1
|
Xie F, Wu Z, Yang J. Valorizing Nitrate in Electrochemical Nitrogen Cycling: Copper-Based Catalysts from Reduction to C-N Coupling. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2500833. [PMID: 40159784 DOI: 10.1002/smll.202500833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/12/2025] [Indexed: 04/02/2025]
Abstract
Electrochemical nitrate reduction (NO3RR) offers a sustainable approach to mitigating nitrogen pollution while enabling the resourceful conversion of nitrate (NO3 -) into ammonia (NH3), nitrogen gas (N2), and value-added chemicals such as urea. Copper (Cu)-based catalysts, with their versatile catalytic properties and cost-effectiveness, have emerged as pivotal materials in advancing NO3RR. This review systematically summarizes recent progress in Cu-based catalysts for NO3RR, focusing on their catalytic mechanisms, tuning strategies, and applications across diverse product pathways. The intrinsic self-reconstruction behavior and synergistic effects of Cu-based catalysts are elucidated alongside advanced in situ characterization techniques that reveal dynamic structural evolution and intermediate interactions during reactions. We comprehensively discuss the performance of Cu-based catalysts in steering NO3RR toward NH3 or N2 production, emphasizing the role of catalyst design (e.g., single atoms, alloys, oxides, hydroxides) in enhancing selectivity and efficiency. Furthermore, the multifunctionality of Cu catalysts is exemplified through carbon-nitrogen (C-N) coupling reactions, where reactive nitrogen intermediates are valorized into urea. Key challenges and future directions are outlined to guide the rational design of Cu-based systems for efficient electrochemical nitrogen cycling.
Collapse
Affiliation(s)
- Fengting Xie
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Ziyang Wu
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Jianping Yang
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| |
Collapse
|
2
|
Ma Q, Xue Y, Zhang C, Chen Y, Teng W, Zhang H, Fan J. 2D copper-iron bimetallic metal-organic frameworks for reduction of nitrate with boosted efficiency and ammonia selectivity. J Environ Sci (China) 2025; 149:374-385. [PMID: 39181650 DOI: 10.1016/j.jes.2024.01.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 01/13/2024] [Accepted: 01/27/2024] [Indexed: 08/27/2024]
Abstract
Electrocatalytic reduction of nitrate to ammonia has been considered a promising and sustainable pathway for pollutant treatment and ammonia has significant potential as a clean energy. Therefore, the method has received much attention. In this work, Cu/Fe 2D bimetallic metal-organic frameworks were synthesized by a facile method applied as cathode materials without high-temperature carbonization. Bimetallic centers (Cu, Fe) with enhanced intrinsic activity demonstrated higher removal efficiency. Meanwhile, the 2D nanosheet reduced the mass transfer barrier between the catalyst and nitrate and increased the reaction kinetics. Therefore, the catalysts with a 2D structure showed much better removal efficiency than other structures (3D MOFs and Bulk MOFs). Under optimal conditions, Cu/Fe-2D MOF exhibited high nitrate removal efficiency (87.8%) and ammonium selectivity (89.3%) simultaneously. The ammonium yielded up to significantly 907.2 µg/(hr·mgcat) (7793.8 µg/(hr·mgmetal)) with Faradaic efficiency of 62.8% at an initial 100 mg N/L. The catalyst was proved to have good stability and was recycled 15 times with excellent effect. DFT simulations confirm the reduced Gibbs free energy of Cu/Fe-2D MOF. This study demonstrates the promising application of Cu/Fe-2D MOF in nitrate reduction to ammonia and provides new insights for the design of efficient electrode materials.
Collapse
Affiliation(s)
- Qian Ma
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Yinghao Xue
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Chuning Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Yanyan Chen
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Wei Teng
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Hua Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Jianwei Fan
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| |
Collapse
|
3
|
Liu Y, Zhang J, Bai R, Zhao Y, Zhou Y, Zhao X. Functional partitioning synergistically enhances multi-scenario nitrate reduction. J Colloid Interface Sci 2024; 675:526-534. [PMID: 38986326 DOI: 10.1016/j.jcis.2024.06.213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 06/20/2024] [Accepted: 06/26/2024] [Indexed: 07/12/2024]
Abstract
The promising electrocatalytic nitrate reduction reaction (eNitRR) for distributed ammonia synthesis requires the fine design of functionally compartmentalised and synergistically complementary integrated catalysts to meet the needs of low-cost and efficient ammonia synthesis. Herein, the partitionable CoP3 and Cu3P modules were built on the copper foam substrate, and the functional differentiation promoted the catalytic performance of the surface accordion-like CoP3/Cu3P@CF for eNitRR in complex water environment. Where the ammonia yield rate is as high as 23988.2 μg h-1 cm-2, and the Faradaic efficiency is close to 100 %. With CoP3/Cu3P@CF as the core, the assembled high-performance Zn-nitrate flow battery can realize the dual function of ammonia production and power supply, and can also realize the continuous production of ammonia with high selectivity driven by solar energy. The ammonia recovery reaches 753.9 mg L-1, which shows the superiority of CoP3/Cu3P@CF in multiple application scenarios and provides important experience for the vigorous development of eNitRR. Density functional theory calculation reveal that CoP3 and Cu3P sites play a relay synergistic role in eNitRR catalyzed by CoP3/Cu3P@CF. CoP3 first promotes the activation of NO3- to *NO3H, and then continuously provides proton hydrogen for the eNitRR on the surface of Cu3P, which relays the synergistic catalytic effect to promote the efficient conversion of NO3- to NH3. This study not only develops a catalyst that can promote the efficient reduction of NO3- to ammonia through an easy-to-obtain innovative strategy, but also provides an alternative strategy for the development of eNitRR that is suitable for multiple scenarios and meets the production conditions.
Collapse
Affiliation(s)
- Yuelong Liu
- Faculty of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650092, China
| | - Jin Zhang
- Faculty of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650092, China
| | - Rui Bai
- Faculty of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650092, China
| | - Yan Zhao
- Faculty of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650092, China.
| | - Yingtang Zhou
- Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, National Engineering Research Center for Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316004, China.
| | - Xue Zhao
- Faculty of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650092, China.
| |
Collapse
|
4
|
Yang Z, Li Y, Liu D, Song M, Gao Y, Yang B, He Y, Han E, Zhang Q, Yang X. Oxygen vacancy-regulated nanorod array electrodes for boosting the electrocatalytic synthesis of ammonia from nitrate wastewater. Chem Commun (Camb) 2024; 60:9950-9953. [PMID: 39171745 DOI: 10.1039/d4cc02726d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
The adsorption of nitrate is the key to enhancing the electrocatalytic nitrate reduction reaction (NitRR). Herein, a typical hydrolysis-coupled redox (HCR) reaction has been designed to prepare unique 3D Cu/Fe2O3 core-shell nanorod array cathodes with controllable oxygen vacancy concentrations for NitRR. The optimal Cu/Fe2O3-13 achieves a high nitrate conversion of 99.10% and ammonia selectivity of 98.30%. The outstanding electrochemical performance is attributed to the enhancement mechanism of OVs and a unique nanorod array structure with a high density of surface-exposed OVs and high-throughput transport pathways for ion-aspects.
Collapse
Affiliation(s)
- Ziyi Yang
- School of Chemical Engineering, Hebei University of Technology, Tianjin, 300400, China.
| | - Yudong Li
- Key Laboratory of Bio-based Material Science & Technology, Northeast Forestry University, Ministry of Education, Harbin, 150040, China
| | - Dan Liu
- Key Laboratory of Bio-based Material Science & Technology, Northeast Forestry University, Ministry of Education, Harbin, 150040, China
| | - Maosen Song
- School of Chemical Engineering, Hebei University of Technology, Tianjin, 300400, China.
| | - Yang Gao
- School of Chemical Engineering, Hebei University of Technology, Tianjin, 300400, China.
| | - Bin Yang
- School of Chemical Engineering, Hebei University of Technology, Tianjin, 300400, China.
| | - Yanzhen He
- School of Chemical Engineering, Hebei University of Technology, Tianjin, 300400, China.
| | - Enshan Han
- School of Chemical Engineering, Hebei University of Technology, Tianjin, 300400, China.
| | - Qiang Zhang
- School of Chemistry & Chemical Engineering, Chongqing University of Technology, Chongqing 400054, P. R. China.
- National Engineering Laboratory for Methanol to Olefins, Dalian National Laboratory for Clean Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Xiaohui Yang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China.
| |
Collapse
|
5
|
Wei J, Li Y, Lin H, Lu X, Zhou C, Li YY. Copper-based electro-catalytic nitrate reduction to ammonia from water: Mechanism, preparation, and research directions. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2024; 20:100383. [PMID: 38304117 PMCID: PMC10830547 DOI: 10.1016/j.ese.2023.100383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 12/21/2023] [Accepted: 12/21/2023] [Indexed: 02/03/2024]
Abstract
Global water bodies are increasingly imperiled by nitrate pollution, primarily originating from industrial waste, agricultural runoffs, and urban sewage. This escalating environmental crisis challenges traditional water treatment paradigms and necessitates innovative solutions. Electro-catalysis, especially utilizing copper-based catalysts, known for their efficiency, cost-effectiveness, and eco-friendliness, offer a promising avenue for the electro-catalytic reduction of nitrate to ammonia. In this review, we systematically consolidate current research on diverse copper-based catalysts, including pure Cu, Cu alloys, oxides, single-atom entities, and composites. Furthermore, we assess their catalytic performance, operational mechanisms, and future research directions to find effective, long-term solutions to water purification and ammonia synthesis. Electro-catalysis technology shows the potential in mitigating nitrate pollution and has strategic importance in sustainable environmental management. As to the application, challenges regarding complexity of the real water, the scale-up of the commerical catalysts, and the efficient collection of produced NH3 are still exist. Following reseraches of catalyst specially on long term stability and in situ mechanisms are proposed.
Collapse
Affiliation(s)
| | | | | | | | - Chucheng Zhou
- Shenzhen Key Laboratory of Special Functional Materials & Shenzhen Engineering Laboratory for Advance Technology of Ceramics, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, PR China
| | - Ya-yun Li
- Shenzhen Key Laboratory of Special Functional Materials & Shenzhen Engineering Laboratory for Advance Technology of Ceramics, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, PR China
| |
Collapse
|
6
|
He L, Yao F, Zhong Y, Tan C, Chen S, Pi Z, Li X, Yang Q. Electrochemical reductive removal of trichloroacetic acids by a three-dimensional binderless carbon nanotubes/ CoP/Co foam electrode: Performance and mechanism. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134120. [PMID: 38537573 DOI: 10.1016/j.jhazmat.2024.134120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/20/2024] [Accepted: 03/23/2024] [Indexed: 04/25/2024]
Abstract
Numerous chlorinated disinfection by-products (DBPs) are produced during the chlorination disinfection of water. Among them, chloroacetic acids (CAAs) are of great concern due to their potential human carcinogenicity. In this study, effective electrocatalytic dechlorination of trichloroacetic acids (TCAA), a typical CAAs, was achieved in the electrochemical system with the three-dimensional (3D) self-supported CoP on cobalt foam modified by carbon nanotubes (CNT/CoP/CF) as the cathode. At a 10 mA cm-2 current density, 74.5% of TCAA (500 μg L-1) was converted into AA within 100 min. In-situ growth of CoP increased the effective electrochemical surface area of the electrode. Electrodeposited CNT promoted electron transfer from the electrode surface to TCAA. Therefore, the production of surface-adsorbed atomic hydrogen (H*) on CNT/CoP/CF was improved, further resulting in excellent electrochemical dechlorination of TCAA. The dechlorination pathway of TCAA proceeded into acetic acids via direct electronic transfer and H*-mediated reduction on CNT/CoP/CF electrode. Additionally, the electroreduction efficiency of CNT/CoP/CF for TCAA exceeded 81.22% even after 20 cycles. The highly efficient TCAA reduction performance (96.57%) in actual water revealed the potential applicability of CNT/CoP/CF in the complex water matrix. This study demonstrated that the CNT/CoP/CF is a promising non-noble metal cathode to remove chlorinated DBPs in practice.
Collapse
Affiliation(s)
- Li He
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Fubing Yao
- School of Metallurgy and Environment, Central South University, Changsha 410083, China; Chinese National Engineering Research Center for Control and Treatment of Heavy Metal Pollution, Changsha 410083, PR China.
| | - Yu Zhong
- Key Laboratory of Water Pollution Control Technology, Hunan Research Academy of Environmental Sciences, Changsha 410004, PR China
| | - Chang Tan
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Shengjie Chen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Zhoujie Pi
- College of Urban and Environment Sciences, Hunan University of Technology, Hunan Province 412007, PR China
| | - Xiaoming Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Qi Yang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| |
Collapse
|