and recognizing capacities, the fluorescence probe exhibited a satisfactory detection range of 10-80 nmol L-1, with a fairly low detection limit of 0.0064 μmol L-1. Using the method to detect BAI in Goji berry, Sophora and Yinhuang oral solution, demonstrating its potential for the accurate and quantitative detection of BAI in complex biological samples.
Collapse
Affiliation(s)
- Xiaofan Tang
- School of Chemistry and Chemical Engineering, North Minzu University, Yinchuan, 750021, China; Ningxia Key Laboratory of Solar Chemical Conversion Technology, North Minzu University, Yinchuan, 750021, China; Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan, 750021, China
| | - Yinhai Li
- School of Chemistry and Chemical Engineering, North Minzu University, Yinchuan, 750021, China; Ningxia Key Laboratory of Solar Chemical Conversion Technology, North Minzu University, Yinchuan, 750021, China; Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan, 750021, China
| | - Weilong Zhao
- School of Chemistry and Chemical Engineering, North Minzu University, Yinchuan, 750021, China; Ningxia Key Laboratory of Solar Chemical Conversion Technology, North Minzu University, Yinchuan, 750021, China; Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan, 750021, China
| | - Chunmiao Bo
- School of Chemistry and Chemical Engineering, North Minzu University, Yinchuan, 750021, China; Ningxia Key Laboratory of Solar Chemical Conversion Technology, North Minzu University, Yinchuan, 750021, China; Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan, 750021, China.
| |
Collapse
|
6
|
Tian X, Yang J, Hussain S, Wang Y, Heinlein J, Zhang L, Hao Y, Gao R. Hydrophilic molecularly imprinted lysozyme-BiOBr composite with enhanced visible light utilization for selective removal of trace contaminants in water. Int J Biol Macromol 2024; 272:132910. [PMID: 38844276 DOI: 10.1016/j.ijbiomac.2024.132910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/29/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024]
Abstract
The development of high-efficiency molecularly imprinted photocatalysts is still challenging due to the lack of hydrophilic and suitable functional monomers. In this work, the bio-sourced lysozyme was developed as the hydrophilic functional monomer, and Cu-doped BiOBr was used as the photocatalysts, to prepare a novel hydrophilic molecularly imprinted lysozyme-BiOBr composite (BiOBr-Cu/LyzMIP) with enhanced visible light utilization. Lysozyme could form a transparent layer to mitigate the light transmission obstruction caused by the surface imprinting layer, making it an ideal functional monomer. The prepared BiOBr-Cu/LyzMIP possessed red-shifted visible-light absorption edge and minor reduction of light absorbance, indicating the enhanced utilization of visible light. Accordingly, BiOBr-Cu/LyzMIP demonstrated excellent degradation rate (99.4 % in 20 min), exceptional degradation efficiency (0.211 min-1), and superior reusability. Moreover, BiOBr-Cu/LyzMIP exhibited rapid adsorption equilibrium (20 min), good imprinting factor (2.67), and favourable degradation selectivity (>1.75), indicating the good imprinting effect resulting from abundant functional groups of lysozyme. Versatility experiments on different templates suggested that the proposed approach allowed flexibility in selecting a wide range of hazardous contaminants according to practical requirements. The present work expands the application of lysozyme-based composites in the environmental field, and provides a new one-stop pathway for efficient and sustainable treatment of contaminated water.
Collapse
Affiliation(s)
- Xuemeng Tian
- School of Chemistry, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Jiyuan Yang
- Shanxi Geology and Mineral Resources 213 Laboratory Co., LTD, Linfen, Shanxi 041000, China
| | - Sameer Hussain
- School of Chemistry, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Yue Wang
- School of Chemistry, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China; School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Jake Heinlein
- Department of Chemical & Environmental Engineering, Yale University, New Haven, CT 06520-8286, United States
| | - Long Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Yi Hao
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Ruixia Gao
- School of Chemistry, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China.
| |
Collapse
|
7
|
Zhang X, Hua J, Zhu Y, Ding X, Zhang Q, Zhang T, Yang D, Qiu F. Birnessite-Type MnO 2 Modified Sustainable Biomass Fiber toward Adsorption Removal Heavy Metal Ion from Actual River Aquatic Environment. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:8738-8750. [PMID: 38602229 DOI: 10.1021/acs.langmuir.4c00723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
In this work, a novel birnessite-type MnO2 modified corn husk sustainable biomass fiber (MnO2@CHF) adsorbent was fabricated for efficient cadmium (Cd) removal from aquatic environments. MnO2@CHF was designed from KMnO4 hydrothermally treated with corn husk fibers. Various characterization revealed that MnO2@CHF possessed the hierarchical structure nanosheets, large specific surface area, and multiple oxygen-containing functional groups. Batch adsorption experimental results indicated that the highest Cd (II) removal rate could be obtained at the optimal conditions of adsorbent amount of 0.200 g/L, adsorption time of 600 min, pH 6.00, and temperature of 40.0 °C. Adsorption isotherm and kinetics results showed that Cd (II) adsorption behavior on MnO2@CHF was a monolayer adsorption process and dominated by chemisorption and intraparticle diffusion. The optimum adsorption capacity (Langmuir model) of Cd (II) on MnO2@CHF was 23.0 mg/g, which was higher than those of other reported common biomass adsorbent materials. Further investigation indicated that the adsorption of Cd (II) on MnO2@CHF involved mainly ion exchange, surface complexation, redox reaction, and electrostatic attraction. Moreover, the maximum Cd (II) removal rate on MnO2@CHF from natural river samples (Xicheng Canal) could reach 59.2% during the first cycle test. This study showed that MnO2@CHF was an ideal candidate in Cd (II) practical application treatment, providing references for resource utilization of agricultural wastes for heavy metal removal.
Collapse
Affiliation(s)
- Xiaoying Zhang
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, China
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jiayi Hua
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yao Zhu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xiaolin Ding
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Qingyun Zhang
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Tao Zhang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Dongya Yang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Fengxian Qiu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
8
|
Yi C, Liang A, Wen G, Jiang Z. A new difunctional liquid crystal nanosurface molecularly imprinted polyitaconic acid nanoprobe for SERS/RRS determination of ultratrace melamine. Food Chem 2024; 436:137716. [PMID: 37839117 DOI: 10.1016/j.foodchem.2023.137716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/05/2023] [Accepted: 10/08/2023] [Indexed: 10/17/2023]
Abstract
In this paper, a new dimode scattering spectral method for rapid detection of ultratrace melamine (ML) in dairy products was established by coupling nanosurface molecular imprinting technology with nanocatalytic amplification reaction of liquid crystal particles. It was found that liquid crystal cholesteryl butyrate (CBU) nanosurface imprinted polymers (CBU@MIP) not only recognized ML but also catalyzed the nano indicator reaction of HAuCl4-sodium formate to produce gold nanoparticles with surface-enhanced Raman scattering (SERS) and resonance Rayleigh scattering (RRS) effect. When ML was added, it specifically combined with CBU@MIP to form CBU@MIP-ML conjugates with strong catalytic activity, and SERS and RRS signals increased linearly with the detection limits of 0.0072 pmol/L and 0.093 pmol/L respectively. The method was applied to the determination of ML in dairy products and plastic tablewares with relative standard deviation (RSD) of 2.2-4.4 % and 1.6-4.7 %, and recovery of 95.4 %-108.3 % and 95.9-108.6 % respectively.
Collapse
Affiliation(s)
- Chenguang Yi
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin 541004, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin 541004, China
| | - Aihui Liang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin 541004, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin 541004, China
| | - Guiqing Wen
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin 541004, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin 541004, China
| | - Zhiliang Jiang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin 541004, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin 541004, China.
| |
Collapse
|
9
|
Zhang X, Luo X, Wei J, Zhang Y, Jiang M, Wei Q, Chen M, Wang X, Zhang X, Zheng J. Preparation of a Molecularly Imprinted Silica Nanoparticles Embedded Microfiltration Membrane for Selective Separation of Tetrabromobisphenol A from Water. MEMBRANES 2023; 13:571. [PMID: 37367775 DOI: 10.3390/membranes13060571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 05/27/2023] [Accepted: 05/30/2023] [Indexed: 06/28/2023]
Abstract
The ubiquitous presence of tetrabromobisphenol A (TBBPA) in aquatic environments has caused severe environmental and public health concerns; it is therefore of great significance to develop effective techniques to remove this compound from contaminated waters. Herein, a TBBPA imprinted membrane was successfully fabricated via incorporating imprinted silica nanoparticles (SiO2 NPs). The TBBPA imprinted layer was synthesized on the 3-(methacryloyloxy) propyltrimethoxysilane (KH-570) modified SiO2 NPs via surface imprinting. Eluted TBBPA molecularly imprinted nanoparticles (E-TBBPA-MINs) were incorporated onto a polyvinylidene difluoride (PVDF) microfiltration membrane via vacuum-assisted filtration. The obtained E-TBBPA-MINs embedded membrane (E-TBBPA-MIM) showed appreciable permeation selectivity toward the structurally analogous to TBBPA (i.e., 6.74, 5.24 and 6.31 of the permselectivity factors for p-tert-butylphenol (BP), bisphenol A (BPA) and 4,4'-dihydroxybiphenyl (DDBP), respectively), far superior to the non-imprinted membrane (i.e., 1.47, 1.17 and 1.56 for BP, BPA and DDBP, respectively). The permselectivity mechanism of E-TBBPA-MIM could be attributed to the specific chemical adsorption and spatial complementation of TBBPA molecules by the imprinted cavities. The resulting E-TBBPA-MIM exhibited good stability after five adsorption/desorption cycles. The findings of this study validated the feasibility of developing nanoparticles embedded molecularly imprinted membrane for efficient separation and removal of TBBPA from water.
Collapse
Affiliation(s)
- Xingran Zhang
- College of Life and Environmental Science, Guilin University of Electronic Technology, 1 Jinji Road, Guilin 541004, China
- School of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
- Guangxi Key Laboratory of Automatic Detecting Technology and Instruments, Guilin University of Electronic Technology, 1 Jinji Road, Guilin 541004, China
| | - Xiang Luo
- College of Life and Environmental Science, Guilin University of Electronic Technology, 1 Jinji Road, Guilin 541004, China
| | - Jiaqi Wei
- College of Life and Environmental Science, Guilin University of Electronic Technology, 1 Jinji Road, Guilin 541004, China
| | - Yuanyuan Zhang
- College of Life and Environmental Science, Guilin University of Electronic Technology, 1 Jinji Road, Guilin 541004, China
- Guangxi Key Laboratory of Automatic Detecting Technology and Instruments, Guilin University of Electronic Technology, 1 Jinji Road, Guilin 541004, China
| | - Minmin Jiang
- College of Life and Environmental Science, Guilin University of Electronic Technology, 1 Jinji Road, Guilin 541004, China
- Guangxi Key Laboratory of Automatic Detecting Technology and Instruments, Guilin University of Electronic Technology, 1 Jinji Road, Guilin 541004, China
| | - Qiaoyan Wei
- College of Life and Environmental Science, Guilin University of Electronic Technology, 1 Jinji Road, Guilin 541004, China
- Guangxi Key Laboratory of Automatic Detecting Technology and Instruments, Guilin University of Electronic Technology, 1 Jinji Road, Guilin 541004, China
| | - Mei Chen
- School of Environmental Science and Engineering, Nankai University, 38 Tongyan Road, Tianjin 300350, China
| | - Xueye Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Xuehong Zhang
- College of Life and Environmental Science, Guilin University of Electronic Technology, 1 Jinji Road, Guilin 541004, China
- Guangxi Key Laboratory of Automatic Detecting Technology and Instruments, Guilin University of Electronic Technology, 1 Jinji Road, Guilin 541004, China
| | - Junjian Zheng
- College of Life and Environmental Science, Guilin University of Electronic Technology, 1 Jinji Road, Guilin 541004, China
- Guangxi Key Laboratory of Automatic Detecting Technology and Instruments, Guilin University of Electronic Technology, 1 Jinji Road, Guilin 541004, China
| |
Collapse
|
10
|
Ma Y, Mao C, Du X, Xie C, Zhou J, Tao X, Dang Z, Lu G. Insight into the application of magnetic molecularly imprinted polymers in soil-washing effluent: Selective removal of 4,4'-dibromodiphenyl ether, high adaptivity of material and efficient recovery of eluent. CHEMOSPHERE 2023; 334:138990. [PMID: 37209856 DOI: 10.1016/j.chemosphere.2023.138990] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/04/2023] [Accepted: 05/17/2023] [Indexed: 05/22/2023]
Abstract
Soil washing techniques can effectively remove soil polybrominated diphenyl ethers (PBDEs), but further removal of PBDEs from washing effluent is disrupted by environmental factors and coexisting organic matter. Hence, this work prepared novel magnetic molecularly imprinted polymers (MMIPs) to selectively remove PBDEs in soil washing effluent and recycling surfactants, with Fe3O4 nanoparticles as the magnetic core, methacrylic acid (MAA) as the functional monomer, and ethylene glycol dimethacrylate (EGDMA) as the cross-linker. Later, the prepared MMIPs were applied to adsorb 4,4'-dibromodiphenyl ether (BDE-15) in Triton X-100 soil-washing effluent and characterized by scanning electron microscopy (SEM), infrared spectrometry (FT-IR), nitrogen adsorption and desorption experiments. According to our observations, BDE-15 equilibrium adsorptions on dummy-template magnetic molecularly imprinted adsorbent (D-MMIP, 4-bromo-4'-hydroxyl biphenyl as template) and part-template magnetic molecularly imprinted adsorbent (P-MMIP, toluene as template) were reached within 40 min, and their equilibrium adsorption capacities were 164.54 μmol/g and 145.55 μmol/g, respectively, with imprinted factor α > 2.03, selectivity factor β > 2.14, and selectivity S > 18.05. MMIPs exhibited good adaptability to pH, temperature, and cosolvent. Our Triton X-100 recovery rate reached as high as 99.9%, and MMIPs maintained a more than 95% adsorption capacity after being recycled five times. Our results offer a novel approach to selectively remove PBDEs in soil-washing effluent, with efficient recovery of surfactants and adsorbents in soil-washing effluent.
Collapse
Affiliation(s)
- Yao Ma
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; China National Research Center of Testing Techniques for Building Material, China Building Materials Academy, Beijing, 100024, China
| | - Changyu Mao
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Xiaodong Du
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Chunsheng Xie
- Guangdong Provincial Key Laboratory of Environmental Health and Land Resource, Zhaoqing University, Zhaoqing, 526061, China.
| | - Jiangmin Zhou
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, 325035, China
| | - Xueqin Tao
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, 510006, China
| | - Guining Lu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
11
|
Zhu Y, Wang K, Pan Z, Dai Y, Rong J, Zhang T, Xue S, Yang D, Qiu F. Electrostatic spray deposition of boronate affinity imprinted membrane to be used as adsorption separation material. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2022.130699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
12
|
Lv Z, Xue P, Xie T, Zhao J, Tian S, Liu H, Qi Y, Sun S, Lv X. High-performing PVDF membranes modified by Na+ MMT/ionic liquids (ILs) with different chain lengths: dye adsorption and separation from O/W emulsion. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
13
|
Yi J, Wan J, Ye G, Wang Y, Ma Y, Yan Z, Zeng C. Targeted degradation of refractory organic pollutants in wastewater based on molecularly imprinted catalytic materials: adsorption process and degradation mechanism. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|