1
|
Li S, Wang F, Hao L, Zhang P, Song G, Zhang Y, Wang C, Wang Z, Wu Q. Enhancing peroxidase activity of NiCo 2O 4 nanoenzyme by Mn doping for catalysis of CRISPR/Cas13a-mediated non-coding RNA detection. Int J Biol Macromol 2024; 283:137594. [PMID: 39542328 DOI: 10.1016/j.ijbiomac.2024.137594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 10/27/2024] [Accepted: 11/11/2024] [Indexed: 11/17/2024]
Abstract
CRISPR/Cas13a with precise and controllable programming of endonuclease activity has been served as powerful tool for RNA sensing. Although with high sensitivity, existing CRISPR/Cas13a-based biosensors need complex amplification procedure or special equipment that limited quantification capability. Here, Mn-doped NiCo2O4 (Mn/NiCo2O4) nanozyme with enhanced peroxidase activity was synthesized and combined with CRISPR/Cas13a-based reaction to develop a simple, sensitive and universal biosensor for RNA detection, which is achieved through target recognition that activates Cas enzymes to cleave RNA reporter for inhibiting Mn/NiCo2O4 nanozyme to assemble on microplate. The Mn/NiCo2O4 nanozyme assembled on microplate can be monitored through colorimetric and fluorometric approaches. On one hand, Mn/NiCo2O4 nanozyme offers ideal peroxidase activity to catalyze colorimetric reaction, and as low as dozens of amol level of RNA target can be sensitively detected by naked eyes without any amplification procedures. On the other hand, Mn/NiCo2O4 can be also served as a signal amplifier to produce large amount of Co2+, Mn2+and Ni2+ to quench the fluorescence of calcein. The fluorescent approach can achieve higher sensitivity (about 40-fold) than colorimetric method. More importantly, the proposed biosensor can work well for multiple RNA detection in real biological samples, showing a great potential for monitoring non-coding RNA-related diseases.
Collapse
Affiliation(s)
- Shuofeng Li
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China; College of Science, Hebei Agricultural University, Baoding 071001, China
| | - Fangfang Wang
- Hebei Bioinformatic Utilization and Technological Innovation Center for Agricultural Microbes, College of Life Sciences, Hebei Agricultural University, Baoding 071001, China.
| | - Lin Hao
- College of Science, Hebei Agricultural University, Baoding 071001, China
| | - Pengbo Zhang
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Guangyi Song
- Hebei Bioinformatic Utilization and Technological Innovation Center for Agricultural Microbes, College of Life Sciences, Hebei Agricultural University, Baoding 071001, China
| | - Yawen Zhang
- College of Basic Medical Science, Hebei University, Baoding 071002, China
| | - Chun Wang
- College of Science, Hebei Agricultural University, Baoding 071001, China
| | - Zhi Wang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China; College of Science, Hebei Agricultural University, Baoding 071001, China
| | - Qiuhua Wu
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China; College of Science, Hebei Agricultural University, Baoding 071001, China.
| |
Collapse
|
2
|
Cui Z, Zhang J, Zhao S, Wu K, Li C, Ma R, Li CM. Inside-out regulation of MnO toward fast reaction kinetics in aqueous zinc ion batteries. Chem Commun (Camb) 2023; 59:12601-12604. [PMID: 37791467 DOI: 10.1039/d3cc03908k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
An "inside-out regulation" strategy is proposed to improve the Zn2+ storage of MnO by Ni doping into the lattice and graphene wrapping outside the nanoparticles. The as-prepared Ni-MnO@rGO exhibits 112 mA h g-1 at 2.0 A g-1 over 800 cycles, due to the improved transport of electrons and ions from the synergistical function of intrinsic doping and external graphene encapsulation.
Collapse
Affiliation(s)
- Zixiang Cui
- School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou 215009, China
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Jing Zhang
- School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou 215009, China
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Shenfei Zhao
- Institute for Clean Energy & Advanced Materials, School of Materials & Energy, Southwest University, Chongqing, 400715, P. R. China
| | - Ke Wu
- School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou 215009, China
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Chunjie Li
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Ruguang Ma
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Chang Ming Li
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| |
Collapse
|
3
|
Chen F, Zhang Y, Chen S, Zang H, Liu C, Sun H, Geng B. Regulating the kinetics of zinc-ion migration in spinel ZnMn 2O 4 through iron doping boosted aqueous zinc-ion storage performance. J Colloid Interface Sci 2023; 649:703-712. [PMID: 37385035 DOI: 10.1016/j.jcis.2023.06.152] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/19/2023] [Accepted: 06/22/2023] [Indexed: 07/01/2023]
Abstract
Spinel ZnMn2O4 with a three-dimensional channel structure is one of the important cathode materials for aqueous zinc ions batteries (AZIBs). However, like other manganese-based materials, spinel ZnMn2O4 also has problems such as poor conductivity, slow reaction kinetics and structural instability under long cycles. Herein, ZnMn2O4 mesoporous hollow microspheres with metal ion doping were prepared by a simple spray pyrolysis method and applied to the cathode of aqueous zinc ion battery. Cation doping not only introduces defects, changes the electronic structure of the material, improves its conductivity, structural stability, and reaction kinetics, but also weakens the dissolution of Mn2+. The optimized 0.1 % Fe-doped ZnMn2O4 (0.1% Fe-ZnMn2O4) has a capacity of 186.8 mAh g-1 after 250 charge-discharge cycles at 0.5 A g-1 and the discharge specific capacity reaches 121.5 mAh g-1 after 1200 long cycles at 1.0 A g-1. The theoretical calculation results show that doping causes the change of electronic state structure, accelerates the electron transfer rate, and improves the electrochemical performance and stability of the material.
Collapse
Affiliation(s)
- Feiran Chen
- College of Chemistry and Materials Science, The Key Laboratory of Functional Molecular Solids, Ministry of Education, The Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes, Anhui Provincial Engineering Laboratory for New-Energy Vehicle Battery Energy-Storage Materials, Anhui Normal University, Wuhu 241002, China
| | - Yan Zhang
- College of Chemistry and Materials Science, The Key Laboratory of Functional Molecular Solids, Ministry of Education, The Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes, Anhui Provincial Engineering Laboratory for New-Energy Vehicle Battery Energy-Storage Materials, Anhui Normal University, Wuhu 241002, China
| | - Shuai Chen
- College of Chemistry and Materials Science, The Key Laboratory of Functional Molecular Solids, Ministry of Education, The Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes, Anhui Provincial Engineering Laboratory for New-Energy Vehicle Battery Energy-Storage Materials, Anhui Normal University, Wuhu 241002, China
| | - Hu Zang
- College of Chemistry and Materials Science, The Key Laboratory of Functional Molecular Solids, Ministry of Education, The Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes, Anhui Provincial Engineering Laboratory for New-Energy Vehicle Battery Energy-Storage Materials, Anhui Normal University, Wuhu 241002, China
| | - Changjiang Liu
- College of Chemistry and Materials Science, The Key Laboratory of Functional Molecular Solids, Ministry of Education, The Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes, Anhui Provincial Engineering Laboratory for New-Energy Vehicle Battery Energy-Storage Materials, Anhui Normal University, Wuhu 241002, China
| | - Hongxia Sun
- College of Chemistry and Materials Science, The Key Laboratory of Functional Molecular Solids, Ministry of Education, The Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes, Anhui Provincial Engineering Laboratory for New-Energy Vehicle Battery Energy-Storage Materials, Anhui Normal University, Wuhu 241002, China
| | - Baoyou Geng
- College of Chemistry and Materials Science, The Key Laboratory of Functional Molecular Solids, Ministry of Education, The Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes, Anhui Provincial Engineering Laboratory for New-Energy Vehicle Battery Energy-Storage Materials, Anhui Normal University, Wuhu 241002, China; Institute of Energy, Hefei Comprehensive National Science Center, Anhui, Hefei 230031, China.
| |
Collapse
|
4
|
Kumar R, Sahoo S, Joanni E, Pandey R, Shim JJ. Vacancy designed 2D materials for electrodes in energy storage devices. Chem Commun (Camb) 2023; 59:6109-6127. [PMID: 37128726 DOI: 10.1039/d3cc00815k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Vacancies are ubiquitous in nature, usually playing an important role in determining how a material behaves, both physically and chemically. As a consequence, researchers have introduced oxygen, sulphur and other vacancies into bi-dimensional (2D) materials, with the aim of achieving high performance electrodes for electrochemical energy storage. In this article, we focused on the recent advances in vacancy engineering of 2D materials for energy storage applications (supercapacitors and secondary batteries). Vacancy defects can effectively modify the electronic characteristics of 2D materials, enhancing the charge-transfer processes/reactions. These atomic-scale defects can also serve as extra host sites for inserted protons or small cations, allowing easier ion diffusion during their operation as electrodes in supercapacitors and secondary batteries. From the viewpoint of materials science, this article summarises recent developments in the exploitation of vacancies (which are surface defects, for these materials), including various defect creation approaches and cutting-edge techniques for detection of vacancies. The crucial role of defects for improvement in the energy storage performance of 2D electrode materials in electrochemical devices has also been highlighted.
Collapse
Affiliation(s)
- Rajesh Kumar
- Department of Mechanical Engineering, Indian Institute of Technology, Kanpur 208016, Uttar Pradesh, India.
| | - Sumanta Sahoo
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea.
| | - Ednan Joanni
- Center for Information Technology Renato Archer (CTI), Campinas 13069-901, Brazil
| | - Raghvendra Pandey
- Department of Physics, ARSD College, University of Delhi, New Delhi, 110021, India
| | - Jae-Jin Shim
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea.
| |
Collapse
|
5
|
Enhancing the surface polarization effect via Ni/NiMoOx heterojunction architecture for urea-assisted hydrogen generation. J Colloid Interface Sci 2023; 629:1012-1020. [DOI: 10.1016/j.jcis.2022.09.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/29/2022] [Accepted: 09/04/2022] [Indexed: 11/23/2022]
|