1
|
Pineda-Hernandez A, Castilla-Casadiego DA, Morton LD, Giordano-Nguyen SA, Halwachs KN, Rosales AM. Tunable hydrogel networks by varying secondary structures of hydrophilic peptoids provide viable 3D cell culture platforms for hMSCs. Biomater Sci 2025. [PMID: 40354141 PMCID: PMC12068446 DOI: 10.1039/d5bm00433k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Accepted: 05/02/2025] [Indexed: 05/14/2025]
Abstract
Hydrogels have excellent ability to mimic the extracellular matrix (ECM) during 3D cell culture, yet it remains difficult to tune their mechanical properties without also changing network connectivity. Previously, we developed 2D culture platforms based on tunable hydrogels crosslinked by peptoids with various secondary structures: helical, non-helical, and unstructured, which allowed control over hydrogel mechanics independent of network connectivity. Here, we extend our strategy to 3D matrices by modifying the peptoids with piperazine and homopiperazine residues to enhance water solubility without altering their secondary structure. Hydrogels crosslinked with helical peptoids exhibited significantly higher stiffness compared to hydrogels crosslinked with non-helical or unstructured peptoids. Human mesenchymal stem cells (hMSCs) encapsulated within these hydrogels were assessed for viability, proliferation, and immunomodulatory potential. The stiffest hydrogels promoted the highest rates of proliferation and increased yes-associated protein (YAP) nuclear localization. Softer hydrogels, however, showed enhanced production of indoleamine 2,3-dioxygenase (IDO), both with and without interferon gamma (IFN-γ) stimulation, highlighting their potential in immunomodulatory applications. The biomimetic platform developed here enables the study of how matrix mechanics influence stem cell behavior without confounding factors from network connectivity, leading to insights for hMSC-mediated immunomodulation.
Collapse
Affiliation(s)
- Aldaly Pineda-Hernandez
- Mcketta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, 78712, USA.
| | | | - Logan D Morton
- Mcketta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, 78712, USA.
| | | | - Kathleen N Halwachs
- Mcketta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, 78712, USA.
| | - Adrianne M Rosales
- Mcketta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, 78712, USA.
| |
Collapse
|
2
|
Qi X. Opportunities and challenges in modelling ligand adsorption on semiconductor nanocrystals. Commun Chem 2025; 8:79. [PMID: 40082659 PMCID: PMC11906833 DOI: 10.1038/s42004-025-01471-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 02/26/2025] [Indexed: 03/16/2025] Open
Abstract
Semiconductor nanocrystals, including their superstructures and hybridized systems, have opened up a new realm to design next-generation functional materials creatively. Their great success and unlimited potential should be largely attributed to surface-adsorbed ligands. However, due to a lack of means to probe and understand their roles in experiments, only a handful of effective ligands have been identified through trial-and-error processes. Alternatively, computational and theoretical methods are ideal for providing physical insights and further guidance. Still, their applications in ligand-coated semiconductor nanocrystals are relatively scarce compared to those of other systems, such as biological chemistry. In this perspective, we first highlight the success of ab initio methods in modeling ligand adsorption. Then, we discuss the opportunities of molecular dynamics and theory in accommodating complex colloidal nature, where we unfold the challenges therein. Finally, we emphasize the need for high-quality force fields to resolve these challenges and look forward to simulation-guided inverse design.
Collapse
Affiliation(s)
- Xin Qi
- Department of Chemistry, Dartmouth College, 41 College St., Hanover, 03755, NH, USA.
| |
Collapse
|
3
|
Qi X, Helland S, Lowe CD, Larson H, Cui J, Zheng R, Monahan M, Chen CL, De Yoreo J, Pfaendtner J, Cossairt B. Toward Computation-Guided Design of Tunable Organic-Inorganic CdS Quantum Dot Binary Superlattices. NANO LETTERS 2025. [PMID: 39999380 DOI: 10.1021/acs.nanolett.5c00024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
Combining the advantages of structural programmability in sequence-defined biomimetic molecules and the controllable packing geometry in nanoparticle superlattices, we demonstrate a self-assembled organic-inorganic superlattice whose structure can be altered with the slightest change in the sequence of the organic counterpart. Here, oleate-coated CdS quantum dots (QDs) form a square-packed superlattice with a 1:1 molar equivalence of a diblock amphiphilic peptoid (Nbrpe6Dig) in chloroform. In contrast, no apparent structure is observed in the organic solvent alone. Based on theoretical evidence, we show that the assembly is a binary superlattice where both the CdS QDs and the peptoids serve as building blocks and further predict a correlation between the superlattice structure and the peptoid sequence. The computationally guided prediction is validated by experiments where superlattice transformation is observed with modified peptoids. The mechanism identified in our work inspires new ways to control and tune organic-inorganic hybrid nanomaterial self-assembly.
Collapse
Affiliation(s)
- Xin Qi
- Department of Chemistry, Dartmouth College,Hanover, New Hampshire 03755, United States
| | - Sarah Helland
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Christopher D Lowe
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Helen Larson
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Jianming Cui
- Department of Chemistry, Dartmouth College,Hanover, New Hampshire 03755, United States
| | - Renyu Zheng
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
- Physical Science Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Madison Monahan
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Chun-Long Chen
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
- Physical Science Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - James De Yoreo
- Physical Science Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
- Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Jim Pfaendtner
- Department of Chemical & Biomolecular Engineering, North Carolina State University,Raleigh, North Carolina 27695, United States
| | - Brandi Cossairt
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
4
|
McCutchin C, Edgar KJ, Chen CL, Dove PM. Silica-Biomacromolecule Interactions: Toward a Mechanistic Understanding of Silicification. Biomacromolecules 2025; 26:43-84. [PMID: 39382567 PMCID: PMC11733937 DOI: 10.1021/acs.biomac.4c00674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 09/11/2024] [Accepted: 09/12/2024] [Indexed: 10/10/2024]
Abstract
Silica-organic composites are receiving renewed attention for their versatility and environmentally benign compositions. Of particular interest is how macromolecules interact with aqueous silica to produce functional materials that confer remarkable physical properties to living organisms. This Review first examines silicification in organisms and the biomacromolecule properties proposed to modulate these reactions. We then highlight findings from silicification studies organized by major classes of biomacromolecules. Most investigations are qualitative, using disparate experimental and analytical methods and minimally characterized materials. Many findings are contradictory and, altogether, demonstrate that a consistent picture of biomacromolecule-Si interactions has not emerged. However, the collective evidence shows that functional groups, rather than molecular classes, are key to understanding macromolecule controls on mineralization. With recent advances in biopolymer chemistry, there are new opportunities for hypothesis-based studies that use quantitative experimental methods to decipher how macromolecule functional group chemistry and configuration influence thermodynamic and kinetic barriers to silicification. Harnessing the principles of silica-macromolecule interactions holds promise for biocomposites with specialized applications from biomedical and clean energy industries to other material-dependent industries.
Collapse
Affiliation(s)
| | - Kevin J. Edgar
- Department
of Sustainable Biomaterials, Virginia Tech, Blacksburg, Virginia 24061, United States
- Macromolecules
Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Chun-Long Chen
- Physical
Sciences Division, Pacific Northwest National
Laboratory, Richland, Washington 99354, United States
- Department
of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Patricia M. Dove
- Department
of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
- Macromolecules
Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
- Department
of Geosciences, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
5
|
McLean B, Yarovsky I. Structure, Properties, and Applications of Silica Nanoparticles: Recent Theoretical Modeling Advances, Challenges, and Future Directions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405299. [PMID: 39380429 DOI: 10.1002/smll.202405299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/06/2024] [Indexed: 10/10/2024]
Abstract
Silica nanoparticles (SNPs), one of the most widely researched materials in modern science, are now commonly exploited in surface coatings, biomedicine, catalysis, and engineering of novel self-assembling materials. Theoretical approaches are invaluable to enhancing fundamental understanding of SNP properties and behavior. Tremendous research attention is dedicated to modeling silica structure, the silica-water interface, and functionalization of silica surfaces for tailored applications. In this review, the range of theoretical methodologies are discussed that have been employed to model bare silica and functionalized silica. The evolution of silica modeling approaches is detailed, including classical, quantum mechanical, and hybrid methods and highlight in particular the last decade of theoretical simulation advances. It is started with discussing investigations of bare silica systems, focusing on the fundamental interactions at the silica-water interface, following with a comprehensively review of the modeling studies that examine the interaction of silica with functional ligands, peptides, ions, surfactants, polymers, and carbonaceous species. The review is concluded with the perspective on existing challenges in the field and promising future directions that will further enhance the utility and importance of the theoretical approaches in guiding the rational design of SNPs for applications in engineering and biomedicine.
Collapse
Affiliation(s)
- Ben McLean
- School of Engineering, RMIT University, Melbourne, 3001, Australia
- ARC Research Hub for Australian Steel Innovation, Wollongong, 2500, Australia
| | - Irene Yarovsky
- School of Engineering, RMIT University, Melbourne, 3001, Australia
- ARC Research Hub for Australian Steel Innovation, Wollongong, 2500, Australia
| |
Collapse
|
6
|
Shao L, Hu D, Zheng SL, Trinh TKH, Zhou W, Wang H, Zong Y, Li C, Chen CL. Hierarchical Self-Assembly of Multidimensional Functional Materials from Sequence-Defined Peptoids. Angew Chem Int Ed Engl 2024; 63:e202403263. [PMID: 38657031 DOI: 10.1002/anie.202403263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/05/2024] [Accepted: 04/10/2024] [Indexed: 04/26/2024]
Abstract
Hierarchical self-assembly represents a powerful strategy for the fabrication of functional materials across various length scales. However, achieving precise formation of functional hierarchical assemblies remains a significant challenge and requires a profound understanding of molecular assembly interactions. In this study, we present a molecular-level understanding of the hierarchical assembly of sequence-defined peptoids into multidimensional functional materials, including twisted nanotube bundles serving as a highly efficient artificial light harvesting system. By employing synchrotron-based powder X-ray diffraction and analyzing single crystal structures of model compounds, we elucidated the molecular packing and mechanisms underlying the assembly of peptoids into multidimensional nanostructures. Our findings demonstrate that incorporating aromatic functional groups, such as tetraphenyl ethylene (TPE), at the termini of assembling peptoid sequences promotes the formation of twisted bundles of nanotubes and nanosheets, thus enabling the creation of a highly efficient artificial light harvesting system. This research exemplifies the potential of leveraging sequence-defined synthetic polymers to translate microscopic molecular structures into macroscopic assemblies. It holds promise for the development of functional materials with precisely controlled hierarchical structures and designed functions.
Collapse
Affiliation(s)
- Li Shao
- Department of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Dehong Hu
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Shao-Liang Zheng
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Thi Kim Hoang Trinh
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Wenhao Zhou
- Department of Materials Science, University of Washington, Seattle, WA 98195, USA
| | - Haoyu Wang
- Department of Chemical Engineering, University of Washington, Seattle, WA 98195, USA
| | - Yanxu Zong
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
- Materials Science and Engineering, Binghamton University, Binghamton, NY 13902, USA
| | - Changning Li
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
- Department of Chemical Engineering, University of Washington, Seattle, WA 98195, USA
| | - Chun-Long Chen
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
- Department of Chemical Engineering, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
7
|
Zheng R, Zhao M, Du JS, Sudarshan TR, Zhou Y, Paravastu AK, De Yoreo JJ, Ferguson AL, Chen CL. Assembly of short amphiphilic peptoids into nanohelices with controllable supramolecular chirality. Nat Commun 2024; 15:3264. [PMID: 38627405 PMCID: PMC11021492 DOI: 10.1038/s41467-024-46839-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 03/12/2024] [Indexed: 04/19/2024] Open
Abstract
A long-standing challenge in bioinspired materials is to design and synthesize synthetic materials that mimic the sophisticated structures and functions of natural biomaterials, such as helical protein assemblies that are important in biological systems. Herein, we report the formation of a series of nanohelices from a type of well-developed protein-mimetics called peptoids. We demonstrate that nanohelix structures and supramolecular chirality can be well-controlled through the side-chain chemistry. Specifically, the ionic effects on peptoids from varying the polar side-chain groups result in the formation of either single helical fiber or hierarchically stacked helical bundles. We also demonstrate that the supramolecular chirality of assembled peptoid helices can be controlled by modifying assembling peptoids with a single chiral amino acid side chain. Computational simulations and theoretical modeling predict that minimizing exposure of hydrophobic domains within a twisted helical form presents the most thermodynamically favorable packing of these amphiphilic peptoids and suggests a key role for both polar and hydrophobic domains on nanohelix formation. Our findings establish a platform to design and synthesize chiral functional materials using sequence-defined synthetic polymers.
Collapse
Affiliation(s)
- Renyu Zheng
- Department of Chemical Engineering, University of Washington, Seattle, WA, 98195, USA
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Mingfei Zhao
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| | - Jingshan S Du
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Tarunya Rao Sudarshan
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Yicheng Zhou
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Anant K Paravastu
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - James J De Yoreo
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
- Department of Materials Science, University of Washington, Seattle, WA, 98195, USA
| | - Andrew L Ferguson
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| | - Chun-Long Chen
- Department of Chemical Engineering, University of Washington, Seattle, WA, 98195, USA.
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.
| |
Collapse
|
8
|
Ciulla MG, Marchini A, Gazzola J, Forouharshad M, Pugliese R, Gelain F. In Situ Transglutaminase Cross-Linking Improves Mechanical Properties of Self-Assembling Peptides for Biomedical Applications. ACS APPLIED BIO MATERIALS 2024; 7:1723-1734. [PMID: 38346174 DOI: 10.1021/acsabm.3c01148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
The development of three-dimensional (3D) biomaterials that mimic natural tissues is required for efficiently restoring physiological functions of injured tissues and organs. In the field of soft hydrogels, self-assembled peptides (SAPs) stand out as distinctive biomimetic scaffolds, offering tunable properties. They have garnered significant attention in nanomedicine due to their innate ability to self-assemble, resulting in the creation of fibrous nanostructures that closely mimic the microenvironment of the extracellular matrix (ECM). This unique feature ensures their biocompatibility and bioactivity, making them a compelling area of study over the past few decades. As they are soft hydrogels, approaches are necessary to enhance the stiffness and resilience of the SAP materials. This work shows an enzymatic strategy to selectively increase the stiffness and resiliency of functionalized SAPs using transglutaminase (TGase) type 2, an enzyme capable of triggering the formation of isopeptide bonds. To this aim, we synthesized a set of SAP sequences and characterized their cross-linking via rheological experiments, atomic force microscopy (AFM), thioflavin-T binding assay, and infrared spectroscopy (ATR-FTIR) tests. The results showed an improvement of the storage modulus of cross-linked SAPs at no cost of the maximum stress-at-failure. Further, in in vitro tests, we examined and validated the TGase capability to cross-link SAPs without hampering seeded neural stem cells (hNSCs) viability and differentiation, potentially leaving the door open for safe in situ cross-linking reactions in vivo.
Collapse
Affiliation(s)
- Maria Gessica Ciulla
- Institute for Stem-Cell Biology, Regenerative Medicine and Innovative Therapies, IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy
| | - Amanda Marchini
- Institute for Stem-Cell Biology, Regenerative Medicine and Innovative Therapies, IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy
- Center for Nanomedicine and Tissue Engineering (CNTE), ASST Grande Ospedale Metropolitano Niguarda, 20162 Milan, Italy
| | - Jacopo Gazzola
- Department of Biotechnology and Biosciences, University of Milan - Bicocca, 20125 Milan, Italy
| | - Mahdi Forouharshad
- Institute for Stem-Cell Biology, Regenerative Medicine and Innovative Therapies, IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy
- Center for Nanomedicine and Tissue Engineering (CNTE), ASST Grande Ospedale Metropolitano Niguarda, 20162 Milan, Italy
| | - Raffaele Pugliese
- Center for Nanomedicine and Tissue Engineering (CNTE), ASST Grande Ospedale Metropolitano Niguarda, 20162 Milan, Italy
| | - Fabrizio Gelain
- Institute for Stem-Cell Biology, Regenerative Medicine and Innovative Therapies, IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy
- Center for Nanomedicine and Tissue Engineering (CNTE), ASST Grande Ospedale Metropolitano Niguarda, 20162 Milan, Italy
| |
Collapse
|
9
|
Heble AY, Chen CL. Access to Advanced Functional Materials through Postmodification of Biomimetic Assemblies via Click Chemistry. Biomacromolecules 2024; 25:1391-1407. [PMID: 38422548 DOI: 10.1021/acs.biomac.3c01454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
The design, synthesis, and fabrication of functional nanomaterials with specific properties remain a long-standing goal for many scientific fields. The self-assembly of sequence-defined biomimetic synthetic polymers presents a fundamental strategy to explore the chemical space beyond biological systems to create advanced nanomaterials. Moreover, subsequent chemical modification of existing nanostructures is a unique approach for accessing increasingly complex nanostructures and introducing functionalities. Of these modifications, covalent conjugation chemistries, such as the click reactions, have been the cornerstone for chemists and materials scientists. Herein, we highlight some recent advances that have successfully employed click chemistries for the postmodification of assembled one-dimensional (1D) and two-dimensional (2D) nanostructures to achieve applications in molecular recognition, mineralization, and optoelectronics. Specifically, biomimetic nanomaterials assembled from sequence-defined macromolecules such as peptides and peptoids are described.
Collapse
Affiliation(s)
- Annie Y Heble
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Chun-Long Chen
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
10
|
Yang W, Cai B, Lachowski KJ, Yin Q, De Yoreo JJ, Pozzo LD, Chen CL. Insights into the Biomimetic Synthesis of 2D ZnO Nanomaterials through Peptoid Engineering. J Phys Chem Lett 2023; 14:9732-9739. [PMID: 37882440 DOI: 10.1021/acs.jpclett.3c01882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
Achieving predictable biomimetic crystallization using sequence-defined synthetic molecules in mild conditions represents a long-standing challenge in materials synthesis. Herein we report a peptoid-based approach for biomimetic control over the formation of nanostructured ZnO materials in ambient aqueous conditions. A series of two-dimensional (2D) ZnO nanomaterials have been successfully obtained using amphiphilic peptoids with different numbers, ratios, and patterns of various hydrophilic and hydrophobic side chains. By investigating the relationship between peptoid hydrophobicity and the thickness of the resultant ZnO nanomaterials, we found the critical role of peptoid hydrophobicity in the peptoid-controlled ZnO formation. Our results suggest that tuning the hydrophobicity of peptoids can be used to moderate peptoid-ZnO surface interactions, thus controlling the formation of ultrathin (<2.5 nm) 2D ZnO nanomaterials. The peptoid-controlled formation of ZnO nanomaterials was further investigated using ultrasmall-angle X-ray scattering (USAXS). Our work suggests a new approach to synthesizing 2D metal oxide nanomaterials using sequence-defined synthetic molecules.
Collapse
Affiliation(s)
- Wenchao Yang
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, China
| | - Bin Cai
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
- School of Chemistry and Chemical Engineering, Shandong University, 250100 Jinan, China
| | - Kacper J Lachowski
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
- Molecular Engineering and Sciences Institute, University of Washington, Seattle, Washington 98105, United States
| | - Qiuxiang Yin
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, China
- The Co-Innovation Center of Chemistry and Chemical Engineering of Tianjin, Tianjin University, Tianjin 300072, People's Republic of China
| | - James J De Yoreo
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
- Department of Materials Science, University of Washington, Seattle, Washington 98195, United States
| | - Lilo D Pozzo
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
- Molecular Engineering and Sciences Institute, University of Washington, Seattle, Washington 98105, United States
- Department of Materials Science, University of Washington, Seattle, Washington 98195, United States
| | - Chun-Long Chen
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|