1
|
Tihăuan BM, Onisei T, Slootweg W, Gună D, Iliescu C, Chifiriuc MC. Cannabidiol-A friend or a foe? Eur J Pharm Sci 2025; 208:107036. [PMID: 39929375 DOI: 10.1016/j.ejps.2025.107036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/21/2025] [Accepted: 02/06/2025] [Indexed: 03/23/2025]
Abstract
Cannabidiol (CBD), one of the main actives from Cannabis sativa has been perpetually explored lately for its therapeutic effects. Its main attributes, such as anti-inflammatory and antioxidant effects, snowball into pain management, epilepsy and seizure alleviation, anxiety relief, as well as numerous other implications through the entire metabolism. However, conventional administration routes challenge its therapeutic potential, with reported poor water solubility, hepatic degradation, gastric instability and erratic bioavailability observed in oral administration. As a result, the transdermal delivery systems have emerged as a promising alternative to oral or inhaled routes, offering improved bioavailability and targeted effects. The medical use of CBD throughout Europe, UK, USA or Australia is extensive and usually represented by pharmaceutical preparations recommended after conventional treatment routs fail. The non-medical use is limited by each country's own legislation, a wider range of products being available, but the irregular regulatory landscape coupled with the growing market of cannabinoid-infused products, emphasizes the need for standardized formulations and further clinical research. The present work critically examines the transdermal administration of cannabidiol, explores the skin's potential as a route and the strategies involved in using it for systemic targeting. We highlighted key challenges and provided insights into CBD`s variable bioavailability based on different administration routes and methods, thus compiling a literature-based absorption, distribution, metabolism, and excretion (ADME) study. We also explore the role of the endocannabinoid system, its function in various medical conditions, and the therapeutic effects associated with CBD, particularly in light of the varying legislation across countries. While the breadth of potential benefits is compelling, it is essential to emphasize the ongoing nature of CBD research as individual responses to it can vary significantly.
Collapse
Affiliation(s)
- Bianca-Maria Tihăuan
- Research Institute of the University of Bucharest-ICUB, 91-95 Spl. Independentei, 50567 Bucharest, Romania; National Institute for Research and Development in Food Bioresources, Dinu Vintilă Street, No.6, 021102 Bucharest, Romania; eBio-hub Research Centre, National University for Science and Technology Politehnica Bucharest, Bucharest, Romania; Academy of Romanian Scientists, Bucharest, Romania
| | - Tatiana Onisei
- National Institute for Research and Development in Food Bioresources, Dinu Vintilă Street, No.6, 021102 Bucharest, Romania
| | - Walter Slootweg
- QB3 Research & Development, Spaarndammerstraaat 4d, 1013SV Amsterdam, Netherlands
| | - Daniel Gună
- S.C. Absolute Essential Oils Ltd. (AEO), Adunații Copăceni Village, Giurgiu County, 38 Troitei Street, 087005, Romania
| | - Ciprian Iliescu
- eBio-hub Research Centre, National University for Science and Technology Politehnica Bucharest, Bucharest, Romania; Academy of Romanian Scientists, Bucharest, Romania; National Institute for Microtechnologies, 126A Erou Iancu Nicolae Street, Voluntari 077190, Romania.
| | - Mariana-Carmen Chifiriuc
- Research Institute of the University of Bucharest-ICUB, 91-95 Spl. Independentei, 50567 Bucharest, Romania.
| |
Collapse
|
2
|
Vitola I, Angulo C, Baptista-Rosas RC, Anaya-Esparza LM, Escalante-García ZY, Villarruel-López A, Silva-Jara JM. Prospects in the Use of Cannabis sativa Extracts in Nanoemulsions. BIOTECH 2024; 13:53. [PMID: 39727490 DOI: 10.3390/biotech13040053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 12/28/2024] Open
Abstract
Cannabis sativa plants have been widely investigated for their specific compounds with medicinal properties. These bioactive compounds exert preventive and curative effects on non-communicable and infectious diseases. However, C. sativa extracts have barely been investigated, although they constitute an affordable option to treat human diseases. Nonetheless, antioxidant, antimicrobial, and immunogenicity effects have been associated with C. sativa extracts. Furthermore, innovative extraction methods in combination with nanoformulations have been proposed to increase desirable compounds' availability, distribution, and conservation, which can be aided by modern computational tools in a transdisciplinary approach. This review aims to describe available extraction and nanoformulation methods for C. sativa, as well as its known antioxidant, antimicrobial, and immunogenic activities. Critical points on the use of C. sativa extracts in nanoformulations are identified and some prospects are envisaged.
Collapse
Affiliation(s)
- Ian Vitola
- Departamento de Ingeniería Química, Universidad de Guadalajara, CUCEI, Blvd. Marcelino García Barragán 1421, Olímpica, Guadalajara 44430, Jalisco, Mexico
| | - Carlos Angulo
- Grupo de Inmunología y Vacunología, Centro de Investigaciones Biológicas del Noroeste, S.C. (CIBNOR), Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz 23096, Baja California Sur, Mexico
| | - Raul C Baptista-Rosas
- Departamento de Ciencias de la Salud-Enfermedad como Proceso Individual, CUTonalá, Universidad de Guadalajara, Nuevo Perif. Ote. 555, Ejido San José, Tateposco, Tonalá 45425, Jalisco, Mexico
- Hospital General de Occidente, Secretaría de Salud Jalisco, Av. Zoquipan 1050, Colonia Zoquipan, Zapopan 45170, Jalisco, Mexico
| | - Luis Miguel Anaya-Esparza
- Centro de Estudios Para la Agricultura, la Alimentación y la Crisis Climática, Centro Universitario de los Altos, Universidad de Guadalajara, Rafael Casillas Aceves 1200, Tepatitlán de Morelos 47600, Jalisco, Mexico
| | - Zazil Yadel Escalante-García
- Departamento de Ingeniería Química, Universidad de Guadalajara, CUCEI, Blvd. Marcelino García Barragán 1421, Olímpica, Guadalajara 44430, Jalisco, Mexico
| | - Angélica Villarruel-López
- Departamento de Farmacobiología, Universidad de Guadalajara, CUCEI, Blvd. Marcelino García Barragán 1421, Olímpica, Guadalajara 44430, Jalisco, Mexico
| | - Jorge Manuel Silva-Jara
- Departamento de Farmacobiología, Universidad de Guadalajara, CUCEI, Blvd. Marcelino García Barragán 1421, Olímpica, Guadalajara 44430, Jalisco, Mexico
| |
Collapse
|
3
|
Prado JCS, de Aguiar FLL, Prado GM, Nascimento JFD, de Sousa NV, Barbosa FCB, Lima DM, Rodrigues THS, Bessa NUDC, Abreu FOMDS, Fontenelle RODS. Development and characterization of nanoemulsions containing Lippia origanoides Kunth essential oil and their antifungal potential against Candida albicans. J Appl Microbiol 2024; 135:lxae271. [PMID: 39439208 DOI: 10.1093/jambio/lxae271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 09/15/2024] [Accepted: 10/21/2024] [Indexed: 10/25/2024]
Abstract
AIMS Nanoemulsions based on plant essential oils have shown promise as alternatives against fungal pathogens by increasing the solubility and bioavailability of the active compounds of essential oils, which can improve their efficacy and safety. In the present study, we aimed to prepare and characterize nanoemulsions of Lippia origanoides essential oil, and analyze their antifungal activity against C. albicans in planktonic and biofilm form. Additionally, we sought to verify their cytotoxicity. METHODS AND RESULTS Alginate nanoemulsions were prepared with different concentrations of essential oil, sunflower oil, and surfactant to investigate ideal formulations regarding stability and antifungal efficiency. The results showed the nanoemulsions remained stable for longer than 60 days, with acidic pH, particle sizes ranging from 180.17 ± 6.86 nm to 497.85 ± 253.50 nm, zeta potential from -60.47 ± 2.25 to -43.63 ± 12, and polydispersity index from 0.004 to 0.622. The photomicrographs revealed that the addition of sunflower oil influenced the formation of the particles, forming nanoemulsions. The antifungal results of the essential oil and nanoemulsions showed that the MIC ranged from 0.078 to 0.312 mg ml-1. The nanoemulsions were more effective than the free essential oil in eradicating the biofilm, eliminating up to 89.7% of its mass. With regard to cytotoxicity, differences were found between the tests with VERO cells and red blood cells, and the nanoemulsions were less toxic to red blood cells than the free essential oil. CONCLUSIONS These results show that nanoemulsions have antifungal potential against strains of C. albicans in planktonic and biofilm forms.
Collapse
Affiliation(s)
- Júlio César Sousa Prado
- Master's Program in Health Sciences, Federal University of Ceará, Sobral, CE 62042280, Brazil
| | | | - Guilherme Mendes Prado
- Master's Program in Health Sciences, Federal University of Ceará, Sobral, CE 62042280, Brazil
| | - Joice Farias do Nascimento
- Natural Polymers Laboratory, Center for Science and Technology, State University of Ceará, Fortaleza, CE 60741000, Brazil
| | | | | | - Danielle Malta Lima
- Postgraduate Program in Medical Sciences, University of Fortaleza, Fortaleza, CE 60811905, Brazil
| | | | - Nathália Uchôa de Castro Bessa
- Laboratório de Embalagens-Embrapa, Post-graduated Program in Biotecnology, Federal University of Ceará, Fortaleza, CE 60511110, Brazil
| | | | - Raquel Oliveira Dos Santos Fontenelle
- Master's Program in Health Sciences, Federal University of Ceará, Sobral, CE 62042280, Brazil
- Center for Agricultural and Biological Sciences, Acaraú Valley State University, Sobral, CE 62040370, Brazil
| |
Collapse
|
4
|
Tu L, Wang J, Sun Y, Wan Y. Fabrication of Luteolin Nanoemulsion by Box-Behnken Design to Enhance its Oral Absorption Via Lymphatic Transport. AAPS PharmSciTech 2024; 25:206. [PMID: 39237659 DOI: 10.1208/s12249-024-02898-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 07/22/2024] [Indexed: 09/07/2024] Open
Abstract
Intestinal lymphatic transport offers an alternative and effective way to deliver drugs, such as avoiding first-pass metabolism, enhancing oral bioavailability, and facilitating the treatment of targeted lymphoid-related diseases. However, the clinical use of luteolin (LUT) is limited by its poor water solubility and low bioavailability, and enhancing lymphatic transport by nanoemulsion may be an efficient way to enhance its oral bioavailability. The objective of this work is to prepare the luteolin nanoemulsions (LUT NEs), optimized its preparation parameters by using Box-Behnken design optimization (BBD) and evaluated it in vitro and in vivo. An Caco-2 / Raji B cell co-incubation monolayer model was established to simulate the M-cell pathway, and the differences in the transmembrane transport of LUT and NEs were compared. Cycloheximide (CHX) was utilized to establish rat chylomicron (CM) blocking model, and for investigating the influence of pharmacokinetic parameters in rats thereafter. The results showed that LUT NEs have good stability, the particle sizes were about 23.87 ± 0.57 nm. Compared with LUT suspension, The Papp of LUT NEs was enhanced for 3.5-folds, the oral bioavailability was increased by about 2.97-folds. In addition, after binding with chylomicron, the oral bioavailability of LUT NEs was decreased for about 30% (AUC 0-∞ (μg/L*h): 5.356 ± 1.144 vs 3.753 ± 0.188). These results demonstrated that NEs could enhance the oral absorption of luteolin via lymphatic transport routes.
Collapse
Affiliation(s)
- Liangxing Tu
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330006, People's Republic of China
| | - Ju Wang
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330006, People's Republic of China
| | - Yongbing Sun
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330006, People's Republic of China
| | - Yang Wan
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330006, People's Republic of China.
| |
Collapse
|
5
|
Žugić A, Martinović M, Tadić V, Rajković M, Racić G, Nešić I, Koren A. Comprehensive Insight into Cutaneous Application of Hemp. Pharmaceutics 2024; 16:748. [PMID: 38931870 PMCID: PMC11207338 DOI: 10.3390/pharmaceutics16060748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/12/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024] Open
Abstract
Known for its natural bio-compounds and therapeutic properties, hemp is being utilized in the development of skin products. These products offer a wide range of applications and benefits in the fields of natural bio-compounds, pharmaceutical technology, topical delivery systems, and cosmeceuticals. This manuscript deals with hemp actives, such as cannabinoids, terpenes, and flavonoids, and their diverse biological properties relative to topical application, including anti-inflammatory, antimicrobial, and antioxidant effects. Also, the paper reviews strategies to overcome poor penetration of hemp actives, as well as the integration of hemp actives in cosmeceuticals that provide natural and sustainable alternatives to traditional skincare products offering a range of benefits, including anti-aging, moisturizing, and soothing properties. The review aims to provide a comprehensive understanding of the development and manufacturing processes of skin products containing hemp actives. By delving into the science behind hemp-based products, the paper provides valuable insights into the potential of hemp as a versatile ingredient in the pharmaceutical and cosmetic industries. The utilization of hemp in these innovative products not only offers therapeutic benefits but also promotes natural and sustainable approaches to skincare.
Collapse
Affiliation(s)
- Ana Žugić
- Institute for Medicinal Plant Research “Dr. Josif Pancic”, Tadeusa Koscuska 1, 11000 Belgrade, Serbia; (A.Ž.); (M.R.)
| | - Milica Martinović
- Faculty of Medicine, University of Nis, Zorana Đinđića Boulevard 81, 18000 Niš, Serbia; (M.M.); (I.N.)
| | - Vanja Tadić
- Institute for Medicinal Plant Research “Dr. Josif Pancic”, Tadeusa Koscuska 1, 11000 Belgrade, Serbia; (A.Ž.); (M.R.)
| | - Miloš Rajković
- Institute for Medicinal Plant Research “Dr. Josif Pancic”, Tadeusa Koscuska 1, 11000 Belgrade, Serbia; (A.Ž.); (M.R.)
| | - Gordana Racić
- Faculty of Ecological Agriculture, University Educons, Vojvode Putnika 87, 21208 Sremska Kamenica, Serbia;
| | - Ivana Nešić
- Faculty of Medicine, University of Nis, Zorana Đinđića Boulevard 81, 18000 Niš, Serbia; (M.M.); (I.N.)
| | - Anamarija Koren
- Institute of Field and Vegetable Crops, Maksima Gorkog 30, 21000 Novi Sad, Serbia
| |
Collapse
|
6
|
Lefebvre È, Tawil N, Yahia L. Transdermal Delivery of Cannabidiol for the Management of Acute Inflammatory Pain: A Comprehensive Review of the Literature. Int J Mol Sci 2024; 25:5858. [PMID: 38892047 PMCID: PMC11172078 DOI: 10.3390/ijms25115858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/22/2024] [Accepted: 05/25/2024] [Indexed: 06/21/2024] Open
Abstract
The emerging field of nanotechnology has paved the way for revolutionary advancements in drug delivery systems, with nanosystems emerging as a promising avenue for enhancing the therapeutic potential and the stability of various bioactive compounds. Among these, cannabidiol (CBD), the non-psychotropic compound of the Cannabis sativa plant, has gained attention for its therapeutic properties. Consequently, researchers have devoted significant efforts to unlock the full potential of CBD's clinical benefits, where various nanosystems and excipients have emerged to overcome challenges associated with its bioavailability, stability, and controlled release for its transdermal application. Therefore, this comprehensive review aims to explain CBD's role in managing acute inflammatory pain and offers an overview of the state of the art of existing delivery systems and excipients for CBD. To summarize this review, a summary of the cannabinoids and therapeutical targets of CBD will be discussed, followed by its conventional modes of administration. The transdermal route of administration and the current topical and transdermal delivery systems will also be reviewed. This review will conclude with an overview of in vivo techniques that allow the evaluation of the anti-inflammatory and analgesic potentials of these systems.
Collapse
Affiliation(s)
- Ève Lefebvre
- Department of Mechanical Engineering, Polytechnique Montréal, Montréal, QC H3T 1J4, Canada;
| | - Nancy Tawil
- Qeen BioTechnologies, Gatineau, QC J9J 3K3, Canada;
| | - L’Hocine Yahia
- Department of Mechanical Engineering, Polytechnique Montréal, Montréal, QC H3T 1J4, Canada;
| |
Collapse
|
7
|
Adel Ali Youssef A, Hayder Abdelrahman M, Geweda MM, Varner C, Joshi PH, Ghonge M, Dudhipala N, Sulochana SP, Gadepalli RS, Majumdar S. Formulation and In Vitro-Ex vivo Evaluation of Cannabidiol and Cannabidiol-Valine-Hemisuccinate Loaded Lipid-Based Nanoformulations for Ocular Applications. Int J Pharm 2024; 657:124110. [PMID: 38604539 DOI: 10.1016/j.ijpharm.2024.124110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 04/06/2024] [Accepted: 04/08/2024] [Indexed: 04/13/2024]
Abstract
The goal of this investigation is to develop stable ophthalmic nanoformulations containing cannabidiol (CBD) and its analog cannabidiol-valine-hemisuccinate (CBD-VHS) for improved ocular delivery. Two nanoformulations, nanoemulsion (NE) and nanomicelles (NMC), were developed and evaluated for physicochemical characteristics, drug-excipient compatibility, sterilization, thermal analysis, surface morphology, ex-vivo transcorneal permeation, corneal deposition, and stability. The saturation solubility studies revealed that among the surfactants tested, Cremophor EL had the highest solubilizing capacity for CBD (23.3 ± 0.1 mg/mL) and CBD-VHS (11.2 ± 0.2 mg/mL). The globule size for the lead CBD formulations (NE and NMC) ranged between 205 and 270 nm while CBD-VHS-NMC formulation had a particle size of about 78 nm. The sterilized formulations, except for CBD-VHS-NMC at 40 °C, were stable for three months of storage (last time point tested). Release, in terms of CBD, in the in-vitro release/diffusion studies over 18 h, were faster from the CBD-VHS nanomicelles (38 %) compared to that from the CBD nanoemulsion (16 %) and nanomicelles (33 %). Transcorneal permeation studies revealed improvement in CBD permeability and flux with both formulations; however, a greater improvement was observed with the NMC formulation compared to the NE formulation. In conclusion, the nanoformulations prepared could serve as efficient topical ocular drug delivery platforms for CBD and its analog.
Collapse
Affiliation(s)
- Ahmed Adel Ali Youssef
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, University, MS 38677, USA; Department of Pharmaceutical Technology, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Muna Hayder Abdelrahman
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, University, MS 38677, USA
| | - Mona M Geweda
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, University, MS 38677, USA
| | - Corinne Varner
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, University, MS 38677, USA
| | - Poorva H Joshi
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, University, MS 38677, USA
| | - Mihir Ghonge
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, University, MS 38677, USA
| | - Narendar Dudhipala
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, University, MS 38677, USA
| | - Suresh P Sulochana
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, University, MS 38677, USA
| | - Rama S Gadepalli
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, MS 38677, USA
| | - Soumyajit Majumdar
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, University, MS 38677, USA; Research Institute of Pharmaceutical Sciences, University of Mississippi, University, MS 38677, USA.
| |
Collapse
|
8
|
Sobieraj J, Strzelecka K, Sobczak M, Oledzka E. How Biodegradable Polymers Can be Effective Drug Delivery Systems for Cannabinoids? Prospectives and Challenges. Int J Nanomedicine 2024; 19:4607-4649. [PMID: 38799700 PMCID: PMC11128233 DOI: 10.2147/ijn.s458907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/15/2024] [Indexed: 05/29/2024] Open
Abstract
Cannabinoids are compounds found in and derived from the Cannabis plants that have become increasingly recognised as significant modulating factors of physiological mechanisms and inflammatory reactions of the organism, thus inevitably affecting maintenance of homeostasis. Medical Cannabis popularity has surged since its legal regulation growing around the world. Numerous promising discoveries bring more data on cannabinoids' pharmacological characteristics and therapeutic applications. Given the current surge in interest in the medical use of cannabinoids, there is an urgent need for an effective method of their administration. Surpassing low bioavailability, low water solubility, and instability became an important milestone in the advancement of cannabinoids in pharmaceutical applications. The numerous uses of cannabinoids in clinical practice remain restricted by limited administration alternatives, but there is hope when biodegradable polymers are taken into account. The primary objective of this review is to highlight the wide range of indications for which cannabinoids may be used, as well as the polymeric carriers that enhance their effectiveness. The current review described a wide range of therapeutic applications of cannabinoids, including pain management, neurological and sleep disorders, anxiety, and cancer treatment. The use of these compounds was further examined in the area of dermatology and cosmetology. Finally, with the use of biodegradable polymer-based drug delivery systems (DDSs), it was demonstrated that cannabinoids can be delivered specifically to the intended site while also improving the drug's physicochemical properties, emphasizing their utility. Nevertheless, additional clinical trials on novel cannabinoids' formulations are required, as their full spectrum therapeutical potential is yet to be unravelled.
Collapse
Affiliation(s)
- Jan Sobieraj
- Department of Pharmaceutical Chemistry and Biomaterials, Faculty of Pharmacy, Medical University of Warsaw, Warsaw, 02-097, Poland
| | - Katarzyna Strzelecka
- Department of Pharmaceutical Chemistry and Biomaterials, Faculty of Pharmacy, Medical University of Warsaw, Warsaw, 02-097, Poland
| | - Marcin Sobczak
- Department of Pharmaceutical Chemistry and Biomaterials, Faculty of Pharmacy, Medical University of Warsaw, Warsaw, 02-097, Poland
| | - Ewa Oledzka
- Department of Pharmaceutical Chemistry and Biomaterials, Faculty of Pharmacy, Medical University of Warsaw, Warsaw, 02-097, Poland
| |
Collapse
|
9
|
Chu PC, Liao MH, Liu MG, Li CZ, Lai PS. Key Transdermal Patch Using Cannabidiol-Loaded Nanocarriers with Better Pharmacokinetics in vivo. Int J Nanomedicine 2024; 19:4321-4337. [PMID: 38770103 PMCID: PMC11104392 DOI: 10.2147/ijn.s455032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 04/29/2024] [Indexed: 05/22/2024] Open
Abstract
Purpose Cannabidiol (CBD) is a promising therapeutic drug with low addictive potential and a favorable safety profile. However, CBD did face certain challenges, including poor solubility in water and low oral bioavailability. To harness the potential of CBD by combining it with a transdermal drug delivery system (TDDS). This innovative approach sought to develop a transdermal patch dosage form with micellar vesicular nanocarriers to enhance the bioavailability of CBD, leading to improved therapeutic outcomes. Methods A skin-penetrating micellar vesicular nanocarriers, prepared using nano emulsion method, cannabidiol loaded transdermal nanocarriers-12 (CTD-12) was presented with a small particle size, high encapsulation efficiency, and a drug-loaded ratio for CBD. The skin permeation ability used Strat-M™ membrane with a transdermal diffusion system to evaluate the CTD and patch of CTD-12 (PCTD-12) within 24 hrs. PCTD-12 was used in a preliminary pharmacokinetic study in rats to demonstrate the potential of the developed transdermal nanocarrier drug patch for future applications. Results In the transdermal application of CTD-12, the relative bioavailability of the formulation was 3.68 ± 0.17-fold greater than in the free CBD application. Moreover, PCTD-12 indicated 2.46 ± 0.18-fold higher relative bioavailability comparing with free CBD patch in the ex vivo evaluation. Most importantly, in the pharmacokinetics of PCTD-12, the relative bioavailability of PCTD-12 was 9.47 ± 0.88-fold higher than in the oral application. Conclusion CTD-12, a transdermal nanocarrier, represents a promising approach for CBD delivery, suggesting its potential as an effective transdermal dosage form.
Collapse
Affiliation(s)
- Po-Cheng Chu
- Department of Chemistry, National Chung Hsing University, Taichung, Taiwan
- Basic Research and Development Department, Powin Biomedical Co. Ltd., Taichung, Taiwan
| | - Man-Hua Liao
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Mao-Gu Liu
- Department of Chemistry, National Chung Hsing University, Taichung, Taiwan
| | - Cun-Zhao Li
- Basic Research and Development Department, Powin Biomedical Co. Ltd., Taichung, Taiwan
| | - Ping-Shan Lai
- Department of Chemistry, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
10
|
Jia M, Bai W, Deng J, Li W, Lin Q, Zhong F, Luo F. Enhancing solubility and bioavailability of octacosanol: Development of a green O/W nanoemulsion synthesis process. Int J Pharm 2024; 651:123726. [PMID: 38135259 DOI: 10.1016/j.ijpharm.2023.123726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/08/2023] [Accepted: 12/19/2023] [Indexed: 12/24/2023]
Abstract
Octacosanol, a naturally occurring higher fatty alcohol, possessed numerous biological effects. However, octacosanol limited solubility in water due to its lipophilic nature and large structure, resulting in poor absorption and low bioavailability. To overcome this challenge, we developed a simple, environmentally friendly, and energy-efficient O/W nanoemulsion synthesis process. The nanoemulsion achieved an average droplet size of approximately 30 nm, exhibited excellent dispersibility and stability at room temperature for 60 days, and showcased robust storage properties insensitive to ambient temperature, pH, NaCl, and sucrose. Remarkably, the preparation process of the nanoemulsion maintained the biological activity of octacosanol while demonstrating significantly enhancing antioxidant activity compared to octacosanol suspension. Additionally, the nanoemulsion displayed negligible cytotoxic effects on Caco-2 cells. Significantly, the octacosanol nanoemulsion exhibited a 5.4-fold enhancement in transmembrane transport efficiency when compared to the suspension in Caco-2 cell monolayers. Additionally, in an in vivo experiment, there was a notable 2.9-fold increase in rat intestinal absorption. These findings could provide valuable insights into the development of octacosanol nanoemulsion, supporting its future applications and paving the way for the design of stable nanoemulsion systems for other lipophilic and sparingly soluble substances.
Collapse
Affiliation(s)
- Mingxi Jia
- National Engineering Research Center of Rice and Byproduct Deep Processing, Hunan Province Key Laboratory of Edible forestry Resources Safety and Processing Utilization, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China; College of Light Industry and Food Sciences, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, Guangdong, China; College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, JiangSu, China
| | - Weidong Bai
- College of Light Industry and Food Sciences, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, Guangdong, China
| | - Jing Deng
- National Engineering Research Center of Rice and Byproduct Deep Processing, Hunan Province Key Laboratory of Edible forestry Resources Safety and Processing Utilization, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
| | - Wen Li
- National Engineering Research Center of Rice and Byproduct Deep Processing, Hunan Province Key Laboratory of Edible forestry Resources Safety and Processing Utilization, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China; College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, JiangSu, China; Hunan Provincial Engineering Technology Research Center of Seasonings Green Manufacturing, Changsha 410004, China.
| | - Qinlu Lin
- National Engineering Research Center of Rice and Byproduct Deep Processing, Hunan Province Key Laboratory of Edible forestry Resources Safety and Processing Utilization, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China; College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, JiangSu, China; Hunan Provincial Engineering Technology Research Center of Seasonings Green Manufacturing, Changsha 410004, China
| | - Feifei Zhong
- National Engineering Research Center of Rice and Byproduct Deep Processing, Hunan Province Key Laboratory of Edible forestry Resources Safety and Processing Utilization, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China; Changsha Institute for Food and Drug Control, Changsha 410016, Hunan, China
| | - Feijun Luo
- National Engineering Research Center of Rice and Byproduct Deep Processing, Hunan Province Key Laboratory of Edible forestry Resources Safety and Processing Utilization, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
| |
Collapse
|
11
|
Kang D, Wang C, Liu W, Yang M, Cheng X, Chen Y. Development of an UHPLC-MS/MS method to determine cutaneous biodistribution of cannabidiol after topical application of cannabidiol gel assisted by iontophoresis. Biomed Chromatogr 2023; 37:e5735. [PMID: 37651752 DOI: 10.1002/bmc.5735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/05/2023] [Accepted: 08/15/2023] [Indexed: 09/02/2023]
Abstract
Cannabidiol has potential for use in skin disease therapy, so it is important to know the cutaneous biodistribution of cannabidiol after topical application of cannabidiol formulations. However, currently existing quantification methods for the investigation of cannabidiol skin distribution are not optimal. This study aimed to establish a method for the determination of cannabidiol in skin samples by UHPLC-MS/MS. A BEH C18 (50.0 × 2.1 mm, 2.5 μm) column was used; the mobile phase consisted of acetonitrile-0.1% formic acid (70:30, v/v), the flow rate was 0.2 μl·min-1 and the column temperature was 30°C. Positive-ion mode with multiple reaction monitoring detection was used to quantify cannabidiol (m/z 315.1 → 193.1) while diphenhydramine (m/z 256.3 → 167.08) served as the internal standard. Good linearity was shown in the range of 1-200 ng·ml-1 for cannabidiol with correlation coefficients of >0.999. The LLOQ was 1 ng·ml-1 . The intra-day and inter-day RSDs of cannabidiol were all <2%. A cryo-sectioning technique combined with the UHPLC-MS/MS method was used to successfully determine cannabidiol levels in a series of very thin skin layers.
Collapse
Affiliation(s)
- Dongzhu Kang
- School of Pharmacy, Nantong University, Nantong, Jiangsu Province, China
| | - Chenhui Wang
- School of Pharmacy, Nantong University, Nantong, Jiangsu Province, China
| | - Wenqian Liu
- School of Pharmacy, Nantong University, Nantong, Jiangsu Province, China
| | - Meiqing Yang
- School of Pharmacy, Nantong University, Nantong, Jiangsu Province, China
| | - Xiaohong Cheng
- Nantong Center for Disease Control and Prevention, Nantong, Jiangsu Province, China
| | - Yong Chen
- School of Pharmacy, Nantong University, Nantong, Jiangsu Province, China
| |
Collapse
|
12
|
Tran VN, Strnad O, Šuman J, Veverková T, Sukupová A, Cejnar P, Hynek R, Kronusová O, Šach J, Kaštánek P, Ruml T, Viktorová J. Cannabidiol nanoemulsion for eye treatment - Anti-inflammatory, wound healing activity and its bioavailability using in vitro human corneal substitute. Int J Pharm 2023; 643:123202. [PMID: 37406946 DOI: 10.1016/j.ijpharm.2023.123202] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 06/29/2023] [Accepted: 07/02/2023] [Indexed: 07/07/2023]
Abstract
Cannabidiol (CBD) is the non-psychoactive component of the plant Cannabis sativa (L.) that has great anti-inflammatory benefits and wound healing effects. However, its high lipophilicity, chemical instability, and extensive metabolism impair its bioavailability and clinical use. Here, we report on the preparation of a human cornea substitute in vitro and validate this substitute for the evaluation of drug penetration. CBD nanoemulsion was developed and evaluated for stability and biological activity. The physicochemical properties of CBD nanoemulsion were maintained during storage for 90 days under room conditions. In the scratch assay, nanoformulation showed significantly ameliorated wound closure rates compared to the control and pure CBD. Due to the lower cytotoxicity of nanoformulated CBD, a higher anti-inflammatory activity was demonstrated. Neither nanoemulsion nor pure CBD can penetrate the cornea after the four-hour apical treatment. For nanoemulsion, 94 % of the initial amount of CBD remained in the apical compartment while only 54 % of the original amount of pure CBD was detected in the apical medium, and 7 % in the cornea, the rest was most likely metabolized. In summary, the nanoemulsion developed in this study enhanced the stability and biological activity of CBD.
Collapse
Affiliation(s)
- Van Nguyen Tran
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Technicka 3, 16628 Prague 6, Czech Republic
| | - Ondřej Strnad
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Technicka 3, 16628 Prague 6, Czech Republic
| | - Jáchym Šuman
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Technicka 3, 16628 Prague 6, Czech Republic
| | - Tereza Veverková
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Technicka 3, 16628 Prague 6, Czech Republic
| | - Adéla Sukupová
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Technicka 3, 16628 Prague 6, Czech Republic
| | - Pavel Cejnar
- Department of Mathematics, Informatics and Cybernetics, University of Chemistry and Technology, Technicka 3, 16628 Prague 6, Czech Republic
| | - Radovan Hynek
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Technicka 3, 16628 Prague 6, Czech Republic
| | - Olga Kronusová
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Technicka 3, 16628 Prague 6, Czech Republic; EcoFuel Laboratories Ltd., Ocelářská 392, 190 00 Prague 9, Czech Republic
| | - Josef Šach
- Department of Pathology, Third Faculty of Medicine, Teaching Hospital Královské Vinohrady Prague, Šrobárova 50, 100 34 Prague 10, Czech Republic
| | - Petr Kaštánek
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Technicka 3, 16628 Prague 6, Czech Republic; EcoFuel Laboratories Ltd., Ocelářská 392, 190 00 Prague 9, Czech Republic
| | - Tomáš Ruml
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Technicka 3, 16628 Prague 6, Czech Republic
| | - Jitka Viktorová
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Technicka 3, 16628 Prague 6, Czech Republic.
| |
Collapse
|
13
|
Lv Z, Meng X, Sun S, Jiang T, Li Y, Feng J. Construction and formulation optimization of prothioconazole nanoemulsions for the control of Fusarium graminearum: Enhancing activity and reducing toxicity. Colloids Surf B Biointerfaces 2023; 227:113379. [PMID: 37267682 DOI: 10.1016/j.colsurfb.2023.113379] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 06/04/2023]
Abstract
In this study, the optimal emulsifier for prothioconazole nanoemulsions was initially screened based on appearance, microscopic observation, mean droplet size and polydispersity index (PDI). In addition, the BoxBehnken design method is adopted, and the optimal formula is screened with an emulsification time, emulsifier content, and solvent content as a single factor. On this basis, the nanoemulsion meets FAO standards for various indicators. The contact angle of droplets on wheat leaves was significantly reduced. This nanoemulsion also showed good inhibitory activity against Fusarium graminearum (EC50 =1.94 mg L-1), low acute toxicity to zebrafish (LC50 =26.35 mg L-1) and good biosafety to BEAS-2B cells. The nanoemulsion reduced the adverse effects of pesticide on wheat seed germination and growth. This study can help promote the design and manufacture of stable, efficient and safe agricultural nanoemulsions, and is expected to benefit the sustainable development of green plant protection.
Collapse
Affiliation(s)
- Ze Lv
- College of Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Xiaohan Meng
- College of Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Shaoyang Sun
- College of Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Tianzhen Jiang
- College of Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Yan Li
- College of Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Jianguo Feng
- College of Plant Protection, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|