1
|
Zhou J, Ming F, Liang H. Application of functional coatings in water electrolyzers and fuel cells. NANOSCALE 2025; 17:8289-8300. [PMID: 40052715 DOI: 10.1039/d5nr00137d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2025]
Abstract
Hydrogen, a sustainable energy carrier, plays a pivotal role in decarbonizing various industrial sectors. Key devices such as water electrolyzers and fuel cells enable a sustainable hydrogen cycle by producing hydrogen using renewable energies and converting hydrogen into electricity. The efficiency of these devices is primarily determined by electrocatalysts and other critical components like membranes, gas diffusion layers and bipolar plates. The dynamic and complex triple-phase reactions as well as the corrosive operational environments in these devices present significant challenges in achieving optimal performance and durability. This review not only summarizes recent advances in functional coatings but also elucidates the underlying mechanisms by which coatings modulate interfacial interactions and mitigate degradation. We further propose a roadmap for designing next-generation multifunctional coatings, emphasizing their potential to bridge the gap between laboratory research and industrial applications.
Collapse
Affiliation(s)
- Jiaxin Zhou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Fangwang Ming
- Materials Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia.
| | - Hanfeng Liang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| |
Collapse
|
2
|
Wang J, Wang L, Wu R, Fan C, Zhang X, Fan Y. Robust High-performance Bifunctional Porous Cobalt MOF-Based Catalysts for Overall Water Splitting. Inorg Chem 2024; 63:11542-11553. [PMID: 38860865 DOI: 10.1021/acs.inorgchem.4c00449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
MOF-based materials, as bifunctional catalysts for electrocatalytic water splitting, play an important role in the application and development of clean fuel hydrogen energy. This study presents a series of novel 3D Co-based MOFs with layered networks, including [Co(4,4'-bipy)0.5(aip)(CH3OH)·H2O]n (Co-MOF 1), [Co2(1,3'-bit)(aip)2(CH3OH)·H2O]n (Co-MOF 2), [Co(4,4'-bipb)(aip)]n (Co-MOF 3), and [Co2(4,4'-bipe)(aip)2·1.5H2O]n (Co-MOF 4). Their single-crystal structures of Co-MOFs 1-4 are characterized and analyzed before being applied in alkaline solutions for water decomposition (OER and HER). The electrocatalytic tests indicate that Co-MOFs 1-4 exhibit a good performance. Notably, Co-MOF 4 exhibits great behavior which has low overpotentials of 94 and 188 mV (OER) as well as 185 and 352 mV (HER) at the currents of 10 and 100 mA cm-2, respectively. In comparison with Co-MOFs 1-3, Co-MOF 4 has the lowest Tafel slopes, highest ECSA, and smallest resistance. The immanent qualities, such as distinct interwoven long chain layered structure, unsaturated coordination modes, and synergistic catalytic qualities among Co ions, contribute to explaining the results. The fundamentals provide valuable information for the investigation of innovative MOF-based bifunctional electrocatalysts for overall water splitting.
Collapse
Affiliation(s)
- Jinmiao Wang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, Shandong 266100, P. R. China
| | - Lulu Wang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, Shandong 266100, P. R. China
| | - Ruixue Wu
- College of Food Engineering, Qingdao Institute of Technology, Qingdao, Shandong 266300, P. R. China
| | - Chuanbin Fan
- Key Laboratory of Research on Environment and Population Health in Aluminum Mining Areas, Education Department of Guangxi Zhuang Autonomous Region, Youjiang Medical University for Nationalities, Baise, Guangxi 533000, P. R. China
| | - Xia Zhang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, Shandong 266100, P. R. China
| | - Yuhua Fan
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, Shandong 266100, P. R. China
| |
Collapse
|
3
|
Qian Q, Chen C, Zheng X, Wang Q, Gao F, Zou Z. Hierarchical CoWO 4/Ni xFe yS microspheres bearing crystalline-amorphous interface as a multifunctional platform for outperformed water splitting and sensitive hydrazine sensing. J Colloid Interface Sci 2024; 664:756-765. [PMID: 38492377 DOI: 10.1016/j.jcis.2024.03.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/02/2024] [Accepted: 03/08/2024] [Indexed: 03/18/2024]
Abstract
Highly efficient and multifunctional electrocatalysts are of high value in energy transformation and electrochemical sensing. Herein, hierarchically architectured cobalt tungstate/nickel iron sulfide (CoWO4/NixFeyS) microspheres with a crystalline-amorphous interface have been prepared on bimetallic substrate of nickel-iron foam (NIF) by a two-step hydrothermal method. Electrochemical characterization shows that CoWO4/NixFeyS microspheres can boost the electrocatalytic activity effectively through the synergistic effect on the crystalline-amorphous interface. When the CoWO4/NixFeyS is applied as the electrocatalysts for oxygen evolution reaction (OER) and the hydrogen evolution reaction (HER), the overpotentials at a high current density of 500 mA cm-2 are only 322.8 mV and 306.5 mV, respectively. The overall water splitting device composed of CoWO4/NixFeyS/NIF couple only needs a cell voltage of 1.80 V to reach a current density of 100 mA cm-2, and 2.19 V to reach 500 mA cm-2. The CoWO4/NixFeyS/NIF can be also utilized as an effective electrochemical platform for the sensing of toxic hydrazine in a wide range from 50 μM to 17.3 mM, with a detection limit of 46.4 μM. All these results display that the CoWO4/NixFeyS/NIF can be a high-performance multifunctional material for energy transformation and environmental pollutant monitoring.
Collapse
Affiliation(s)
- Qi Qian
- College of Chemistry, Chemical Engineering and Environment Science, Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou 363000, China
| | - Chenxin Chen
- College of Chemistry, Chemical Engineering and Environment Science, Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou 363000, China
| | - Xuan Zheng
- College of Chemistry, Chemical Engineering and Environment Science, Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou 363000, China
| | - Qingxiang Wang
- College of Chemistry, Chemical Engineering and Environment Science, Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou 363000, China
| | - Feng Gao
- College of Chemistry, Chemical Engineering and Environment Science, Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou 363000, China.
| | - Zehua Zou
- College of Chemistry, Chemical Engineering and Environment Science, Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou 363000, China.
| |
Collapse
|
4
|
Shen W, Cui J, Chen C, Zhang L, Sun D. Metal-organic framework derived transition metal sulfides grown on carbon nanofibers as self-supported catalysts for hydrogen evolution reaction. J Colloid Interface Sci 2024; 659:364-373. [PMID: 38181700 DOI: 10.1016/j.jcis.2023.12.171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/21/2023] [Accepted: 12/28/2023] [Indexed: 01/07/2024]
Abstract
Metal-organic framework (MOF) derived transition metal-based electrocatalysts have received great attention as substitutes for noble metal-based hydrogen evolution catalysts. However, the low conductivity and easy detachments from electrodes of raw MOF have seriously hindered their applications in hydrogen evolution reaction. Herein, we report the facile preparation of Co-NSC@CBC84, a porous carbon-based and self-supported catalyst containing Co9S8 active species, by pyrolysis and sulfidation of in-situ grown ZIF-67 on polydopamine-modified biomass bacterial cellulose (PDA/BC). As a binder-free and self-supported electrocatalyst, Co-NSC@CBC84 exhibits superior electrocatalytic properties to other reported cobalt-based sulfide catalytic materials and has good stability in 0.5 M H2SO4 electrolyte. At the current density of 10 mA cm-2, only an overpotential of 138 mV was required, corresponding to a Tafel slope of 123 mV dec-1, owing to the strong synergy effect between Co-NSC nanoparticles and CBC substrate. This work therefore provides a feasible approach to prepare self-supported transition metal sulfides as HER catalysts, which is helpful for the development of noble metal-free catalysts and biomass carbon materials.
Collapse
Affiliation(s)
- Wei Shen
- Institute of Chemicobiology and Functional Materials, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing 210094, China
| | - Jian Cui
- Institute of Chemicobiology and Functional Materials, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing 210094, China
| | - Chuntao Chen
- Institute of Chemicobiology and Functional Materials, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing 210094, China
| | - Lei Zhang
- Institute of Chemicobiology and Functional Materials, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing 210094, China
| | - Dongping Sun
- Institute of Chemicobiology and Functional Materials, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing 210094, China.
| |
Collapse
|
5
|
Zhang X, Xu Y, Liu Y, Wei Y, Lan F, Wang J, Liu X, Wang R, Yang Y, Chen J. Improving oxygen reduction reaction by cobalt iron-layered double hydroxide layer on nickel-metal organic framework as cathode catalyst in microbial fuel cell. BIORESOURCE TECHNOLOGY 2024; 392:130011. [PMID: 37956946 DOI: 10.1016/j.biortech.2023.130011] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/09/2023] [Accepted: 11/10/2023] [Indexed: 11/19/2023]
Abstract
Cobalt Iron -layered double hydroxide (CoFe-LDH) nano sheets were attached to Nickel-metal organic frameworks (Ni-MOF) by utilizing hydrothermal reaction method, and CoFe-LDH@Ni-MOF was synthesized and worked as the cathode catalyst in microbial fuel cell. The surface of this composite material provided generous electrochemical active sites, consisting of wrinkled strips of CoFe-LDH adhering to a lamellar structure of Ni-MOF. In terms of the maximum output power density, CoFe-LDH@Ni-MOF as the catalyst was 211 mW/m2, 2.54 times higher than that of Ni-MOF (83 mW/m2), and it was stable at about 225 mV for 150 h. CoFe-LDH@Ni-MOF showed high oxygen reduction reaction capability and high specific surface area, and the electron transfer rate was accelerated. This work might set the stage for the development and utilization of fuel cell cathode catalysts.
Collapse
Affiliation(s)
- Xinyi Zhang
- School of Life Sciences, Qufu Normal University, Qufu 273165, PR China
| | - Yuling Xu
- School of Life Sciences, Qufu Normal University, Qufu 273165, PR China
| | - Yanyan Liu
- School of Life Sciences, Qufu Normal University, Qufu 273165, PR China
| | - Yushan Wei
- School of Life Sciences, Qufu Normal University, Qufu 273165, PR China
| | - Feng Lan
- School of Life Sciences, Qufu Normal University, Qufu 273165, PR China
| | - Jiayu Wang
- School of Life Sciences, Qufu Normal University, Qufu 273165, PR China
| | - Xuemeng Liu
- School of Life Sciences, Qufu Normal University, Qufu 273165, PR China
| | - Renjun Wang
- School of Life Sciences, Qufu Normal University, Qufu 273165, PR China
| | - Yuewei Yang
- School of Life Sciences, Qufu Normal University, Qufu 273165, PR China
| | - Junfeng Chen
- School of Life Sciences, Qufu Normal University, Qufu 273165, PR China.
| |
Collapse
|
6
|
Sun Y, Hao Y, Lin X, Liu Z, Sun H, Jia S, Chen Y, Yan Y, Li X. Efficient electron transport by 1D CuZnInS modified 2D Ti 3C 2 MXene for enhanced photocatalytic hydrogen production. J Colloid Interface Sci 2024; 653:396-404. [PMID: 37722168 DOI: 10.1016/j.jcis.2023.09.075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/01/2023] [Accepted: 09/10/2023] [Indexed: 09/20/2023]
Abstract
The efficiency of the photocatalytic reactionis mainly determined by the effective separation of photogenerated electron (e-) and hole (h+). As a high electrical conductivity, two-dimensional (2D) Ti3C2 MXene is widely used as an electronic transmission intermediary with a large surface area and active terminal. In this work, 1D CuZnInS are loaded on the surface of 2D Ti3C2 MXene nanosheets to compound 1D/2D CuZnInS/Ti3C2 nanocomposites with effective inhibition of charge-carrier recombination. The H2 production rate of optimized 1D/2D CuZnInS/Ti3C2 composite reached 15.24 mmol h-1 g-1, which is 4.5 times than that of pure CuZnInS (3.38 mmol h-1 g-1), and the apparent quantum efficiencies (AQEs) of composite photocatalysts can reach 0.39% and 0.24% under light irradiation at 365 nm and 420 nm wavelength, respectively. In addition, 1D/2D CuZnInS/Ti3C2 has high stability after 10 cycles. The enhanced photocatalytic performance is attributed to the large specific surface area of 2D Ti3C2 nanosheets, which facilitates the separation and transfer of photogenerated e- and h+ pairs.
Collapse
Affiliation(s)
- Yuming Sun
- Key Laboratory of Functional Materials Physics & Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China
| | - Yue Hao
- School of Chemistry & Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xinyu Lin
- School of Chemistry & Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Zhonghuan Liu
- College of Science, Beihua University, Jilin 132013, China
| | - Hongyang Sun
- Key Laboratory of Functional Materials Physics & Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China
| | - Shuhan Jia
- School of Chemistry & Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yahui Chen
- School of Chemistry & Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yongsheng Yan
- School of Chemistry & Chemical Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Xuefei Li
- Key Laboratory of Functional Materials Physics & Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China.
| |
Collapse
|
7
|
He L, Wang N, Sun B, Zhong L, Wang Y, Komarneni S, Hu W. A low-cost and efficient route for large-scale synthesis of NiCoS x nanosheets with abundant sulfur vacancies towards quasi-industrial electrocatalytic oxygen evolution. J Colloid Interface Sci 2023; 650:1274-1284. [PMID: 37478744 DOI: 10.1016/j.jcis.2023.07.084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/09/2023] [Accepted: 07/13/2023] [Indexed: 07/23/2023]
Abstract
Transition-metal sulfides (TMS) have piqued a great deal of interest due to their unprecious nature and high intrinsic catalytic activity for water splitting. In this work, a low-cost and efficient route was developed, which included electrodeposition to prepare Ni-Co layered double hydroxide (NiCo-LDH) followed by ion exchange to form nickel cobalt sulfide (NiCoSx). Electrochemical reduction was used to modulate sulfur vacancies in order to produce sulfur vacancies-rich NiCoSx with nanosheet arrays on -three-dimensional nickel foam (NiCoSx-0.4/NF) with a large area of more than 250 cm2. Combining data from experiments and density functional theoretical (DFT) calculations reveals that engineered sulfur vacancies change the electronic structure, electron transfer property, and surface electron density of NiCoSx, significantly improving the free energy of water adsorption and boosting electrocatalytic activity. The developed NiCoSx-0.4/NF has long-term stability of more than 300 h at 500 mA cm-2 in 1 M KOH at ambient temperature and only needs a 289 mV overpotential at 100 mA cm-2. Remarkably, the synthesized electrocatalyst rich in sulfur vacancies, exhibits exceptional performance with a high current density of up to 1.9 A cm-2 and 1 A cm-2 in 6 M KOH and leads to overpotentials of 286 mV at 80 °C and 358 mV at 60 °C, respectively. The catalyst's practicability under quasi-industrial conditions (60 °C, 6 M KOH) is further demonstrated by its long-term stability for 220 h with only a 3.9 % potential increase at 500 mA cm-2.
Collapse
Affiliation(s)
- Lixiang He
- School of Materials and Energy, University of Electronic Science & Technology of China, Chengdu 610054, PR China
| | - Ni Wang
- School of Materials and Energy, University of Electronic Science & Technology of China, Chengdu 610054, PR China; Materials Research Institute and Department of Ecosystem Science and Management, 204 Energy and the Environment Laboratory, The Pennsylvania State University, University Park, PA 16802, USA
| | - Baolong Sun
- School of Materials and Energy, University of Electronic Science & Technology of China, Chengdu 610054, PR China
| | - Li Zhong
- School of Materials and Energy, University of Electronic Science & Technology of China, Chengdu 610054, PR China
| | - Yang Wang
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, PR China.
| | - Sridhar Komarneni
- Materials Research Institute and Department of Ecosystem Science and Management, 204 Energy and the Environment Laboratory, The Pennsylvania State University, University Park, PA 16802, USA.
| | - Wencheng Hu
- School of Materials and Energy, University of Electronic Science & Technology of China, Chengdu 610054, PR China.
| |
Collapse
|