1
|
Gu X, Sun H, Zhang N, Yu J, Li J, Ye C, Du Y. Universal synthesis of highly active PdM (Sb, Ir, and Bi) nanowire networks for ethylene glycol and glycerol electrooxidation. J Colloid Interface Sci 2025; 688:775-783. [PMID: 40037014 DOI: 10.1016/j.jcis.2025.02.187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 02/24/2025] [Accepted: 02/25/2025] [Indexed: 03/06/2025]
Abstract
One-dimensional (1D) Pd-based nanowire materials, characterized by high aspect ratios and exposed high-index crystal surfaces, are widely developed in the field of direct fuel cells. However, their synthesis methods are often not universal and necessitate demanding conditions, including high temperatures and metal templates, leading to resource consumption. In this study, we present a simple and universal one-step method for synthesizing PdM (Sb, Ir, and Bi) nanowire networks (NNWs) at room temperature. Leveraging their structural advantages and the synergistic effects between bimetals, PdM NNWs demonstrate exceptional electrocatalytic performance, exhibiting higher mass and specific activities as well as enhanced durability compared to Pd/C for the ethylene glycol and glycerol oxidation reactions. Notably, PdSb NNWs excelled in electrochemical tests, achieving the highest mass activities of 7.55 and 5.59 A mg-1 for the ethylene glycol oxidation reaction (EGOR) and glycerol oxidation reaction (GOR), respectively. Additionally, due to the semi-metallic properties of Sb, which can flexibly modify the chemical environment of Pd, the PdSb NNWs exhibited superior antitoxicity and a significantly lower decay of current density across three consecutive chronoamperometry (CA) tests. This research advances the synthesis of palladium-based nanostructures, providing impetus for the design of highly efficient electrocatalysts in the realm of direct alcohol fuel cells.
Collapse
Affiliation(s)
- Xinyu Gu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Huiyu Sun
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Nannan Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Jun Yu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Jie Li
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Changqing Ye
- Jiangsu Key Laboratory for Environment Functional Materials, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Yukou Du
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| |
Collapse
|
2
|
Wang R, Zhang X, Feng X, Zhao F, Wang H. Wheatstone Bridge MEMS Hydrogen Sensor with ppb-Level Detection Limit Based on the Palladium-Gold Alloy. ACS Sens 2024; 9:6082-6091. [PMID: 39498638 DOI: 10.1021/acssensors.4c01964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2025]
Abstract
On some occasions, such as new energy clinics, monitoring the trace hydrogen at the ppb level is necessary. The traditional resistive hydrogen sensors based on the Pd alloys are very difficult to realize such an extremely low detection limit. To achieve a detection limit at the ppb level and also ensure good stability, a MEMS hydrogen sensor was designed in a suspended Wheatstone bridge structure, with all four resistive arms defined on a sputtered Pd-Au alloy thin film. For the Wheatstone bridge sensor, absolute response (Ra) and relative response (Rs) are defined to describe the sensitivity of the sensor, and the effect of annealing temperature on baseline drift is investigated using the baseline zero drift parameter (DBZD). By testing the sensors across a hydrogen concentration range of 20 ppb to 3 v/v%, the optimal annealing temperature (250 °C) and operating temperature (60 °C) were identified. Under these conditions, the sensor exhibited a detection limit as low as 20 ppb with a power consumption of only 4.6 mW. At the same time, the response and recovery times of the sensor were 6 and 19 s, respectively, toward 3 v/v% hydrogen. After testing over a 100-day period, Ra fluctuated only 0.0026%, indicating that the hydrogen sensor had good long-term stability for low-concentration detection. More results also showed that the sensor has good repeatability, selectivity, and humidity resistance. With the wide measurement range (20 ppb to 3 v/v%), the sensor has the potential to meet hydrogen detection requirements in multiple scenarios.
Collapse
Affiliation(s)
- Ruihao Wang
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P. R. China
| | - Xing Zhang
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P. R. China
| | - Xiaoqi Feng
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P. R. China
| | - Fan Zhao
- School of Future Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P. R. China
| | - Hairong Wang
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P. R. China
| |
Collapse
|
3
|
Jiang T, Li Y, Tang Y, Zhang S, Le D, Rahman TS, Tao F. Breaking Continuously Packed Bimetallic Sites to Singly Dispersed on Nonmetallic Support for Efficient Hydrogen Production. ACS APPLIED MATERIALS & INTERFACES 2024; 16:21757-21770. [PMID: 38632669 DOI: 10.1021/acsami.3c18160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
We have synthesized Pt1Zn3/ZnO, also termed 0.01 wt %Pt/ZnO-O2-H2, as a catalyst containing singly dispersed single-atom bimetallic sites, also called a catalyst of singly dispersed bimetallic sites or a catalyst of isolated single-atom bimetallic sites. Its catalytic activity in partial oxidation of methanol to hydrogen at 290 °C is found to be 2-3 orders of magnitude higher than that of Pt-Zn bimetallic nanoparticles supported on ZnO, 5.0 wt %Pt/ZnO-N2-H2. Selectivity for H2 on Pt1Zn3/ZnO reaches 96%-100% at 290-330 °C, arising from the uniform coordination environment of single-atom Pt1 in singly dispersed single-atom bimetallic sites, Pt1Zn3 on 0.01 wt %Pt/ZnO-O2-H2, which is sharply different from various coordination environments of Pt atoms in coexisting PtxZny (x ≥ 0, y ≥ 0) sites on Pt-Zn bimetallic nanoparticles. Computational simulations attribute the extraordinary catalytic performance of Pt1Zn3/ZnO to the stronger adsorption of methanol and the lower activation barriers in O-H dissociation of CH3OH, C-H dissociations of CH2O to CO, and coupling of intermediate CO with atomic oxygen to form CO2 on Pt1Zn3/ZnO as compared to those on Pt-Zn bimetallic nanoparticles. It demonstrates that anchoring uniform, isolated single-atom bimetallic sites, also called singly dispersed bimetallic sites on a nonmetallic support can create new catalysts for certain types of reactions with much higher activity and selectivity in contrast to bimetallic nanoparticle catalysts with coexisting, various metallic sites MxAy (x ≥ 0, y ≥ 0). As these single-atom bimetallic sites are cationic and anchored on a nonmetallic support, the catalyst of singly dispersed single-atom bimetallic sites is different from a single-atom alloy nanoparticle catalyst. The critical role of the 0.01 wt %Pt in the extraordinary catalytic performance calls on fundamental studies of the profound role of a trace amount of a metal in heterogeneous catalysis.
Collapse
Affiliation(s)
- Tao Jiang
- Department of Physics, University of Central Florida, Orlando, Florida 32816, United States
| | - Yuting Li
- Department of Chemical and Petroleum Engineering, Center for Environmentally Beneficial Catalysis, University of Kansas, Lawrence, Kansas 66049, United States
| | - Yu Tang
- Department of Chemical and Petroleum Engineering, Center for Environmentally Beneficial Catalysis, University of Kansas, Lawrence, Kansas 66049, United States
| | - Shiran Zhang
- Department of Chemical and Petroleum Engineering, Center for Environmentally Beneficial Catalysis, University of Kansas, Lawrence, Kansas 66049, United States
| | - Duy Le
- Department of Physics, University of Central Florida, Orlando, Florida 32816, United States
| | - Talat S Rahman
- Department of Physics, University of Central Florida, Orlando, Florida 32816, United States
| | - Franklin Tao
- Department of Chemical and Petroleum Engineering, Center for Environmentally Beneficial Catalysis, University of Kansas, Lawrence, Kansas 66049, United States
| |
Collapse
|
4
|
Jiang LY, Tian FM, Chen XY, Ren XX, Feng JJ, Yao Y, Zhang L, Wang AJ. Cu 2+-regulated one-pot wet-chemical synthesis of uniform PdCu nanostars for electrocatalytic oxidation of ethylene glycol and glycerol. J Colloid Interface Sci 2023; 649:118-124. [PMID: 37343391 DOI: 10.1016/j.jcis.2023.06.044] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/30/2023] [Accepted: 06/08/2023] [Indexed: 06/23/2023]
Abstract
The fabrication of effective and stable electrocatalysts is crucial for practical applications of direct alcohol fuel cells (DAFCs). In this study, bimetallic PdCu nanostars (PdCu NSs) were fabricated by a Cu2+-modulated one-pot wet-chemical method, where cetyltrimethyl ammonium bromide (CTAB) worked as a structure-regulating reagent. The morphology, compositions, crystal structures and formation mechanism of the as-prepared PdCu NSs were investigated by a series of techniques. The unique architectures created abundant active sites, which resulted in a large electrochemical active surface area (9.5 m2 g-1). The PdCu NSs showed negative shifts in the onset potentials and large forward peak current densities by contrast with those of commercial Pd black for the catalytic ethylene glycol oxidation reaction (EGOR) and glycerol oxidation reaction (GOR). It revealed that the PdCu NSs outperformed Pd black in the similar surroundings. This work provides a constructive strategy for fabrication of high-efficiency electrocatalysts for alcohol fuel cells.
Collapse
Affiliation(s)
- Lu-Yao Jiang
- Key laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Fang-Min Tian
- Key laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Xiao-Yan Chen
- Key laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Xin-Xin Ren
- Key laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Jiu-Ju Feng
- Key laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Youqiang Yao
- Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, No. 1219, Zhongguan West Road, Zhenhai District, Ningbo 315201, China
| | - Lu Zhang
- Key laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Ai-Jun Wang
- Key laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| |
Collapse
|
5
|
Zhang K, Wang C, Guo S, Li S, Wu Z, Hata S, Li J, Shiraishi Y, Du Y. Photoelectrocatalytic oxidation of ethylene glycol on trimetallic PdAgCu nanospheres enhanced by surface plasmon resonance. J Colloid Interface Sci 2023; 636:559-567. [PMID: 36669449 DOI: 10.1016/j.jcis.2023.01.055] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023]
Abstract
The notable surface plasmon resonance (SPR) effect of some metals has been applied to improve the efficiency of alcohol oxidation reactions, whereas the comprehensive investigation of Cu-assisted photoelectrocatalysis remains challenging. We herein successfully prepared trimetallic PdAgCu nanospheres (NSs) with abundant surface bulges for the advanced ethylene glycol oxidation reaction (EGOR) and compared them with bimetallic PdAg NSs to investigate the performance enhancement mechanism. Impressively, the as-optimized PdAgCu NSs exhibited superb mass activity and electrochemical stability. Moreover, under visible light illumination, the mass activity of PdAgCu NSs increased to 1.62 times compared to that in the dark, and in contrast, the mass activity of PdAg NSs only increased to 1.48 times that in the dark. A mechanistic study indicated that the incorporation of Cu not only strengthens the whole SPR effect of PdAgCu NSs but also further modifies the electronic structure of Pd. This work highlighted that the incorporation of Cu into PdAg NSs further enhanced the photoelectrocatalytic performance and increased noble metal atom utilization, which may provide guidance to fabricate novel and promising nanocatalysts in the field of photoelectrocatalysis.
Collapse
Affiliation(s)
- Kewang Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Cheng Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Siyu Guo
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | - Shujin Li
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Zhengying Wu
- Jiangsu Key Laboratory for Environment Functional Materials, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Shinichi Hata
- Department of Applied Chemistry, Faculty of Engineering, Sanyo-Onoda City University, Sanyo-Onoda, Yamaguchi 756-0884, Japan
| | - Jie Li
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Yukihide Shiraishi
- Department of Applied Chemistry, Faculty of Engineering, Sanyo-Onoda City University, Sanyo-Onoda, Yamaguchi 756-0884, Japan
| | - Yukou Du
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China; School of Optical and Electronic Information, Suzhou City University, Suzhou 215104, China.
| |
Collapse
|
6
|
One-Pot Au@Pd Dendritic Nanoparticles as Electrocatalysts with Ethanol Oxidation Reaction. Catalysts 2022. [DOI: 10.3390/catal13010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The one-pot synthesis strategy of Au@Pd dendrites nanoparticles (Au@Pd DNPs) was simply synthesized in a high-temperature aqueous solution condition where cetyltrimethylammonium chloride (CTAC) acted as a reducing and capping agent at a high temperature. The Au@Pd DNPs with highly monodisperse were shown in high yields by the Au:Pd rate. The nanostructure and optical and crystalline properties of the Au@Pd DNPs were characterized by UV–vis spectroscopy, transmission electron microscopy (TEM), and X-ray diffraction. The Au@Pd DNPs showed an efficient electrochemical catalytic performance rate toward the ethanol oxidation reaction (EOR) due to their nanostructures and Au:Pd rate.
Collapse
|
7
|
Lee SJ, Jang H, Lee DN. Inorganic Nanoflowers—Synthetic Strategies and Physicochemical Properties for Biomedical Applications: A Review. Pharmaceutics 2022; 14:pharmaceutics14091887. [PMID: 36145635 PMCID: PMC9505446 DOI: 10.3390/pharmaceutics14091887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 11/29/2022] Open
Abstract
Nanoflowers, which are flower-shaped nanomaterials, have attracted significant attention from scientists due to their unique morphologies, facile synthetic methods, and physicochemical properties such as a high surface-to-volume ratio, enhanced charge transfer and carrier immobility, and an increased surface reaction efficiency. Nanoflowers can be synthesized using inorganic or organic materials, or a combination of both (called a hybrid), and are mainly used for biomedical applications. Thus far, researchers have focused on hybrid nanoflowers and only a few studies on inorganic nanoflowers have been reported. For the first time in the literature, we have consolidated all the reports on the biomedical applications of inorganic nanoflowers in this review. Herein, we review some important inorganic nanoflowers, which have applications in antibacterial treatment, wound healing, combinatorial cancer therapy, drug delivery, and biosensors to detect diseased conditions such as diabetes, amyloidosis, and hydrogen peroxide poisoning. In addition, we discuss the recent advances in their biomedical applications and preparation methods. Finally, we provide a perspective on the current trends and potential future directions in nanoflower research. The development of inorganic nanoflowers for biomedical applications has been limited to date. Therefore, a diverse range of nanoflowers comprising inorganic elements and materials with composite structures must be synthesized using ecofriendly synthetic strategies.
Collapse
Affiliation(s)
- Su Jung Lee
- Ingenium College of Liberal Arts (Chemistry), Kwangwoon University, Seoul 01897, Korea
| | - Hongje Jang
- Department of Chemistry, Kwangwoon University, Seoul 01897, Korea
- Correspondence: (H.J.); (D.N.L.)
| | - Do Nam Lee
- Ingenium College of Liberal Arts (Chemistry), Kwangwoon University, Seoul 01897, Korea
- Correspondence: (H.J.); (D.N.L.)
| |
Collapse
|