1
|
Chen M, Fu GE, Zhao W, Zhang T. Effective Strategies in Covalent Organic Frameworks for Enhanced Photocatalytic Hydrogen Production. Chemistry 2025; 31:e202500100. [PMID: 40041928 DOI: 10.1002/chem.202500100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 03/04/2025] [Indexed: 03/16/2025]
Abstract
Hydrogen as a significant green energy source, has emerged as one of the most promising candidates to solve serious environmental and energy problems. Photocatalytic water splitting is a prospective route to sustainable hydrogen production. Covalent organic frameworks (COFs) are considered as efficient photocatalysts due to their substantial specific surface areas, extended π-conjugated backbones, and robust chemical stability. This review summarizes the recent advances of COF-based materials in the field of photocatalytic hydrogen production, including the construction of donor-acceptor (D-A) structure, protonation of the N site, synthesis of zwitterionic COFs, introduction of co-catalysts, use of metal-containing monomers, and compositing COFs with other catalysts. The properties of the catalysts are meticulously adjusted through those structural and system design strategies, thereby significantly enhancing the hydrogen production performance of the COFs. Finally, the challenges and potential opportunities for future developments are discussed in terms of the current research status and practical applications of photocatalytic hydrogen production from COFs.
Collapse
Affiliation(s)
- Mengyao Chen
- Ningbo Institute of Materials Technology &Engineering, Chinese Academy of Sciences, Key Laboratory of Advanced Marine Materials, 315201, Ningbo, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Guang-En Fu
- Ningbo Institute of Materials Technology &Engineering, Chinese Academy of Sciences, Key Laboratory of Advanced Marine Materials, 315201, Ningbo, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Wenkai Zhao
- Ningbo Institute of Materials Technology &Engineering, Chinese Academy of Sciences, Key Laboratory of Advanced Marine Materials, 315201, Ningbo, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Tao Zhang
- Ningbo Institute of Materials Technology &Engineering, Chinese Academy of Sciences, Key Laboratory of Advanced Marine Materials, 315201, Ningbo, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| |
Collapse
|
2
|
Sun H, Li J, Liang W, Gong X, Jing A, Yang W, Liu H, Ren S. Porous Organic Polymers as Active Electrode Materials for Energy Storage Applications. SMALL METHODS 2024; 8:e2301335. [PMID: 38037763 DOI: 10.1002/smtd.202301335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/05/2023] [Indexed: 12/02/2023]
Abstract
Eco-friendly and efficient energy production and storage technologies are highly demanded to address the environmental and energy crises. Porous organic polymers (POPs) are a class of lightweight porous network materials covalently linked by organic building blocks, possessing high surface areas, tunable pores, and designable components and structures. Due to their unique structural and compositional advantages, POPs have recently emerged as promising electrode materials for energy storage devices, particularly in the realm of supercapacitors and ion batteries. In this work, a comprehensive overview of recent progress and applications of POPs as electrode materials in energy storage devices, including the structural features and synthesis strategies of various POPs, as well as their applications in supercapacitors, lithium batteries, sodium batteries, and potassium batteries are provided. Finally, insights are provided into the future research directions of POPs in electrochemical energy storage technologies. It is anticipated that this work can provide readers with a comprehensive background on the design of POPs-based electrode materials and ignite more research in the development of next-generation energy storage devices.
Collapse
Affiliation(s)
- Haotian Sun
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Jingli Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Wencui Liang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Xue Gong
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Aoming Jing
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Wanru Yang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Hongxu Liu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Shijie Ren
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| |
Collapse
|
3
|
Xu Y, Gong J, Li Q, Guo X, Wan X, Xu L, Pang H. Covalent organic frameworks and their composites for rechargeable batteries. NANOSCALE 2024; 16:11429-11456. [PMID: 38855977 DOI: 10.1039/d4nr01092b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Covalent organic frameworks (COFs), characterized by well-ordered pores, large specific surface area, good stability, high precision, and flexible design, are a promising material for batteries and have received extensive attention from researchers in recent years. Compared with inorganic materials, COFs can construct elastic frameworks with better structural stability, and their chemical compositions and structures can be precisely adjusted and functionalized at the molecular level, providing an open pathway for the convenient transfer of ions. In this review, the energy storage mechanism and unique superiority of COFs and COF composites as electrodes, separators and electrolytes for rechargeable batteries are discussed in detail. Special emphasis is placed on the relationship between the establishment of COF structures and their electrochemical performance in different batteries. Finally, this review summarizes the challenges and prospects of COFs and COF composites in battery equipment.
Collapse
Affiliation(s)
- Yuxia Xu
- Guangling College, Yangzhou University, Yangzhou 225009, Jiangsu, PR China
| | - Jiayue Gong
- School of Chemistry and Material Science, Nanjing Normal University, Nanjing 210023, Jiangsu, PR China
| | - Qing Li
- Guangling College, Yangzhou University, Yangzhou 225009, Jiangsu, PR China
| | - Xiaotian Guo
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, Jiangsu, PR China.
| | - Xin Wan
- Guangling College, Yangzhou University, Yangzhou 225009, Jiangsu, PR China
| | - Lin Xu
- School of Chemistry and Material Science, Nanjing Normal University, Nanjing 210023, Jiangsu, PR China
| | - Huan Pang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, Jiangsu, PR China.
| |
Collapse
|
4
|
Sun B, Sun Z, Yang Y, Huang XL, Jun SC, Zhao C, Xue J, Liu S, Liu HK, Dou SX. Covalent Organic Frameworks: Their Composites and Derivatives for Rechargeable Metal-Ion Batteries. ACS NANO 2024; 18:28-66. [PMID: 38117556 DOI: 10.1021/acsnano.3c08240] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Covalent organic frameworks (COFs) have attracted considerable interest in the field of rechargeable batteries owing to their three-dimensional (3D) varied pore sizes, inerratic porous structures, abundant redox-active sites, and customizable structure-adjustable frameworks. In the context of metal-ion batteries, these materials play a vital role in electrode materials, effectively addressing critical issues such as low ionic conductivity, limited specific capacity, and unstable structural integrity. However, the electrochemical characteristics of the developed COFs still fall short of practical battery requirements due to inherent issues such as low electronic conductivity, the tradeoff between capacity and redox potential, and unfavorable micromorphology. This review provides a comprehensive overview of the recent advancements in the application of COFs, COF-based composites, and their derivatives in rechargeable metal-ion batteries, including lithium-ion, lithium-sulfur, sodium-ion, sodium-sulfur, potassium-ion, zinc-ion, and other multivalent metal-ion batteries. The operational mechanisms of COFs, COF-based composites, and their derivatives in rechargeable batteries are elucidated, along with the strategies implemented to enhance the electrochemical properties and broaden the range of their applications.
Collapse
Affiliation(s)
- Bowen Sun
- Key Lab for Special Functional Materials of Ministry of Education, School of Materials Science and Engineering, Henan University, Kaifeng 475004, People's Republic of China
| | - Zixu Sun
- Key Lab for Special Functional Materials of Ministry of Education, School of Materials Science and Engineering, Henan University, Kaifeng 475004, People's Republic of China
| | - Yi Yang
- Key Lab for Special Functional Materials of Ministry of Education, School of Materials Science and Engineering, Henan University, Kaifeng 475004, People's Republic of China
| | - Xiang Long Huang
- Institute of Energy Materials Science, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China
| | - Seong Chan Jun
- School of Mechanical Engineering, Yonsei University, Seoul 120-749, South Korea
| | - Chongchong Zhao
- Henan Key Laboratory of Energy Storage Materials and Processes, Zhengzhou Institute of Emerging Industrial Technology, Zhengzhou 450003, People's Republic of China
| | - Jiaojiao Xue
- Key Lab for Special Functional Materials of Ministry of Education, School of Materials Science and Engineering, Henan University, Kaifeng 475004, People's Republic of China
| | - Shude Liu
- College of Textiles, Donghua University, Shanghai 201620, People's Republic of China
| | - Hua Kun Liu
- Institute of Energy Materials Science, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China
- Institute for Superconducting and Electronic Materials, University of Wollongong,Wollongong, New South Wales 2522, Australia
| | - Shi Xue Dou
- Institute of Energy Materials Science, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China
- Institute for Superconducting and Electronic Materials, University of Wollongong,Wollongong, New South Wales 2522, Australia
| |
Collapse
|
5
|
Zhang Z, Xu Y. Hydrothermal Synthesis of Highly Crystalline Zwitterionic Vinylene-Linked Covalent Organic Frameworks with Exceptional Photocatalytic Properties. J Am Chem Soc 2023; 145:25222-25232. [PMID: 37856866 DOI: 10.1021/jacs.3c08220] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Ionic covalent organic frameworks (COFs) featuring both crystallinity and ionic characteristics have attracted tremendous attention in recent years. Compared with single anion- or cation-containing ionic COFs, zwitterionic COFs possess unique functionalities beyond single ionic COFs such as tunable charge density and superhydrophilic and highly ion-conductive characteristics, endowing them with huge potential in various applications. However, it remains a considerable challenge to directly synthesize robust, highly crystalline zwitterionic COFs from the original building blocks. Herein, we report a green hydrothermal synthesis strategy to prepare highly crystalline zwitterionic vinylene-linked COFs (ZVCOFs) from the predesigned zwitterionic building block by utilizing 4-dimethylaminopyridine (DMAP) as the high-efficiency catalyst for the first time. Detailed theoretical calculations and experiments revealed that both the high catalytic activity of DMAP and the unique role of water contributed to the formation of highly crystalline ZVCOFs. It was found that the participation of water could not only remarkably reduce the activation energy barrier and thus enhance the reaction reversibility but also enable the hydration of zwitterionic sites and facilitate ordered layered arrangement, which are favorable for the ZVCOF crystallization. Benefiting from the highly π-conjugated structure and hydrophilic characteristic, the obtained ZVCOFs achieved an ultrahigh sacrificial photocatalytic hydrogen evolution rate of 2052 μmol h-1 under visible light irradiation with an apparent quantum yield up to 47.1% at 420 nm, superior to nearly all COF-based photocatalysts ever reported. Moreover, the ZVCOFs could be deposited on a support as a photocatalytic film device, which demonstrated a remarkable photocatalytic performance of 402.1 mmol h-1 m-2 for hydrogen evolution.
Collapse
Affiliation(s)
- Zhao Zhang
- School of Engineering, Westlake University, Hangzhou 310024, Zhejiang Province, China
| | - Yuxi Xu
- School of Engineering, Westlake University, Hangzhou 310024, Zhejiang Province, China
| |
Collapse
|
6
|
Ji H, Qiao D, Yan G, Dong B, Feng Y, Qu X, Jiang Y, Zhang X. Zwitterionic and Hydrophilic Vinylene-Linked Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Evolution. ACS APPLIED MATERIALS & INTERFACES 2023; 15:37845-37854. [PMID: 37489898 DOI: 10.1021/acsami.3c08250] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
Developing effective synthetic strategies as well as broadening functionalities for zwitterionic materials that comprise moieties with equimolar cationic and anionic groups still remains a huge challenge. Herein, we develop two zwitterionic vinylene-linked covalent organic frameworks (Zi-VCOF-1 and Zi-VCOF-2) that are a type of novel hydrophilic material. Zi-VCOF-1 and Zi-VCOF-2 are obtained directly through the convenient Knoevenagel condensation of new sulfonic-pyridinium zwitterionic monomers with aromatic aldehyde derivatives. This is the first report on zwitterionic COFs being constructed by the bottom-up functionalization approach from predesigned zwitterionic monomers. Both Zi-VCOFs exhibit a high photocatalytic hydrogen evolution rate (HER) because of their appropriate optical property and outstanding hydrophilicity. Specifically, Zi-VCOF-1 and Zi-VCOF-2 show photocatalytic HER of 13,547 and 5057 μmol h-1 g-1, respectively. Interestingly, the photocatalytic HER of Zi-VCOF-1 is about 2.68 times of that of Zi-VCOF-2, although they differ by only one methyl group in sulfonic-pyridinium zwitterionic pairs. The photocatalytic HER of Zi-VCOF-1 is not only the highest in the vinylene-linked COFs but also outstanding among the most reported COFs. This is the first application of zwitterionic COFs for photocatalytic hydrogen evolution, which would open a new frontier in zwitterionic COFs and be helpful for the design of other photocatalytic materials.
Collapse
Affiliation(s)
- Haifeng Ji
- Hebei Key Laboratory of Functional Polymers, Department of Polymer Materials and Engineering, Hebei University of Technology, Tianjin 300401, P. R. China
| | - Danyang Qiao
- School of Chemistry and Chemical Engineering, Hebei University of Technology, Tianjin 300401, P. R. China
| | - Gaojie Yan
- Hebei Key Laboratory of Functional Polymers, Department of Polymer Materials and Engineering, Hebei University of Technology, Tianjin 300401, P. R. China
| | - Beibei Dong
- School of Chemistry and Chemical Engineering, Hebei University of Technology, Tianjin 300401, P. R. China
| | - Yi Feng
- Hebei Key Laboratory of Functional Polymers, Department of Polymer Materials and Engineering, Hebei University of Technology, Tianjin 300401, P. R. China
| | - Xiongwei Qu
- Hebei Key Laboratory of Functional Polymers, Department of Polymer Materials and Engineering, Hebei University of Technology, Tianjin 300401, P. R. China
| | - Yu Jiang
- School of Pharmacy, Nantong University, Nantong 226019, P. R. China
| | - Xiaojie Zhang
- Hebei Key Laboratory of Functional Polymers, Department of Polymer Materials and Engineering, Hebei University of Technology, Tianjin 300401, P. R. China
| |
Collapse
|
7
|
Chen C, Zhang M, Chen Q, Duan H, Liu S. Recent Progress in Framework Materials for High-Performance Lithium-Sulfur Batteries. CHEM REC 2023:e202200278. [PMID: 36807712 DOI: 10.1002/tcr.202200278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/26/2023] [Indexed: 02/23/2023]
Abstract
Lithium-Sulfur batteries (LSBs) have been considered as a promising candidate for the next generation of energy storage systems due to their high theoretical capacity. However, there are still lots of pending scientific and technological issues to be solved. Framework materials show great potential to address the above-mentioned issues due to the highly ordered distribution of pore sizes, effective catalytic activity, and periodically arranged aperture. In addition, good tunability gives framework materials unlimited possibilities to achieve satisfying performance for LSBs. In this review, the recent advances in pristine framework materials, their derivatives, and composites have been summarized. And a short conclusion and outlook regard to future prospects for guiding the development of framework materials and LSBs.
Collapse
Affiliation(s)
- Changyun Chen
- Key Laboratory of Advanced Functional Materials of Nanjing, School of Environmental Science, Nanjing Xiaozhuang University, Nanjing, 211171, Jiangsu, PRC
| | - Mengfei Zhang
- High School Affiliated to Nanjing Normal University Qinhuai Campus, Nanjing, 211126, Jiangsu, PRC
| | - Quanzhan Chen
- Key Laboratory of Advanced Functional Materials of Nanjing, School of Environmental Science, Nanjing Xiaozhuang University, Nanjing, 211171, Jiangsu, PRC
| | - Haibao Duan
- Key Laboratory of Advanced Functional Materials of Nanjing, School of Environmental Science, Nanjing Xiaozhuang University, Nanjing, 211171, Jiangsu, PRC
| | - Suli Liu
- Key Laboratory of Advanced Functional Materials of Nanjing, School of Environmental Science, Nanjing Xiaozhuang University, Nanjing, 211171, Jiangsu, PRC
| |
Collapse
|
8
|
Wang Y, Yang X, Li P, Cui F, Wang R, Li X. Covalent Organic Frameworks for Separator Modification of Lithium-Sulfur Batteries. Macromol Rapid Commun 2022:e2200760. [PMID: 36385727 DOI: 10.1002/marc.202200760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/04/2022] [Indexed: 11/18/2022]
Abstract
Lithium-sulfur (Li-S) batteries are regarded as one of the promising energy storage systems. However, rapid capacity attenuation caused by shuttle effect of soluble polysulfides is major challenge in practical application. The separator modification is regarded as one countermeasure besides the construction of sulfur host materials. Covalent organic frameworks (COFs) are one type of outstanding candidates for suppressing shuttle effect of polysulfides. Herein, recent advances of COFs in the application as commercial separator modifiers are summarized. COFs serve as ionic sieves, the importance of porous size and surface environments in inhibiting soluble polysulfides shuttling and promoting lithium ions conduction is highlighted. The superiority of charge-neutral COFs, ionic COFs, and the composites of COFs with conductive materials for improving reversible capacity and cycling stability is demonstrated. Some new strategies for the design of COF-based separator modifiers are proposed to achieving high energy density. The review provides new perspectives for future development of high-performance Li-S batteries.
Collapse
Affiliation(s)
- Yaxin Wang
- Hebei Key Laboratory of Functional Polymer, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, P. R. China
| | - Xuemiao Yang
- Hebei Key Laboratory of Functional Polymer, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, P. R. China
| | - Pengyue Li
- Hebei Key Laboratory of Functional Polymer, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, P. R. China.,Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian, 350007, P. R. China
| | - Fangling Cui
- Hebei Key Laboratory of Functional Polymer, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, P. R. China
| | - Ruihu Wang
- Hebei Key Laboratory of Functional Polymer, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, P. R. China
| | - Xiaoju Li
- Hebei Key Laboratory of Functional Polymer, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, P. R. China.,Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian, 350007, P. R. China
| |
Collapse
|