1
|
Wang Z, Shen S, Wang J, Zhong W. Modulating the D-Band Center of Electrocatalysts for Enhanced Water Splitting. Chemistry 2024; 30:e202402725. [PMID: 39269324 DOI: 10.1002/chem.202402725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/11/2024] [Accepted: 09/11/2024] [Indexed: 09/15/2024]
Abstract
To tackle the global energy scarcity and environmental degradation, developing efficient electrocatalysts is essential for achieving sustainable hydrogen production via water splitting. Modulating the d-band center of transition metal electrocatalysts is an effective approach to regulate the adsorption energy of intermediates, alter reaction pathways, lower the energy barrier of the rate-determining step, and ultimately improve electrocatalytic water splitting performance. In this review, a comprehensive overview of the recent advancements in modulating the d-band center for enhanced electrocatalytic water splitting is offered. Initially, the basics of the d-band theory are discussed. Subsequently, recent modulation strategies that aim to boost electrocatalytic activity, with particular emphasis on the d-band center as a key indicator in water splitting are summarized. Lastly, the importance of regulating electrocatalytic activity through d-band center, along with the challenges and prospects for improving electrocatalytic water splitting performance by fine-tuning the transition metal d-band center, are provided.
Collapse
Affiliation(s)
- Zhenzhen Wang
- Zhejiang Key Laboratory for Island Green Energy and New Materials, School of Materials Science & Engineering, Taizhou University, Taizhou, Zhejiang, 318000, China
| | - Shijie Shen
- Zhejiang Key Laboratory for Island Green Energy and New Materials, School of Materials Science & Engineering, Taizhou University, Taizhou, Zhejiang, 318000, China
| | - Jiacheng Wang
- Zhejiang Key Laboratory for Island Green Energy and New Materials, School of Materials Science & Engineering, Taizhou University, Taizhou, Zhejiang, 318000, China
| | - Wenwu Zhong
- Zhejiang Key Laboratory for Island Green Energy and New Materials, School of Materials Science & Engineering, Taizhou University, Taizhou, Zhejiang, 318000, China
| |
Collapse
|
2
|
Yan Z, Guo S, Li C, Tan Z, Wang L, Wang W, Li G, Liu Y, Zhang H, Tang M, Feng Z, Wang Y, Li B. Core-bishell NiFe@NC@MoS 2 for boosting electrocatalytic activity towards ultra-efficient oxygen evolution reaction. J Colloid Interface Sci 2024; 674:823-833. [PMID: 38955013 DOI: 10.1016/j.jcis.2024.06.194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/04/2024]
Abstract
Designing and developing suitable oxygen evolution reaction (OER) catalysts with high activity and stability remain challenging in electrolytic water splitting. Hence, NiFe@NC@MoS2 core-bishell composites wrapped by molybdenum disulphide (MoS2) and nitrogen-doped graphene (NC) were prepared using hydrothermal synthesis in this research. NiFe@NC@MoS2 composite exhibits excellent performance with an overpotential of 288 mV and a Tafel slope of 53.2 mV·dec-1 at a current density of 10 mA·cm-2 in 1 M KOH solution, which is superior to commercial RuO2. NC and MoS2 bishells create profuse edge active sites that enhance the adsorption ability of OOH* while lowering the overall overpotential of the product and improving its oxygen precipitation performance. The density function theory(DFT) analysis confirms that the layered MoS2 in NiFe@NC@MoS2 provides additional edge active sites and enhances electron transfer, thus increasing the intrinsic catalytic activity. This research paves a novel way for developing OER electrocatalysts with excellent catalytic performance.
Collapse
Affiliation(s)
- Zhenwei Yan
- School of Mechanical Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450011, PR China
| | - Shuaihui Guo
- School of Mechanical Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450011, PR China
| | - Chuanbin Li
- School of Mechanical Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450011, PR China
| | - Zhaojun Tan
- School of Mechanical Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450011, PR China
| | - Lijun Wang
- School of Mechanical Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450011, PR China.
| | - Wen Wang
- School of Mechanical Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450011, PR China
| | - Gang Li
- School of Mechanical Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450011, PR China
| | - Yanyan Liu
- College of Science, Henan Agriculture University, Zhengzhou 450002, PR China.
| | - Huanhuan Zhang
- College of Science, Henan Agriculture University, Zhengzhou 450002, PR China; College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou 450001, PR China
| | - Mingqi Tang
- School of Materials Science and Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450011, PR China
| | - Zaiqiang Feng
- School of Materials Science and Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450011, PR China
| | - Yongfeng Wang
- Center for Carbon-based Electronics and Key Laboratory for the Physics and Chemistry of Nanodevices, Department of Electronics, Peking University, Beijing 100871, PR China.
| | - Baojun Li
- School of Mechanical Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450011, PR China; College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou 450001, PR China.
| |
Collapse
|
3
|
Luo Z, Gong J, Li Q, Wei F, Liu B, Taylor Isimjan T, Yang X. Geometric and Electronic Engineering in Co/VN Nanoparticles to Boost Bifunctional Oxygen Electrocatalysis for Aqueous/Flexible Zn-Air Batteries. Chemistry 2024; 30:e202303943. [PMID: 38288675 DOI: 10.1002/chem.202303943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Indexed: 02/21/2024]
Abstract
Modulating metal-metal and metal-support interactions is one of the potent tools for augmenting catalytic performance. Herein, highly active Co/VN nanoparticles are well dispersed on three-dimensional porous carbon nanofoam (Co/VN@NC) with the assistance of dicyandiamide. Studies certify that the consequential disordered carbon substrate reinforces the confinement of electrons, while the coupling of diverse components optimizes charge redistribution among species. Besides, theoretical analyses confirm that the regulated electron configuration can significantly tune the binding strength between the active sites and intermediates, thus optimizing reaction energy barriers. Therefore, Co/VN@NC exhibits a competitive potential difference (ΔE, 0.65 V) between the half-wave potential of ORR and OER potential at 10 mA cm-2, outperforming Pt/C+RuO2 (0.67 V). Further, catalyst-based aqueous/flexible ZABs present superior performances with peak power densities of 156 and 85 mW cm-2, superior to Pt/C-based counterparts (128 and 73 mW cm-2). This research provides a pivotal foundation for the evolution of bifunctional catalysts in the energy sector.
Collapse
Affiliation(s)
- Zuyang Luo
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Junlin Gong
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Qiuxia Li
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Fengli Wei
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Baofa Liu
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Tayirjan Taylor Isimjan
- Saudi Arabia Basic Industries Corporation (SABIC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Xiulin Yang
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| |
Collapse
|
4
|
Gao M, Huang Z, Wang L, Li H, Ruan C, Sadeq R, Taylor Isimjan T, Yang X. Synergistic Co-N/V-N dual sites in N-doped Co 3V 2O 8 nanosheets: pioneering high-efficiency bifunctional electrolysis for high-current water splitting. J Colloid Interface Sci 2024; 658:739-747. [PMID: 38142624 DOI: 10.1016/j.jcis.2023.12.064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/05/2023] [Accepted: 12/10/2023] [Indexed: 12/26/2023]
Abstract
Developing affluent dual-metal active sites bifunctional electrocatalysts for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is essential to achieve large-scale water electrolysis, whereas still remains challenging. Herein, a novel nitrogen-doped cobalt-vanadium oxide with abundant Co-N and V-N dual active sites supported on nickel foam (N-Co3V2O8@NF) is constructed by a controllable impregnation-thermal nitridation strategy. The staggered nanosheet structure ensures optimal exposure of active sites. More importantly, N doping effectively regulates the electronic structure of the metal centers and induces the formation of Co-N and V-N dual active sites, which is conducive to improving the conductivity and hydrophilicity, thus synergistically enhancing the electrocatalytic efficiency. Consequently, the optimized N-Co3V2O8@NF exhibits prominent HER (63 mV@10 mA cm-2) and OER (256 mV@10 mA cm-2) activities, surpassing most contemporary bifunctional electrocatalysts. In practical application, the assembled N-Co3V2O8@NF(+/-) electrolyzer consistently achieved ultra-low cell voltages of 1.97 and 2.03 V at 500 and 1000 mA cm-2, respectively, superior to the benchmark RuO2@NF(+) || Pt/C@NF(-) and showcasing robust durability. This paves the way for its prospective adoption in industrial water electrolysis applications.
Collapse
Affiliation(s)
- Mingcheng Gao
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Zhiyang Huang
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Lixia Wang
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Huatong Li
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Changping Ruan
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China.
| | - Raeid Sadeq
- Saudi Arabia Basic Industries Corporation (SABIC) at King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Tayirjan Taylor Isimjan
- Saudi Arabia Basic Industries Corporation (SABIC) at King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.
| | - Xiulin Yang
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China.
| |
Collapse
|
5
|
Munawar T, Fatima S, Batoo KM, Bashir A, Mukhtar F, Hussain S, Manzoor S, Ashiq MN, Khan SA, Koc M, Iqbal F. Synergistic effect of a bamboo-like Bi 2S 3 covered Sm 2O 3 nanocomposite (Bi 2S 3-Sm 2O 3) for enhanced alkaline OER. Phys Chem Chem Phys 2024; 26:2678-2691. [PMID: 38175550 DOI: 10.1039/d3cp05158g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
The availability of hydrogen energy from water splitting through the electrocatalytic route is strongly dependent on the efficiency, durability, and cost of the electrocatalysts. Herein, a novel Bi2S3-covered Sm2O3 (Bi2S3-Sm2O3) nanocomposite electrocatalyst was developed by a hydrothermal route for the oxygen evolution reaction (OER). The electrochemical properties were studied in 1.00 mol KOH solution after coating the target material on the stainless-steel substrate (SS). Physical analysis via XRD, FTIR, IV, TEM/EDX, and XPS revealed that the Bi2S3-Sm2O3 composite possesses metallic surface states, thereby displaying unconventional electron dynamics and purity of phases. The Bi2S3-Sm2O3 composite shows outstanding OER activity with a low overpotential of 197 mV and a Tafel slope of 74 mV dec-1 at a 10 mA cm-2 current density as compared to pure Bi2S3 and Sm2O3. Meanwhile, the composite catalyst retains high stability even after 100 h of the chronoamperometry test. Thus, this work unveils a new avenue for the speedy flow of electrons, which is attributed to the synergetic effect between Bi2S3 and Sm2O3, as well as enriched interfacial defects, which exhibit greater oxygen adsorption capability with improved electronic assemblies in the active interfacial region. In addition, the introduced porous structure in core-shell Bi2S3-Sm2O3 provides extraordinary electrical properties. Thus, this article offers a realistic framework for electrochemical energy generation.
Collapse
Affiliation(s)
- Tauseef Munawar
- Institute of Physics, The Islamia University of Bahawalpur, 63100, Pakistan.
| | - Saman Fatima
- Institute of Physics, The Islamia University of Bahawalpur, 63100, Pakistan.
| | - Khalid Mujasam Batoo
- College of Science, King Saud University, P.O. Box-2455, Riyadh-11451, Saudi Arabia
| | - Ambreen Bashir
- Institute of Physics, The Islamia University of Bahawalpur, 63100, Pakistan.
| | - Faisal Mukhtar
- Institute of Physics, The Islamia University of Bahawalpur, 63100, Pakistan.
| | - Sajjad Hussain
- Hybrid Materials Center (HMC), Sejong University, Seoul-05006, Republic of Korea
- Department of Nanotechnology and Advanced Materials Engineering, Sejong University, Seoul-05006, Republic of Korea
| | - Sumaira Manzoor
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Muhammad Naeem Ashiq
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Shoukat Alim Khan
- Division of Sustainable Development, College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Muammer Koc
- Division of Sustainable Development, College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Faisal Iqbal
- Institute of Physics, The Islamia University of Bahawalpur, 63100, Pakistan.
| |
Collapse
|
6
|
Liu X, Yin H, Zhang S, Huang M, Taylor Isimjan T, Yang X, Cai D. Revealing the effect of crystallinity and oxygen vacancies of Fe-Co phosphate on oxygen evolution for high-current water splitting. J Colloid Interface Sci 2024; 653:1379-1387. [PMID: 37801848 DOI: 10.1016/j.jcis.2023.09.185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/27/2023] [Accepted: 09/29/2023] [Indexed: 10/08/2023]
Abstract
Strategically tuning the composition and structure of transition metal phosphates (TMPs) holds immense promise in the development of efficient oxygen evolution reaction (OER) electrocatalysts. However, the effect of crystalline phase transformation for TMPs on the catalytic OER activity remains relatively uncharted. In this study, we have deftly orchestrated the reaction process of anion-etched precursor to induce the amorphization process of FeCo-POx from crystalline to amorphous states. The as-obtained amorphous FeCo-POx (A-FeCo-POx) exhibited an optimized OER performance with a low overpotential of 270 mV at a current density of 10 mA cm-2, which could be attributed to the flexibility of its amorphous structure and the synergistic effect of oxygen vacancies. Moreover, when incorporated into an overall water splitting (OWS) device configured as A-FeCo-POx(+)||Pt/C(-), it displayed long-term solid stability, sustaining operation for 300 h at a current density of 200 mA cm-2. This work not only provides valuable insights into understanding the transformation from crystalline to amorphous states, but also establishes the groundwork for the practical utilization of amorphous nanomaterials in the field of water splitting.
Collapse
Affiliation(s)
- Xinqiang Liu
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Haoran Yin
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Shifan Zhang
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Menghan Huang
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Tayirjan Taylor Isimjan
- Saudi Arabia Basic Industries Corporation (SABIC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Xiulin Yang
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China.
| | - Dandan Cai
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China; School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China.
| |
Collapse
|
7
|
Zhou J, Lan D, Zhang F, Cheng Y, Jia Z, Wu G, Yin P. Self-Assembled MoS 2 Cladding for Corrosion Resistant and Frequency-Modulated Electromagnetic Wave Absorption Materials from X-Band to Ku-Band. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2304932. [PMID: 37635102 DOI: 10.1002/smll.202304932] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/29/2023] [Indexed: 08/29/2023]
Abstract
Reasonable composition design and controllable structure are effective strategies for harmonic electromagnetic wave (EMW) adsorption of multi-component composites. On this basis, the hybrid MoS2 /CoS2 /VN multilayer structure with the triple heterogeneous interface is prepared by simple stirring hydrothermal, which can satisfy the synergistic interaction between different components and obtain excellent EMW absorption performance. Due to the presence of multiple heterogeneous interfaces, MoS2 /CoS2 /VN composites will produce strong interfacial polarization, while the defects in the sample will become the center of polarization, resulting in dipole polarization. Due to the excellent structural design of MoS2 /CoS2 /VN composite material, MoS2 /CoS2 /VN composite material not only has good conductive loss and polarization loss, but also can maintain excellent stability in simulated seawater, and enhance corrosion resistance. The MoS2 /CoS2 /VN composite with dual functions of corrosion resistant and microwave absorption achieves a minimum reflection loss (RL) of -50.48 dB and an effective absorption bandwidth of up to 5.76 GHz, covering both the X-band and Ku-band. Finally, this study provides a strong reference for the development of EMW absorption materials based on transition metal nitrides.
Collapse
Affiliation(s)
- Jixi Zhou
- College of Science, Sichuan Agricultural University, Ya'an, 625014, P. R. China
- Institute of Materials for Energy and Environment, State Key Laboratory of Bio-fibers and Eco-textiles, College of Materials Science and Engineering, Qingdao University, Qingdao, 442002, P. R. China
| | - Di Lan
- School of Materials Science and Engineering, Hubei University of Automotive Technology, Shiyan, 442002, P. R. China
| | - Feng Zhang
- Institute of Materials for Energy and Environment, State Key Laboratory of Bio-fibers and Eco-textiles, College of Materials Science and Engineering, Qingdao University, Qingdao, 442002, P. R. China
| | - Yuhang Cheng
- Institute of Materials for Energy and Environment, State Key Laboratory of Bio-fibers and Eco-textiles, College of Materials Science and Engineering, Qingdao University, Qingdao, 442002, P. R. China
| | - Zirui Jia
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Guanglei Wu
- Institute of Materials for Energy and Environment, State Key Laboratory of Bio-fibers and Eco-textiles, College of Materials Science and Engineering, Qingdao University, Qingdao, 442002, P. R. China
- Key Laboratory of Engineering Dielectrics and Its Application, Ministry of Education, School of Electrical & Electronic Engineering, Harbin University of Science and Technology, Harbin, 150080, P. R. China
| | - Pengfei Yin
- College of Science, Sichuan Agricultural University, Ya'an, 625014, P. R. China
| |
Collapse
|
8
|
Qi L, Huang Z, Liao M, Wang L, Wang L, Gao M, Taylor Isimjan T, Yang X. Synergistic Promotion of Large-Current Water Splitting through Interfacial Engineering of Hierarchically Structured CoP-FeP Nanosheets with Rich P Vacancies. Chemistry 2023; 29:e202301521. [PMID: 37435858 DOI: 10.1002/chem.202301521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 07/11/2023] [Accepted: 07/11/2023] [Indexed: 07/13/2023]
Abstract
The development of hydrogen evolution reaction (HER) catalysts with high performance under large current density is still a challenge. Introducing P vacancies in heterostructure is an appealing strategy to enhance HER kinetics. This study investigates a CoP-FeP heterostructure catalyst with abundant P vacancies (Vp-CoP-FeP/NF) on nickel foam (NF), which was prepared using dipping and phosphating treatment. The optimized Vp-CoP-FeP catalyst exerted prominent HER catalytic capability, requiring an ultra-low overpotential (58 mV @ 10 mA cm-2 ) and displaying robust durability (50 h @ 200 mA cm-2 ) in 1.0 M KOH solution. Furthermore, the catalyst demonstrated superior overall water splitting activity as cathode, demanding only cell voltage of 1.76 V at 200 mA cm-2 , outperforming Pt/C/NF(-) || RuO2 /NF(+) . The catalyst's outstanding performance can be attributed to the hierarchical structure of porous nanosheets, abundant P vacancies, and synergistic effect between CoP and FeP components, which promote water dissociation and H* adsorption and desorption, thereby synergically accelerating HER kinetics and enhancing HER activity. This study demonstrates the potential of HER catalysts with phosphorus-rich vacancies that can work under industrial-scale current density, highlighting the importance of developing durable and efficient catalysts for hydrogen production.
Collapse
Affiliation(s)
- Luoluo Qi
- Guangxi Key Laboratory of Low Carbon Energy Materials School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Zhiyang Huang
- Guangxi Key Laboratory of Low Carbon Energy Materials School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Miao Liao
- Guangxi Key Laboratory of Low Carbon Energy Materials School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Lei Wang
- Department of Food and Environment Engineering, Chuzhou Polytechnic, Chuzhou, 239000, China
| | - Lixia Wang
- Guangxi Key Laboratory of Low Carbon Energy Materials School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Mingcheng Gao
- Guangxi Key Laboratory of Low Carbon Energy Materials School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Tayirjan Taylor Isimjan
- Saudi Arabia Basic Industries Corporation (SABIC) at, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Xiulin Yang
- Guangxi Key Laboratory of Low Carbon Energy Materials School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| |
Collapse
|
9
|
Pellegrino AL, Lo Presti F, Papari GP, Koral C, Andreone A, Malandrino G. Highly Tunable MOCVD Process of Vanadium Dioxide Thin Films: Relationship between Structural/Morphological Features and Electrodynamic Properties. SENSORS (BASEL, SWITZERLAND) 2023; 23:7270. [PMID: 37631806 PMCID: PMC10458005 DOI: 10.3390/s23167270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/11/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023]
Abstract
The monoclinic structures of vanadium dioxide are widely studied as appealing systems due to a plethora of functional properties in several technological fields. In particular, the possibility to obtain the VO2 material in the form of thin film with a high control of structure and morphology represents a key issue for their use in THz devices and sensors. Herein, a fine control of the crystal habit has been addressed through an in-depth study of the metal organic chemical vapor deposition (MOCVD) synthetic approach. The focus is devoted to the key operative parameters such as deposition temperature inside the reactor in order to stabilize the P21/c or the C2/m monoclinic VO2 structures. Furthermore, the compositional purity, the morphology and the thickness of the VO2 films have been assessed through energy dispersive X-ray (EDX) analyses and field-emission scanning electron microscopy (FE-SEM), respectively. THz time domain spectroscopy is used to validate at very high frequency the functional properties of the as-prepared VO2 films.
Collapse
Affiliation(s)
- Anna Lucia Pellegrino
- Dipartimento di Scienze Chimiche, Università di Catania, and INSTM UdR Catania, Viale A. Doria 6, I-95125 Catania, Italy; (A.L.P.); (F.L.P.)
| | - Francesca Lo Presti
- Dipartimento di Scienze Chimiche, Università di Catania, and INSTM UdR Catania, Viale A. Doria 6, I-95125 Catania, Italy; (A.L.P.); (F.L.P.)
| | - Gian Paolo Papari
- Dipartimento di Fisica “E. Pancini”, Università di Napoli “Federico II”, Via Cinthia, I-80126 Napoli, Italy; (G.P.P.); (A.A.)
- Naples Research Unit, Institute for Superconducting and Other Innovative Materials and Devices (SPIN), Consiglio Nazionale delle Ricerche (CNR), Via Cinthia, I-80126 Napoli, Italy
- Naples Division, Istituto Nazionale di Fisica Nucleare (INFN), Via Cinthia, I-80126 Napoli, Italy;
| | - Can Koral
- Naples Division, Istituto Nazionale di Fisica Nucleare (INFN), Via Cinthia, I-80126 Napoli, Italy;
- Department of Science, University of Basilicata, Viale dell’Ateneo Lucano 10, I-85100 Potenza, Italy
| | - Antonello Andreone
- Dipartimento di Fisica “E. Pancini”, Università di Napoli “Federico II”, Via Cinthia, I-80126 Napoli, Italy; (G.P.P.); (A.A.)
- Naples Research Unit, Institute for Superconducting and Other Innovative Materials and Devices (SPIN), Consiglio Nazionale delle Ricerche (CNR), Via Cinthia, I-80126 Napoli, Italy
- Naples Division, Istituto Nazionale di Fisica Nucleare (INFN), Via Cinthia, I-80126 Napoli, Italy;
| | - Graziella Malandrino
- Dipartimento di Scienze Chimiche, Università di Catania, and INSTM UdR Catania, Viale A. Doria 6, I-95125 Catania, Italy; (A.L.P.); (F.L.P.)
| |
Collapse
|
10
|
Wang J, Xuan H, Meng L, Liang X, Li Y, Yang J, Han P. Engineering multilayer catalytic interfaces with N, S co-regulation for high performance water splitting. J Colloid Interface Sci 2023; 646:940-949. [PMID: 37235939 DOI: 10.1016/j.jcis.2023.05.109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/04/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023]
Abstract
The rational design of hierarchical nano-heterojunction electrocatalysts with efficient and durable water splitting performance is a hot research topic in the field of sustainable energy conversion. Herein, chemical vapor deposition methods are exploited to dope N and S elements in a core-shell structured Co3O4@NiMoO4 with a layered structure (N, S-Co3O4@NiMoO4/NF400). The close contact between Co3O4 nanowires and N, S co-doped NiMoO4 cubic arrays facilitates electron transfer. The electronic structure of Ni, Co and Mo atoms could be optimized to enhance their electrical conductivity by modulation of N and S atoms. At current densities of 10 and 200 mA cm-2, N, S-Co3O4@NiMoO4/NF400 has an overpotential of 200, 300 and 71 160 mV for the oxygen evolution reaction and hydrogen evolution reaction, respectively. Its water splitting voltages are 1.45 V and 2 V at 10 and 200 mA cm-2. In addition, N, S-Co3O4@NiMoO4/NF400 can operate stably for 100 h at a current density of 50 mA cm-2. This work provides a new approach to designing bifunctional catalysts with hierarchical heterogeneous structures co-regulated by dual elements.
Collapse
Affiliation(s)
- Jie Wang
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, People's Republic of China
| | - Haicheng Xuan
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, People's Republic of China.
| | - Lingxin Meng
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, People's Republic of China
| | - Xiaohong Liang
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, People's Republic of China
| | - Yuping Li
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, People's Republic of China
| | - Jie Yang
- Shandong Graphenjoy Advanced Material CO., LTD, Dezhou 253602, Shandong Province, People's Republic of China.
| | - Peide Han
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, People's Republic of China
| |
Collapse
|
11
|
Luo J, Zhou Y, Wang X, Gu Y, Liu W, Wang S, Zhang J. CoMoO 4-CoP/NC heterostructure anchored on hollow polyhedral N-doped carbon skeleton for efficient water splitting. J Colloid Interface Sci 2023; 648:90-101. [PMID: 37295373 DOI: 10.1016/j.jcis.2023.05.083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 05/09/2023] [Accepted: 05/14/2023] [Indexed: 06/12/2023]
Abstract
We report the synthesis and electrocatalytic properties of a CoMoO4-CoP heterostructure anchored on a hollow polyhedral N-doped carbon skeleton (CoMoO4-CoP/NC) for water-splitting applications. The preparation involved the anion exchange of MoO42- to the organic ligand of ZIF-67, the self-hydrolysis of MoO42-, and NaH2PO2 phosphating annealing. CoMoO4 was found to enhance thermal stability and prevent active site agglomeration during annealing, while the hollow structure of CoMoO4-CoP/NC provided a large specific surface area and high porosity that facilitated mass transport and charge transfer. The interfacial electron transfer from Co to Mo and P sites promoted the generation of electron-deficient Co sites and electron-enriched P sites, which accelerated water dissociation. CoMoO4-CoP/NC exhibited excellent electrocatalytic activity for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) in 1.0 M KOH solution, with overpotentials of 122 mV and 280 mV at 10 mA cm-2, respectively. The CoMoO4-CoP/NC‖CoMoO4-CoP/NC two-electrode system only required an overall water splitting (OWS) cell voltage of 1.62 V to achieve 10 mA cm-2 in an alkaline electrolytic cell. In addition, the material showed comparable activity to 20% Pt/C‖RuO2 in a pure water home-made membrane electrode device, demonstrating potential for practical applications in proton exchange membrane (PEM) electrolyzers. Our results suggest that CoMoO4-CoP/NC is a promising electrocatalyst for efficient and cost-effective water splitting.
Collapse
Affiliation(s)
- Jiabing Luo
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Yan Zhou
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Xingzhao Wang
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China; State Key Laboratory of Heavy Oil Processing, School of Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Yufeng Gu
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Wanli Liu
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Shutao Wang
- State Key Laboratory of Heavy Oil Processing, School of Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Jun Zhang
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China; State Key Laboratory of Heavy Oil Processing, School of Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China.
| |
Collapse
|
12
|
Hu Y, Huang Z, Zhang Q, Taylor Isimjan T, Chu Y, Mu Y, Wu B, Huang Z, Yang X, Zeng L. Interfacial engineering of Co 5.47N/Mo 5N 6 nanosheets with rich active sites synergistically accelerates water dissociation kinetics for Pt-like hydrogen evolution. J Colloid Interface Sci 2023; 643:455-464. [PMID: 37088049 DOI: 10.1016/j.jcis.2023.04.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/14/2023] [Accepted: 04/07/2023] [Indexed: 04/25/2023]
Abstract
The development of highly efficient hydrogen evolution electrocatalysts with platinum-like activity requires precise control of active sites through interface engineering strategies. In this study, a heterostructured Co5.47N/Mo5N6 catalyst (CoMoNx) on carbon cloth (CC) was synthesized using a combination of dip-etching and vapor nitridation methods. The rough nanosheet surface of the catalyst with uniformly distributed elements exposes a large active surface area and provides abundant interface sites that serve as additional active sites. The CoMoNx was found to exhibit exceptional hydrogen evolution reaction (HER) activity with a low overpotential of 44 mV at 10 mA cm-2 and exceptional stability of 100 h in 1.0 M KOH. The CoMoNx(-)||RuO2(+) system requires only 1.81 V cell voltage to reach a current density of 200 mA cm-2, surpassing the majority of previously reported electrolyzers. Density functional theory (DFT) calculations reveal that the strong synergy between Co5.47N and Mo5N6 at the interface can significantly reduce the water dissociation energy barrier, thereby improving the kinetics of hydrogen evolution. Furthermore, the rough nanosheet architecture of the CoMoNx catalyst with abundant interstitial spaces and multi-channels enhances charge transport and reaction intermediate transportation, synergistically improving the performance of the HER for water splitting.
Collapse
Affiliation(s)
- Yan Hu
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China; Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zhiyang Huang
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Qing Zhang
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Tayirjan Taylor Isimjan
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Youqi Chu
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yongbiao Mu
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Baoxin Wu
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zebing Huang
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xiulin Yang
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China.
| | - Lin Zeng
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
13
|
Li H, Liu Z, Wang L, Guo M, Isimjan TT, Yang X. Bifunctional Ru-Cluster-Decorated Co 3 B-Co(OH) 2 Hybrid Catalyst Synergistically Promotes NaBH 4 Hydrolysis and Water Splitting. Chemistry 2023; 29:e202203207. [PMID: 36469422 DOI: 10.1002/chem.202203207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022]
Abstract
Developing a highly efficient bifunctional catalyst for hydrolysis of metal hydrides and spontaneous hydrogen evolution reaction (HER) is essential for substituting conventional fuels for H2 production. Herein, Ru-cluster-modified Co3 B-Co(OH)2 supported on nickel foam (Ru/Co3 B-Co(OH)2 @NF) is constructed by electroless deposition, calcination and chemical reduction. The catalyst exhibits an excellent hydrogen generation rate (HGR) of 4989 mL min-1 g c a t a l y s t - 1 ${{{\rm g}}_{catalyst}^{-1}}$ and good reusability, superior to most previously reported catalysts. Besides, Ru/Co3 B-Co(OH)2 @NF displays a prominent hydrogen evolution reaction catalytic capability with a low overpotential of 153.0 mV at 100 mA cm-2 (50.5 mV at 10 mA cm-2 ), a small Tafel slope of 40.0 mV dec-1 and long-term stability (100 h@10 mA cm-2 ) in 1.0 M KOH. The excellent catalytic H2 generation capacity benefits from the rapid charge transfer promoted by metallic Co3 B, the synergistic catalytic effect of Co3 B-Co(OH)2 and Ru clusters, and the unique composite structure favorable for solute transport and gas emission.
Collapse
Affiliation(s)
- Huatong Li
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 541004, Guilin, P. R. China
| | - Zhengqi Liu
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 541004, Guilin, P. R. China
| | - Lixia Wang
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 541004, Guilin, P. R. China
| | - Man Guo
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 541004, Guilin, P. R. China
| | - Tayirjan Taylor Isimjan
- Saudi Arabia Basic Industries Corporation (SABIC) at, King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Saudi Arabia
| | - Xiulin Yang
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 541004, Guilin, P. R. China
| |
Collapse
|