1
|
Lei X, Majeed MA, Xu J, Shi W, Song C, Yu C, Cheng H, Zhang W. Plasma-Driven Conversion of 2D Graphene into 3D Pouch for Improved Electromagnetic Absorption Performance. ACS APPLIED MATERIALS & INTERFACES 2024; 16:65211-65221. [PMID: 39542427 DOI: 10.1021/acsami.4c15142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Graphene-based materials are ideal for electromagnetic wave-absorbing materials (EAMs) due to their strong electrical and dielectric losses with reduced thickness and weight. To enhance the electromagnetic wave absorption performance of these materials, additional components are often incorporated. However, this approach not only increases the complexity of the synthesis process but also complicates and destabilizes the control of the material properties. In this study, we successfully employed a one-step method to reduce graphene oxide and transform 2D graphene into a 3D pocket-like structure through plasma treatment. This unique 3D structure is induced by the formation of uneven defects on the surface due to plasma treatment. The distinctive pouch-like structure of the reduced graphene oxide achieved remarkable electromagnetic wave absorption properties. Specifically, the material demonstrated a minimum reflection loss of -38.65 dB at 7.14 GHz, with an effective absorption bandwidth of 5.13 GHz and a thickness of just 1.9 mm. These results highlight the potential of plasma processing as a rapid, efficient, and environmentally friendly approach for the continuous production of advanced EAMs, paving the way for greener manufacturing practices in the industry.
Collapse
Affiliation(s)
- Xiaoting Lei
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
| | - Muhammad Amjad Majeed
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
| | - Jianyong Xu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
| | - Wei Shi
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
| | - Changkun Song
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
| | - Chunpei Yu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
| | - He Cheng
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
- School of State Key Lab of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, People's Republic of China
| | - Wenchao Zhang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
| |
Collapse
|
2
|
Yang Z, Gai X, Zou Y, Jiang Y. The Physical Mechanism of Linear and Nonlinear Optical Properties of Nanographene-Induced Chiral Inversion. Molecules 2024; 29:1053. [PMID: 38474565 DOI: 10.3390/molecules29051053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/26/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
Based on density functional theory (DFT) and wave function analysis, the ultraviolet and visible spectrophotometry (UV-Vis) spectra and Raman spectra of 1-meso and 1-rac obtained by the chiral separation of chiral nanographenes are theoretically investigated. The electron excitation properties of 1-meso and 1-rac are studied by means of transition density matrix (TDM) and charge density difference (CDD) diagrams. The intermolecular interaction is discussed based on an independent gradient model based on Hirshfeld partition (IGMH). The interaction of 1-meso and 1-rac with the external environment is studied using the electrostatic potential (ESP), and the electron delocalization degree of 1-meso and 1-rac is studied based on the magnetically induced current under the external magnetic field. Through the chiral separation of 1-rac, two enantiomers, 1-(P, P) and 1-(M, M), were obtained. The electrical-magnetic interaction of the molecule is revealed by analyzing the electron circular dichroism (ECD) spectra of 1-meso, 1-(P, P) and 1-(M, M), the transition electric dipole moment (TEDM) and the transition magnetic dipole moment (TMDM). It is found that 1-(P, P) and 1-(M, M) have opposite chiral properties due to the inversion of the structure.
Collapse
Affiliation(s)
- Zhiyuan Yang
- College of Science, Liaoning Petrochemical University, Fushun 113001, China
| | - Xinwen Gai
- College of Science, Liaoning Petrochemical University, Fushun 113001, China
| | - Yi Zou
- College of Science, Liaoning Petrochemical University, Fushun 113001, China
- Liaoning Provincial Key Laboratory of Novel Micro-Nano Functional Materials, Fushun 113001, China
| | - Yongjian Jiang
- College of Science, Liaoning Petrochemical University, Fushun 113001, China
- Liaoning Provincial Key Laboratory of Novel Micro-Nano Functional Materials, Fushun 113001, China
| |
Collapse
|
3
|
Wang S, Liu Q, Li S, Huang F, Zhang H. Entropy engineering enhances the electromagnetic wave absorption of high-entropy transition metal dichalcogenides/N-doped carbon nanofiber composites. MATERIALS HORIZONS 2024; 11:1088-1097. [PMID: 38105730 DOI: 10.1039/d3mh01625k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Entropy engineering strategies provide a broader platform for exploring the behavior of electromagnetic wave (EMW) absorption materials and their absorption mechanisms on the microscopic scale. In this work, a novel entropy engineering strategy was developed to improve the EMW absorption properties of MoS2. A hierarchical N-doped carbon nanofiber/MoS2 (NCNF/MS) composite was synthesized using the electrospinning and hydrothermal methods. Then, the conformational entropy of MoS2 was increased by sequentially integrating elements such as W, Se, and Te. Although MoS2 maintains a single 2H-phase structure throughout the entropy increase process, it triggers a series of complex changes at the microscopic level, including lattice distortion, ingenious electronic structure adjustments, and an increase in defect density. These changes provide more possibilities for the EMW interaction with the absorber, which significantly enhances the dielectric behavior of the composites, including conduction and polarization losses. Owing to the unique hierarchical structure and rich defect structure, the obtained entropy-increased NCNF/MWSST exhibits excellent EMW absorption performance. The minimum reflection loss reaches -60.7 dB, and the maximum effective absorption bandwidth is 6.48 GHz, which is improved by almost 584% and 810% compared to NCNF/MS. This study provides a new way to design efficient and high-performance MoS2-based absorbers and provides valuable insights for exploring the entropy-increasing strategies to optimize the EMW absorption properties.
Collapse
Affiliation(s)
- Shipeng Wang
- Anhui Key Laboratory of Magnetic Functional Materials and Devices, School of Materials Science and Engineering, Anhui University, Hefei, 230601, P. R. China
| | - Qiangchun Liu
- School of Physics and Electronic Information, Huaibei Normal University, Huaibei 235000, China
| | - Shikuo Li
- Anhui Key Laboratory of Magnetic Functional Materials and Devices, School of Materials Science and Engineering, Anhui University, Hefei, 230601, P. R. China
| | - Fangzhi Huang
- School of Chemistry and Chemical Engineering, Anhui University, Hefei, 230601, PR China.
| | - Hui Zhang
- Anhui Key Laboratory of Magnetic Functional Materials and Devices, School of Materials Science and Engineering, Anhui University, Hefei, 230601, P. R. China
| |
Collapse
|
4
|
Kumari S, Dalal J, Kumar A, Pal R, Chahal R, Ohlan A. Enhanced microwave absorption properties of conducting polymer@graphene composite to counteract electromagnetic radiation pollution: green EMI shielding. RSC Adv 2024; 14:662-676. [PMID: 38173587 PMCID: PMC10760626 DOI: 10.1039/d3ra07245b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 11/27/2023] [Indexed: 01/05/2024] Open
Abstract
Conducting polymers have been thoroughly investigated and found to have extensive applications in the fields of microwave absorption and electromagnetic (EM) shielding owing to their distinctive characteristics and adaptability. In the present work, conducting polymer (PEDOT and polyaniline) and graphene composites were prepared via an in situ chemical polymerization technique. Further, these composite materials were characterized to determine their potential to address the issue of EM radiation pollution in the microwave frequency (12.4 GHz to 18 GHz). The PEDOT/graphene composites exhibited significant shielding effectiveness of up to 46.53 dB, achieving a green index (gs) of 1.17. Also, absorption was observed to be the dominant shielding mechanism in all the samples owing to significant dielectric losses (ε''/ε' ≈ 1.9-3.1) and microwave conductivity (σs = 19.9-73.6 S m-1) in the samples at 18 GHz. Both dielectric loss and conduction loss occurred because of the strong interactions involving polarization, charge propagation, and the creation of conductive routes through the incorporation of graphene in the polymer matrix. These properties/shielding results indicate the potential of the composites to be used as lightweight EM shielding materials. These materials are suitable shield materials for electronic devices to protect them from harmful electromagnetic radiation, making them vital in various applications.
Collapse
Affiliation(s)
- Suman Kumari
- Department of Physics, Chaudhary Ranbir Singh University Jind 126102 India
- Department of Physics, Maharani Kishori Jat Kanya Mahavidyalaya Rohtak 124001 India
| | - Jasvir Dalal
- Department of Physics, Rajdhani College, University of Delhi Delhi 110015 India
| | - Anand Kumar
- Department of Physics, Chaudhary Ranbir Singh University Jind 126102 India
| | - Rishi Pal
- Department of Applied Science, Kalpana Chawla Government Polytechnic Ambala 134003 India
| | - Ritu Chahal
- Department of Physics, Maharshi Dayanand University Rohtak 124001 India
| | - Anil Ohlan
- Department of Physics, Maharshi Dayanand University Rohtak 124001 India
| |
Collapse
|
5
|
Lan D, Wang Y, Wang Y, Zhu X, Li H, Guo X, Ren J, Guo Z, Wu G. Impact mechanisms of aggregation state regulation strategies on the microwave absorption properties of flexible polyaniline. J Colloid Interface Sci 2023; 651:494-503. [PMID: 37556906 DOI: 10.1016/j.jcis.2023.08.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 07/29/2023] [Accepted: 08/04/2023] [Indexed: 08/11/2023]
Abstract
In the field of electromagnetic (EM) wave absorption, intrinsic conductive polymers with conjugated long-chain structures, such as polyaniline (PANI) and polypyrrole (PPy), have gained widespread use due to their remarkable electrical conductivity and loss ability. However, current research in this area is limited to macroscopic descriptions of the absorption properties of these materials and the contribution of various components to the absorption effect. There has been insufficient exploration of the impact mechanisms of polymer aggregation states on the material's absorption performance and mechanism. To address this, a series of flexible PANI sponge absorbers with different molecular weights and aggregation states were prepared. By carefully controlling the crystallinity and other aggregation characteristics of PANI through the adjustment of its preparation conditions, we were able to influence its electrical conductivity and electromagnetic parameters, thereby achieving control over the material's absorption properties. The resulting PANI sponge absorbers exhibited an effective absorption bandwidth (EAB) that covered the entire X-band at a thickness of 3.2 mm. This study comprehensively explores the absorption mechanisms of conductive polymer absorbers, starting from the microstructure of PANI, and providing a more complete theoretical support for the research and promotion of polymer absorbers.
Collapse
Affiliation(s)
- Di Lan
- School of Materials Science and Engineering, Hubei University of Automotive Technology, Shiyan 442002, PR China
| | - Yue Wang
- School of Materials Science and Engineering, Hubei University of Automotive Technology, Shiyan 442002, PR China.
| | - Youyong Wang
- School of Materials Science and Engineering, Hubei University of Automotive Technology, Shiyan 442002, PR China
| | - Xiufang Zhu
- School of Materials Science and Engineering, Hubei University of Automotive Technology, Shiyan 442002, PR China
| | - Haifeng Li
- School of Materials Science and Engineering, Hubei University of Automotive Technology, Shiyan 442002, PR China
| | - Xiaoming Guo
- School of Materials Science and Engineering, Hubei University of Automotive Technology, Shiyan 442002, PR China
| | - Juanna Ren
- College of Materials Science and Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, PR China; Mechanical and Construction Engineering, Faculty of Engineering and Environment, Northumbria University, Newcastle Upon Tyne NE1 8ST, UK
| | - Zhanhu Guo
- Mechanical and Construction Engineering, Faculty of Engineering and Environment, Northumbria University, Newcastle Upon Tyne NE1 8ST, UK
| | - Guanglei Wu
- Key Laboratory of Engineering Dielectrics and Its Application, Ministry of Education School of Electrical & Electronic Engineering, Harbin University of Science and Technology, Harbin 150080, PR China; Institute of Materials for Energy and Environment, State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, PR China.
| |
Collapse
|
6
|
Zhao T, Jia Z, Zhang Y, Wu G. Multiphase Molybdenum Carbide Doped Carbon Hollow Sphere Engineering: The Superiority of Unique Double-Shell Structure in Microwave Absorption. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206323. [PMID: 36436944 DOI: 10.1002/smll.202206323] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/09/2022] [Indexed: 06/16/2023]
Abstract
In order to achieve excellent electromagnetic wave (EMW) absorption properties, the microstructure design and component control of the absorber are critical. In this study, three different structures made of Mo2 C/C hollow spheres are prepared and their microwave absorption behavior is investigated. The Mo2 C/C double-shell hollow spheres consisting of an outer thin shell and an inner rough thick shell with multiple EMW loss mechanisms exhibit good microwave absorption properties. In order to further improve the microwave absorption properties, MoC1-x /C double-shell hollow spheres with different crystalline phases of molybdenum carbide are prepared to further optimize the EMW loss capability of the materials. Finally, MoC1-x /C double-shell hollow spheres with α-phase molybdenum carbide have the best microwave absorption properties. When the filling is 20 wt.%, the minimum reflection loss at 1.8 mm is -50.55 dB and the effective absorption bandwidth at 2 mm is 5.36 GHz, which is expected to be a microwave absorber with the characteristics of "thin, light, wide, and strong".
Collapse
Affiliation(s)
- Tianbao Zhao
- Institute of Materials for Energy and Environment, State Key Laboratory of Bio-fibers and Eco-textiles, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Zirui Jia
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, Shandong, 266071, P. R. China
- Weihai Innovation Institute, Qingdao University, Shandong, 264200, China
| | - Yan Zhang
- Institute of Materials for Energy and Environment, State Key Laboratory of Bio-fibers and Eco-textiles, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Guanglei Wu
- Institute of Materials for Energy and Environment, State Key Laboratory of Bio-fibers and Eco-textiles, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China
| |
Collapse
|