1
|
Han B, Shan X, Xue H, Liu F, Song X, Kong J, Lei Q, Wang Y, Ma D, Zhang Q. Synergistic hydrogen production and organic pollutant removal via dual-functional photocatalytic systems. J Environ Sci (China) 2025; 153:202-216. [PMID: 39855792 DOI: 10.1016/j.jes.2024.06.039] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 01/27/2025]
Abstract
Photocatalytic water splitting is a promising way to produce H2, a green and clean energy source. However, efficient H2 production typically relies on the addition of electron donors, such as alcohols and acids, which are neither environmentally friendly nor cost-effective. Recently, we have witnessed a surge of studies in coupling photocatalytic H2 evolution with organic pollutant oxidation, which significantly promotes charge separation and improves the overall photocatalytic efficiency. It is thus an opportune time to critically assess the recent literature concerning dual-functional photocatalytic systems and provide perspectives for its future development. In this minireview, we begin with the working principles and requirements for synergistic photocatalytic systems. We then summarize and critically discuss the recent advances in photocatalytic H2 production and the degradation of various organic pollutants, including antibiotics, dyes, and phenols. Finally, we discuss the current challenges and suggest future directions for this field.
Collapse
Affiliation(s)
- Bin Han
- Shandong Key Laboratory of Environmental Processes and Health, Qingdao Key Laboratory of Marine Pollutant Prevention, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Xiangcheng Shan
- Shandong Key Laboratory of Environmental Processes and Health, Qingdao Key Laboratory of Marine Pollutant Prevention, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Hui Xue
- Shandong Key Laboratory of Environmental Processes and Health, Qingdao Key Laboratory of Marine Pollutant Prevention, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Fuyu Liu
- Shandong Key Laboratory of Environmental Processes and Health, Qingdao Key Laboratory of Marine Pollutant Prevention, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Xiaoyang Song
- Shandong Key Laboratory of Environmental Processes and Health, Qingdao Key Laboratory of Marine Pollutant Prevention, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Jiarui Kong
- Shandong Key Laboratory of Environmental Processes and Health, Qingdao Key Laboratory of Marine Pollutant Prevention, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Qiupei Lei
- Shandong Key Laboratory of Environmental Processes and Health, Qingdao Key Laboratory of Marine Pollutant Prevention, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Yingjun Wang
- Shandong Key Laboratory of Environmental Processes and Health, Qingdao Key Laboratory of Marine Pollutant Prevention, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China.
| | - Dongling Ma
- Institut National de la Recherche Scientifique (INRS)-EMT, 1650 Boulevard Lionel Boulet, Varennes, Quebec J3X 1P7, Canada.
| | - Qingzhe Zhang
- Shandong Key Laboratory of Environmental Processes and Health, Qingdao Key Laboratory of Marine Pollutant Prevention, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China.
| |
Collapse
|
2
|
Cui Z, Shao Y, Zhang J, Wang Z. Dual-bioinspired Janus mesh membrane with controllable bubbles manipulation property for efficient water splitting and pure gas collection. J Colloid Interface Sci 2025; 682:629-642. [PMID: 39642549 DOI: 10.1016/j.jcis.2024.11.218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 11/22/2024] [Accepted: 11/26/2024] [Indexed: 12/09/2024]
Abstract
Water splitting, as a promising clean energy source, has garnered significant attention owing to the escalating global energy crisis. However, prior research has largely focused on electrode materials rather than bubble manipulation, which plays a crucial role in the process. Although using the previously published "Releasing strategy" effectively eliminates micro-sized bubbles from the electrode material for efficient water splitting, the released tiny-sized bubbles pose challenges for controllable and pure collection. Herein, a new "Managing strategy", integrating the "Transporting strategy" for rapid directional bubble transport with the "Collecting strategy" for controllable bubble collection, aiming to develop smart integrated water-splitting devices for efficient continuous water splitting and pure gas collection. This advanced functional electrode, designed with a lotus leaf-inspired Janus wettability interface for timely directional bubble transport and a water-spider hair structure-inspired aerophilic surface for efficient bubble collection, enables pure, efficient, and continuous water splitting. It achieves this by releasing gas products of controllable larger sizes, collecting them at a faster rate, and reducing the probability of H2/O2 collisions. Beyond enabling water splitting, this approach is also applicable to other gas-involving applications.
Collapse
Affiliation(s)
- Zhanyuan Cui
- College of Materials Science and Engineering, Liaoning Technical University, Fuxin 123000, China
| | - Yubing Shao
- College of Materials Science and Engineering, Liaoning Technical University, Fuxin 123000, China
| | - Jinghan Zhang
- College of Materials Science and Engineering, Liaoning Technical University, Fuxin 123000, China
| | - Zhecun Wang
- College of Materials Science and Engineering, Liaoning Technical University, Fuxin 123000, China.
| |
Collapse
|
3
|
Yu W, Fang N, Liu Z, Chu Y, Lai B. MIL-125-PDI/ZnIn 2S 4 Inorganic-Organic S-Scheme Heterojunction With Hierarchical Hollow Nanodisc Structure for Efficient Hydrogen Evolution from Antibiotic Wastewater Remediation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2407104. [PMID: 39434464 DOI: 10.1002/smll.202407104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/30/2024] [Indexed: 10/23/2024]
Abstract
Efficient photocatalytic production of H2 from wastewater is expected to address environmental pollution and energy crises effectively. However, the rapid recombination of photoinduced carriers results in low photoconversion efficiency. At present, inorganic-organic S-scheme heterojunction have become a prominent and promising technology. In this study, an organic ligand modified MIL-125-PDI/ZnIn2S4 (ZIS) inorganic-organic S-scheme heterojunction catalyst is designed. ZIS nanosheets are grown on the disc-shaped MIL-125-PDI surface to form a distinctive hollow nanodiscs with hierarchical structure, giving the material an abundance of surface active sites, an optimized electronic structure, and a spatially separated redox surface. Consequently, the optimal 100MIL-125-PDI250/ZIS exhibited high photocatalytic HER of 508.99 µmol g-1 h-1 in Tetracycline hydrochloride (TC-HCl) solution. Meanwhile, the catalyst achieved complete TC-HCl removal and mineralization rate of 66.62% in 4 h. Experimental and theoretical calculations corroborate that the staggered band alignment and work function difference between MIL-125-PDI and ZIS induce the formation of a built-in electric field, thus regulating the charge transfer routes and consequently enhancing charge separation efficiency. The possible photocatalytic mechanism is analyzed using liquid chromatography-mass spectrometry (LC-MS), and the toxicities of the degradation products are also evaluated. This work presents a green dual-function strategy for H2 production and antibiotic wastewater recycling.
Collapse
Affiliation(s)
- Weili Yu
- College of Architecture and Environment, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Ningjie Fang
- College of Architecture and Environment, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Zhaobing Liu
- College of Architecture and Environment, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Yinghao Chu
- College of Architecture and Environment, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Bo Lai
- College of Architecture and Environment, Sichuan University, Chengdu, Sichuan, 610065, China
| |
Collapse
|
4
|
Yu Y, Li W, Huang Y, Yang H, Lv C, Yan HX, Lin D, Jiao S, Hou L, Wu Z. Simultaneous Efficient Photocatalytic Hydrogen Evolution and Degradation of Dye Wastewater without Cocatalysts and Sacrificial Agents Based on g-C 3N 5 and Hybridized Ni-MOF Derivative-CdS-DETA. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309577. [PMID: 38348936 DOI: 10.1002/smll.202309577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 01/08/2024] [Indexed: 07/19/2024]
Abstract
Inspired by energy conversion and waste reuse, hybridized Ni-MOF derivative-CdS-DETA/g-C3N5, a type-II heterojunction photocatalyst, is synthesized by a hydrothermal method for simultaneous and highly efficient photocatalytic degradation and hydrogen evolution in dye wastewater. Without the addition of cocatalysts and sacrificial agents, the optimal MOF-CD(2)/CN5 (i.e. Ni-MOF derivative-CdS-DETA (20 wt.%)/g-C3N5) exhibit good bifunctional catalytic activity, with a H2 evolution rate of 2974.4 µmol g-1 h-1 during the degradation of rhodamine B (RhB), and a removal rate of 99.97% for RhB. In the process of H2-evolution-only, triethanolamine is used as a sacrificial agent, exhibiting a high H2 evolution rate (19663.1 µmol g-1 h-1) in the absence of a cocatalyst, and outperforming most similar related materials (such as MOF/g-C3N5, MOF-CdS, CdS/g-C3N5). With the help of type-II heterojunction, holes are scavenged for the oxidative degradation of RhB, and electrons are used in the decomposition of water for H2 evolution during illumination. This work opens a new path for photocatalysts with dual functions of simultaneous efficient degradation and hydrogen evolution.
Collapse
Affiliation(s)
- Yongzhuo Yu
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, Guangdong Engineering Technology Research Center of Efficient Green Energy and Environmental Protection Materials, School of Physics, School of Electronic and Information Engineering, South China Normal University, Guangzhou, 510006, P. R. China
| | - Wei Li
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, Guangdong Engineering Technology Research Center of Efficient Green Energy and Environmental Protection Materials, School of Physics, School of Electronic and Information Engineering, South China Normal University, Guangzhou, 510006, P. R. China
| | - Yuxin Huang
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, Guangdong Engineering Technology Research Center of Efficient Green Energy and Environmental Protection Materials, School of Physics, School of Electronic and Information Engineering, South China Normal University, Guangzhou, 510006, P. R. China
| | - Huixing Yang
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, Guangdong Engineering Technology Research Center of Efficient Green Energy and Environmental Protection Materials, School of Physics, School of Electronic and Information Engineering, South China Normal University, Guangzhou, 510006, P. R. China
| | - Chaoyu Lv
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, Guangdong Engineering Technology Research Center of Efficient Green Energy and Environmental Protection Materials, School of Physics, School of Electronic and Information Engineering, South China Normal University, Guangzhou, 510006, P. R. China
| | - Hui Xiang Yan
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, Guangdong Engineering Technology Research Center of Efficient Green Energy and Environmental Protection Materials, School of Physics, School of Electronic and Information Engineering, South China Normal University, Guangzhou, 510006, P. R. China
| | - Di Lin
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, Guangdong Engineering Technology Research Center of Efficient Green Energy and Environmental Protection Materials, School of Physics, School of Electronic and Information Engineering, South China Normal University, Guangzhou, 510006, P. R. China
| | - Shichao Jiao
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, Guangdong Engineering Technology Research Center of Efficient Green Energy and Environmental Protection Materials, School of Physics, School of Electronic and Information Engineering, South China Normal University, Guangzhou, 510006, P. R. China
| | - Linlin Hou
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, Guangdong Engineering Technology Research Center of Efficient Green Energy and Environmental Protection Materials, School of Physics, School of Electronic and Information Engineering, South China Normal University, Guangzhou, 510006, P. R. China
| | - Zhiliang Wu
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, Guangdong Engineering Technology Research Center of Efficient Green Energy and Environmental Protection Materials, School of Physics, School of Electronic and Information Engineering, South China Normal University, Guangzhou, 510006, P. R. China
| |
Collapse
|
5
|
Hou D, Zhu Q, Wang J, Deng M, Qiao XQ, Sun B, Han Q, Chi R, Li DS. Direct Z-scheme system of UiO-66 cubes wrapped with Zn 0.5Cd 0.5S nanoparticles for photocatalytic hydrogen generation synchronized with organic pollutant degradation. J Colloid Interface Sci 2024; 665:68-79. [PMID: 38513409 DOI: 10.1016/j.jcis.2024.03.111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/26/2024] [Accepted: 03/16/2024] [Indexed: 03/23/2024]
Abstract
Optimized fabrication of Z-scheme photocatalyst based on MOF materials offers sustainable energy generation and environmental improvement due to their attractive properties. The Z-scheme heterojunctions consisting of UiO-66 cubes covered with Zn0.5Cd0.5S nanoparticles were fabricated by a facile solvothermal method. Thanks to the Z-scheme carrier transport under simulated sunlight irradiation, UiO-66@Zn0.5Cd0.5S exhibited enhanced photocatalytic performance of H2 generation synchronized with organic pollutant degradation in fluoroquinolone antibiotic wastewater. Synergistically, the highest comprehensive performance was obtained in ciprofloxacin solution. The H2 yield reached 224 μmol∙ g-1∙ h-1 and simultaneously the removal efficiency was up to 83.6 %. The degradation pathways revealed that the process of piperazine ring cleavage and decarboxylation also generates H protons, further promoting the production of H2. Therefore, the effective spatial separation and transfer of the photoinduced carriers are attributed to the good band structure, large specific surface area, and cooperative reduction and oxidation reactions of UiO-66@Zn0.5Cd0.5S, resulting in significant photocatalytic activity. The toxicity assessment of antibiotics and intermediate products during the photocatalytic reaction also verifies the reduction of environmental risk. This study highlights a promising way to expand the application of the MOFs-based photocatalyst in clean energy conversion coupling with water remediation.
Collapse
Affiliation(s)
- Dongfang Hou
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang, Hubei 443002, PR China; Hubei Three Gorges Laboratory, Yichang, Hubei 443007, PR China.
| | - Qian Zhu
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang, Hubei 443002, PR China
| | - Junjie Wang
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang, Hubei 443002, PR China
| | - Min Deng
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang, Hubei 443002, PR China
| | - Xiu-Qing Qiao
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang, Hubei 443002, PR China; Hubei Three Gorges Laboratory, Yichang, Hubei 443007, PR China
| | - Bojing Sun
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang, Hubei 443002, PR China; Hubei Three Gorges Laboratory, Yichang, Hubei 443007, PR China
| | - Qingwen Han
- Hubei Three Gorges Laboratory, Yichang, Hubei 443007, PR China
| | - Ruan Chi
- Hubei Three Gorges Laboratory, Yichang, Hubei 443007, PR China
| | - Dong-Sheng Li
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang, Hubei 443002, PR China; Hubei Three Gorges Laboratory, Yichang, Hubei 443007, PR China.
| |
Collapse
|
6
|
Lin J, Gao D, Zeng J, Li Z, Wen Z, Ke F, Xia Z, Wang D. MXene/ZnS/chitosan-cellulose composite with Schottky heterostructure for efficient removal of anionic dyes by synergistic effect of adsorption and photocatalytic degradation. Int J Biol Macromol 2024; 269:131994. [PMID: 38697431 DOI: 10.1016/j.ijbiomac.2024.131994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/05/2024] [Accepted: 04/28/2024] [Indexed: 05/05/2024]
Abstract
Nowadays, dye water pollution is becoming increasingly severe. Composite of MXene, ZnS, and chitosan-cellulose material (MX/ZnS/CC) was developed to remove anionic dyes through the synergistic effect of adsorption and photocatalytic degradation. MXene was introduced as the cocatalyst to form Schottky heterostructure with ZnS for improving the separation efficiency of photocarriers and photocatalytic performance. Chitosan-cellulose material mainly served as the dye adsorbent, while also could improve material stability and assist in generation of free radicals for dye degradation. The physics and chemistry properties of MX/ZnS/CC composite were systematically inspected through various characterizations. MX/ZnS/CC composite exhibited good adsorption ability to anionic dyes with adsorption capacity up to 1.29 g/g, and excellent synergistic effects of adsorption and photodegradation with synergistic removal capacity up to 5.63 g/g. MX/ZnS/CC composite performed higher synergistic removal ability and better optical and electrical properties than pure MXene, ZnS, chitosan-cellulose material, and MXene/ZnS. After compounding, the synergistic removal percentage of dyes increased by a maximum of 309 %. MX/ZnS/CC composite mainly adsorbs anionic dyes through electrostatic interactions and catalyzes the generation of •O2-, h+, and •OH to degrade dyes, which has been successfully used to remove anionic dyes from environmental water, achieving a 100 % removal of 50 mg/L dye.
Collapse
Affiliation(s)
- Jing Lin
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Die Gao
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Jia Zeng
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Zhou Li
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Zeng Wen
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Famin Ke
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Zhining Xia
- School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China.
| | - Dandan Wang
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China.
| |
Collapse
|
7
|
Pan F, Long L, Li Z, Yan S, Wang L, Lv G, Zhang J, Chen J, Liang G, Wang D. Substitutional Cd Dopant as Photohole Transfer Mediator Boosting Photoelectrochemical Solar Energy Conversion of 2D Cd-ZnIn 2 S 4 Photoanode. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304846. [PMID: 37910867 DOI: 10.1002/smll.202304846] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/24/2023] [Indexed: 11/03/2023]
Abstract
Fast recombination dynamics of photocarriers competing with sluggish surface photohole oxidation kinetics severely restricts the photoelectrochemical (PEC) conversion efficiency of photoanode. Here, a defect engineering strategy is developed to regulate photohole transfer and interfacial injection dynamics of 2D ZnIn2 S4 (ZIS). Via selectively introducing substitutional Cd dopant at Zn sites of the ZIS basal plane, energy band structure and surface electrochemical activity are successfully modulated in the Cd-doped ZIS (Cd-ZIS) nanosheet array photoanode. Comprehensive characterizations manifest that a shallow acceptor level induced by Cd doping and superior electrochemical activity make surface Cd dopants simultaneously act as capture centers and active sites to mediate photohole dynamics at the reaction interface. In depth photocarrier dynamics analysis demonstrates that highly efficient photohole capture of Cd dopants brings about effective space separation of photocarriers and acceleration of surface reaction kinetics. Therefore, the optimum 2D Cd-ZIS achieves excellent PEC solar energy conversion efficiency with a photocurrent density of 5.1 mA cm-2 at 1.23 VRHE and a record of applied bias photon-to-current efficiency (ABPE) of 3.0%. This work sheds light on a microstructure design strategy to effectively regulate photohole dynamics for the next-generation semiconducting PEC photoanodes.
Collapse
Affiliation(s)
- Feng Pan
- Micro-Electronics Research Institute and School of Electronics and Information, Hangzhou Dianzi University, 1158, 2nd Street, Baiyang Street, Hangzhou, 310018, China
| | - Liyuan Long
- Micro-Electronics Research Institute and School of Electronics and Information, Hangzhou Dianzi University, 1158, 2nd Street, Baiyang Street, Hangzhou, 310018, China
- Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Zhenyu Li
- Micro-Electronics Research Institute and School of Electronics and Information, Hangzhou Dianzi University, 1158, 2nd Street, Baiyang Street, Hangzhou, 310018, China
| | - Shiming Yan
- Micro-Electronics Research Institute and School of Electronics and Information, Hangzhou Dianzi University, 1158, 2nd Street, Baiyang Street, Hangzhou, 310018, China
| | - Lei Wang
- Hubei Key Laboratory of Low Dimensional Optoelectronic Materials and Devices, Hubei University of Arts and Science, 441053, 296 Longzhong Road, Xiangyang, 441053, China
| | - Gangyang Lv
- Micro-Electronics Research Institute and School of Electronics and Information, Hangzhou Dianzi University, 1158, 2nd Street, Baiyang Street, Hangzhou, 310018, China
| | - Junjun Zhang
- Micro-Electronics Research Institute and School of Electronics and Information, Hangzhou Dianzi University, 1158, 2nd Street, Baiyang Street, Hangzhou, 310018, China
| | - Jiahui Chen
- Micro-Electronics Research Institute and School of Electronics and Information, Hangzhou Dianzi University, 1158, 2nd Street, Baiyang Street, Hangzhou, 310018, China
| | - Guijie Liang
- Hubei Key Laboratory of Low Dimensional Optoelectronic Materials and Devices, Hubei University of Arts and Science, 441053, 296 Longzhong Road, Xiangyang, 441053, China
| | - Dunhui Wang
- Micro-Electronics Research Institute and School of Electronics and Information, Hangzhou Dianzi University, 1158, 2nd Street, Baiyang Street, Hangzhou, 310018, China
| |
Collapse
|
8
|
Huang Y, Yu J, Wu Z, Li B, Li M. All-inorganic lead halide perovskites for photocatalysis: a review. RSC Adv 2024; 14:4946-4965. [PMID: 38327811 PMCID: PMC10847908 DOI: 10.1039/d3ra07998h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/11/2024] [Indexed: 02/09/2024] Open
Abstract
Nowadays, environmental pollution and the energy crisis are two significant concerns in the world, and photocatalysis is seen as a key solution to these issues. All-inorganic lead halide perovskites have been extensively utilized in photocatalysis and have become one of the most promising materials in recent years. The superior performance of all-inorganic lead halide perovskites distinguish them from other photocatalysts. Since pure lead halide perovskites typically have shortcomings, such as low stability, poor active sites, and ineffective carrier extraction, that restrict their use in photocatalytic reactions, it is crucial to enhance their photocatalytic activity and stability. Huge progress has been made to deal with these critical issues to enhance the effects of all-inorganic lead halide perovskites as efficient photocatalysts in a wide range of applications. In this manuscript, the synthesis methods of all-inorganic lead halide perovskites are discussed, and promising strategies are proposed for superior photocatalytic performance. Moreover, the research progress of photocatalysis applications are summarized; finally, the issues of all-inorganic lead halide perovskite photocatalytic materials at the current state and future research directions are also analyzed and discussed. We hope that this manuscript will provide novel insights to researchers to further promote the research on photocatalysis based on all-inorganic lead halide perovskites.
Collapse
Affiliation(s)
- Yajie Huang
- College of Forestry, Northeast Forestry University Harbin 150040 China +86-451-82192120
| | - Jiaxing Yu
- College of Forestry, Northeast Forestry University Harbin 150040 China +86-451-82192120
| | - Zhiyuan Wu
- College of Forestry, Northeast Forestry University Harbin 150040 China +86-451-82192120
| | - Borui Li
- College of Forestry, Northeast Forestry University Harbin 150040 China +86-451-82192120
| | - Ming Li
- College of Forestry, Northeast Forestry University Harbin 150040 China +86-451-82192120
| |
Collapse
|
9
|
Nguyen NTT, Nguyen TTT, Nguyen DTC, Tran TV. Functionalization strategies of metal-organic frameworks for biomedical applications and treatment of emerging pollutants: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167295. [PMID: 37742958 DOI: 10.1016/j.scitotenv.2023.167295] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 09/19/2023] [Accepted: 09/21/2023] [Indexed: 09/26/2023]
Abstract
One of the representative coordination polymers, metal-organic frameworks (MOFs) material, is of hotspot interest in the multi field thanks to their unique structural characteristics and properties. As a novel hierarchical structural class, MOFs show diverse topologies, intrinsic behaviors, flexibility, etc. However, bare MOFs have less desirable biofunction, high humid sensitivity and instability in water, restraining their efficiencies in biomedical and environmental applications. Thus, a structural modification is required to address such drawbacks. Herein, we pinpoint new strategies in the synthesis and functionalization of MOFs to meet demanding requirements in in vitro tests, i.e., antibacterial face masks against corona virus infection and in wound healing and nanocarriers for drug delivery in anticancer. Regarding the treatment of wastewater containing emerging pollutants such as POPs, PFAS, and PPCPs, functionalized MOFs showed excellent performance with high efficiency and selectivity. Challenges in toxicity, vast database of clinical trials for biomedical tests and production cost can be still presented. MOFs-based composites can be, however, a bright candidate for reasonable replacement of traditional nanomaterials in biomedical and wastewater treatment applications.
Collapse
Affiliation(s)
- Ngoan Thi Thao Nguyen
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Vietnam; Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam; Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Vietnam
| | - Thuy Thi Thanh Nguyen
- Faculty of Science, Nong Lam University, Thu Duc District, Ho Chi Minh City 700000, Vietnam
| | - Duyen Thi Cam Nguyen
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Vietnam
| | - Thuan Van Tran
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Vietnam.
| |
Collapse
|
10
|
Yang H, Lin J, Wen Z, Li Z, Zeng J, Wang L, Tao Y, Gao D, Wang D. ZnS/CuFe 2O 4/MXene ternary heterostructure photocatalyst for efficient adsorption and photocatalytic degradation of azo dyes under visible light: Synergistic effect, mechanism, and application. CHEMOSPHERE 2023; 339:139797. [PMID: 37572707 DOI: 10.1016/j.chemosphere.2023.139797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/07/2023] [Accepted: 08/10/2023] [Indexed: 08/14/2023]
Abstract
ZnS/CuFe2O4/MXene (ZSCFOM) composite with ternary heterostructures was prepared by solvothermal methods for the first time to effectively adsorb and photodegrade the azo dyes. ZSCFOM mainly adsorbed azo dyes through the hydrogen bonding and electrostatic interactions, with saturated adsorption capacities of 377 mg g-1 for direct brown M and 390 mg g-1 for direct black RN. ZSCFOM exhibited both characteristics of Schott heterostructure and p-n heterostructure, but it is not a simple superposition of the two heterostructures, but rather achieves better photocatalytic property. ZSCFOM performed a higher separation efficiency of electrons and holes than pure CuFe2O4 and pure ZnS. Under visible light, ZSCFOM was more effective in removing the azo dyes than MXene, CuFe2O4, ZnS, CuFe2O4/MXene, ZnS/MXene, and ZnS/CuFe2O4. The migration pathways of photogenerated carriers in ZSCFOM were inferred as that the electrons were concentrated in MXene and conduction band of ZnS, and holes were gathered in valence band of CuFe2O4. MXene served as a cocatalyst to accelerate the separation of electrons and holes. ZSCFOM mainly degraded DBM and DBRN by catalyzing the generation of holes, superoxide radicals, and hydroxyl radicals. The 100% of 0.05 g L-1 azo dyes were removed by ZSCFOM within 30 min from the environmental water systems.
Collapse
Affiliation(s)
- Haojie Yang
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Jing Lin
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Zeng Wen
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Zhou Li
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Jia Zeng
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Luchun Wang
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Yongqing Tao
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Die Gao
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China.
| | - Dandan Wang
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China.
| |
Collapse
|
11
|
Guo W, Guo T, Zhang Y, Yin L, Dai Y. Progress on simultaneous photocatalytic degradation of pollutants and production of clean energy: A review. CHEMOSPHERE 2023; 339:139486. [PMID: 37499803 DOI: 10.1016/j.chemosphere.2023.139486] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 07/29/2023]
Abstract
In the current era of severe energy and environmental crises, the need for efficient and sustainable methods to control pollution and promote resource recycling has become increasingly important. Photocatalytic degradation of pollutants and simultaneous production of clean energy is one such approach that has garnered significant attention in recent years. The principle of photocatalysis involves the development of efficient photocatalysts and the efficient utilization of solar energy. The use of organic contaminants can enhance the photocatalytic reactions, leading to the sustainable generation of clean energy. Herein, we provide a comprehensive review of the latest advances in the application of photocatalytic synergized clean energy production in the environmental field. This review highlights the latest developments and achievements in this field, highlighting the potential for this approach to revolutionize the way we approach environmental pollution control and resource recycling. The review focuses on (1) the mechanism of photocatalytic degradation and synergistic energy production, (2) photocatalysts and synthesis strategies, (3) photocatalytic carbon dioxide reduction, (4) pollutant degradation, and (5) hydrogen and electricity production. In addition, perspectives on key challenges and opportunities in photocatalysis and clean energy for future developments are proposed. This review provides a roadmap for future research directions and innovations of photocatalysis that could contribute to the development of more sustainable and cleaner energy solutions.
Collapse
Affiliation(s)
- Wenqing Guo
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, PR China.
| | - Tao Guo
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, PR China.
| | - Yuanzheng Zhang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, PR China
| | - Lifeng Yin
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, PR China.
| | - Yunrong Dai
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing, 100083, PR China.
| |
Collapse
|
12
|
Yang L, Si J, Liang L, Wang Y, Zhu L, Zhang Z. Construction of ZnO/Zn 3In 2S 6/Pt with integrated S-scheme/Schottky heterojunctions for boosting photocatalytic hydrogen evolution and bisphenol a degradation. J Colloid Interface Sci 2023; 649:855-866. [PMID: 37390533 DOI: 10.1016/j.jcis.2023.06.164] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/16/2023] [Accepted: 06/23/2023] [Indexed: 07/02/2023]
Abstract
Photocatalytic water splitting has been identified as a promising solution to tackle the current environmental and energy crisis in the world. However, the challenge of this green technology is the inefficient separation and utilization of photogenerated electron-hole pairs in photocatalysts. To overcome this challenge in one system, a ternary ZnO/Zn3In2S6/Pt material was prepared as a photocatalyst using a stepwise hydrothermal process and in-situ photoreduction deposition. The integrated S-scheme/Schottky heterojunction in the constructed ZnO/Zn3In2S6/Pt photocatalyst enabled it to exhibit efficient photoexcited charge separation/transfer. The evolved H2 reached up to 3.5 mmol g-1h-1. Meanwhile, the ternary composite possessed a high cyclic stability against photo-corrosion under irradiation. Practically, the ZnO/Zn3In2S6/Pt photocatalyst also showed great potential for H2 evolution while simultaneously degrading organic contaminants like bisphenol A. It is hoped in this work that the incorporation of Schottky junctions and S-scheme heterostructures in the construction of photocatalysts would lead to accelerated electron transfer and high photoinduced electron-hole pair separation, respectively, to synergistically enhance the performance of photocatalysts.
Collapse
Affiliation(s)
- Lifang Yang
- College of Chemistry and Materials Engineering, Xinxiang University, Xinxiang 453003, PR China.
| | - Jiangju Si
- College of Chemistry and Materials Engineering, Xinxiang University, Xinxiang 453003, PR China
| | - Liang Liang
- College of Chemistry and Materials Engineering, Xinxiang University, Xinxiang 453003, PR China
| | - Yunfei Wang
- College of Chemistry and Materials Engineering, Xinxiang University, Xinxiang 453003, PR China
| | - Li Zhu
- College of Chemistry and Materials Engineering, Xinxiang University, Xinxiang 453003, PR China
| | - Zizhong Zhang
- State Key Laboratory of Photocatalysis on Energy and Environment, Research Institute of Photocatalysis, College of Chemistry, Fuzhou University, Fuzhou 350108, PR China.
| |
Collapse
|
13
|
Zhou X, Liu S, Yang C, Qin J, Hu Y. Photocatalytic hydrogen energy recovery from sulfide-containing wastewater using thiol-UiO-66 modified Mn0.5Cd0.5S nanocomposites. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|