1
|
Hou M, Li X, Chen F, Tan Z, Han X, Liu J, Zhou J, Shi Y, Zhang J, Lv J, Leng Y. Naringenin alleviates intestinal ischemia/reperfusion injury by inhibiting ferroptosis via targeting YAP/STAT3 signaling axis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156095. [PMID: 39383632 DOI: 10.1016/j.phymed.2024.156095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 09/19/2024] [Accepted: 09/23/2024] [Indexed: 10/11/2024]
Abstract
BACKGROUND Intestinal ischemia/reperfusion injury (IRI) is a significant clinical emergency, and investigating novel therapeutic approaches and understanding their underlying mechanisms is essential for improving patient outcomes. Naringenin (Nar), a flavanone present in tomatoes and citrus fruits, is frequently consumed in the human diet and recognized for having immunomodulatory, anti-inflammatory, and antioxidant properties. Despite Nar being able to alleviate intestinal IRI, the exact molecular mechanisms remain elusive. PURPOSE To investigate Nar's protective properties on intestinal IRI and elucidate the mechanisms, a comprehensive approach that combines network pharmacology analysis with experimental verification in vitro and in vivo was adopted. METHODS The oxygen-glucose deprivation/reoxygenation (OGD/R) model in IEC-6 cells and a murine model of intestinal IRI were used. Nar's effects on intestinal IRI were assessed through histological analysis using H&E staining and tight junction (TJ) protein expression. Ferroptosis-related parameters, including iron levels, superoxide dismutase (SOD), glutathione (GSH), reactive oxygen species (ROS), malondialdehyde (MDA), and mitochondrial morphology, were analyzed. Network pharmacology was utilized to predict the pathways through which Nar exerts its anti-ferroptosis effects. Further mechanistic insights were obtained through si-RNA transfection, YAP inhibitor (verteporfin, VP) treatment, ferroptosis inhibitor (Ferrostatin-1) and ferroptosis inducer (Erastin) application, co-immunoprecipitation (Co-IP) and Western blotting. RESULTS Our results revealed that pretreatment with Nar significantly mitigated intestinal tissue damage and improved gut barrier function, as evidenced by increased TJ proteins (ZO-1 and Occludin). Nar reduced iron, MDA, and ROS, while it increased GSH and SOD levels. Additionally, Nar alleviated mitochondrial damage in mice. Nar treatment increased GPX4 and SLC7A11, while decreasing ACSL4 levels both in vivo and in vitro. Network pharmacology analysis suggested that Nar may target the Hippo signaling pathway. Notably, YAP, a key transcriptional co-activator within the Hippo pathway, was downregulated in intestinal IRI mice and OGD/R-induced IEC-6 cells. Nar pretreatment activated YAP, thereby augmenting anti-ferroptosis effects. The inhibition of YAP activation by VP or YAP knockdown increased p-STAT3 expression, thereby diminishing Nar's efficacy. Co-IP and immunofluorescence studies confirmed the interaction between YAP and STAT3. CONCLUSION This study shows that Nar can inhibit ferroptosis in intestinal IRI via activating YAP, which in turn suppresses STAT3 phosphorylation, thereby unveiling a novel mechanism and supporting Nar's potential to be a promising therapeutic agent for intestinal IRI.
Collapse
Affiliation(s)
- Min Hou
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, PR China.
| | - Xiaoxi Li
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, PR China.
| | - Feng Chen
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, PR China.
| | - Zhiguo Tan
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, PR China.
| | - Xiaoxia Han
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, PR China.
| | - Jie Liu
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, PR China.
| | - Jia Zhou
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, PR China.
| | - Yajing Shi
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, PR China.
| | - Jianmin Zhang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, PR China.
| | - Jipeng Lv
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, PR China.
| | - Yufang Leng
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, PR China; Department of Anesthesiology, The First Hospital of Lanzhou University, Lanzhou, 730000, PR China.
| |
Collapse
|
2
|
Zhu Z, Huan D, Yuan J, Zhang D, Li A, Zhang J. Strategy for predicting catalytic activity of catalysts with hierarchical nanostructures. Phys Chem Chem Phys 2024; 26:27371-27381. [PMID: 39441019 DOI: 10.1039/d4cp03102d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Three-dimensional hierarchical nanostructures have been employed as electrodes of solid oxide fuel cells (SOFCs) to notably improve the catalytic performance. Hierarchical nanoscale porous electrodes face a trade-off: macroscale pores enhance mass transfer but reduce the number of active sites, while microscale pores increase the number of active sites at the cost of higher transport resistance. Careful design of these structures is crucial for balancing mass transfer and reaction dynamics. A three-dimensional multiphysics model is developed in this paper to examine the influence of different hierarchical geometrical nanostructures on catalytic performance. Additionally, the effects of different diffusion coefficients are also investigated in this study to present the changes in catalytic activity in diffusion, mixed, and reaction-controlled regimes. The model shows good alignment with the experimentally obtained data. An improved Thiele modulus is formulated to quantitatively evaluate the efficiencies of complex hierarchical nanostructures by considering the detailed characteristics of the main and secondary structures.
Collapse
Affiliation(s)
- Zidi Zhu
- School of Material Science and Engineering, Shanghai University, Shanghai, 200444, China
| | - Daoming Huan
- Department of Materials Science and Engineering, University of Science and Technology of China, NO. 96 Jinzhai Road, Hefei, Anhui Province, 233026, China
| | - Jingchao Yuan
- School of Material Science and Engineering, Shanghai University, Shanghai, 200444, China
| | - Dan Zhang
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, 200444, China.
- Institute for sustainable energy, Shanghai University, Shanghai, 200444, China
| | - Aijun Li
- School of Material Science and Engineering, Shanghai University, Shanghai, 200444, China
- Institute for sustainable energy, Shanghai University, Shanghai, 200444, China
| | - Jiujun Zhang
- Institute for sustainable energy, Shanghai University, Shanghai, 200444, China
| |
Collapse
|
3
|
Wang F, Huang H, Wei X, Tan P, Wang Z, Hu Z. Targeting cell death pathways in intestinal ischemia-reperfusion injury: a comprehensive review. Cell Death Discov 2024; 10:112. [PMID: 38438362 PMCID: PMC10912430 DOI: 10.1038/s41420-024-01891-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/21/2024] [Accepted: 02/26/2024] [Indexed: 03/06/2024] Open
Abstract
Intestinal ischemia-reperfusion (I/R) is a multifaceted pathological process, and there is a lack of clear treatment for intestinal I/R injury. During intestinal I/R, oxidative stress and inflammation triggered by cells can trigger a variety of cell death mechanisms, including apoptosis, autophagy, pyroptosis, ferroptosis, and necrosis. These cell death processes can send a danger signal for the body to be damaged and prevent intestinal I/R injury. Therefore, identifying key regulatory molecules or markers of these cell death mechanisms when intestinal I/R injury occurs may provide valuable information for the treatment of intestinal I/R injury. This paper reviews the regulatory molecules and potential markers that may be involved in regulating cell death during intestinal I/R and elaborates on the cell death mechanism of intestinal I/R injury at the molecular level to provide a theoretical basis for discovering new molecules or markers regulating cell death during intestinal I/R injury and provides ideas for drug development for the treatment of intestinal I/R injury.
Collapse
Affiliation(s)
- Fei Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 100029, Beijing, China
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, 100029, Beijing, China
| | - Huiming Huang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 100029, Beijing, China
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, 100029, Beijing, China
| | - Xuejiao Wei
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 100029, Beijing, China
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, 100029, Beijing, China
| | - Peng Tan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 100029, Beijing, China
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, 100029, Beijing, China
| | - Zhuguo Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 100029, Beijing, China
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, 100029, Beijing, China
| | - Zhongdong Hu
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, 100029, Beijing, China.
| |
Collapse
|
4
|
Li M, He Z, Zhong H, Sun W, Ye M, Tang Y. Highly efficient persulfate catalyst prepared from modified electrolytic manganese residues coupled with biochar for the roxarsone removal. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 328:116945. [PMID: 36512947 DOI: 10.1016/j.jenvman.2022.116945] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
The contamination of organoarsenic is becoming increasingly prominent while SR-AOPs were confirmed to be valid for their remediation. This study has found that the novel metal/carbon catalyst (Fe/C-Mn) prepared by solid waste with hierarchical pores could simultaneously degrade roxarsone (ROX) and remove As(V). A total of 95.6% of ROX (20 mg/L) could be removed at the concentration of 1.0 g/L of catalyst and 0.4 g/L of oxidant in the Fe/C-Mn/PMS system within 90 min. The scavenging experiment and electrochemical test revealed that both single-electron and two-electron pathways contributed to the ROX decomposition. Spectroscopic analysis suggested the ROX has been successfully mineralized while As(V) was fixed with the surface Fe and Mn. Density functional theory (DFT) calculation and chromatographic analysis indicated that the As7, N8, O9 and O10 sites of ROX molecule were vulnerable to being attacked by nucleophilic, electrophilic and radical, resulting in the formation of several intermediates such as phenolic compounds. Additionally, the low metal leaching concentration during recycling and high anti-interference ability in various water matrices manifested the practicability of Fe/C-Mn/PMS system.
Collapse
Affiliation(s)
- Mengke Li
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Department of Environmental Science and Engineering, College of Environment and Resources, Xiangtan University, Xiangtan, 411105, China
| | - Zhiguo He
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Aerospace Kaitian Environmental Technology Co., Ltd., Changsha, 410100, China.
| | - Hui Zhong
- School of Life Science, Central South University, Changsha, 410012, China.
| | - Wei Sun
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Mingqiang Ye
- Aerospace Kaitian Environmental Technology Co., Ltd., Changsha, 410100, China
| | - Yetao Tang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, China
| |
Collapse
|