1
|
Peng W, Tian S, Li S, Wu J, Wu D, Zhou P, Li H, He Y, Bai Y. Self-cleaning micro/nano graded porous groove structure fiber membranes by coaxial spinning for purification of dye wastewater. ENVIRONMENTAL RESEARCH 2025; 267:120660. [PMID: 39701347 DOI: 10.1016/j.envres.2024.120660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/25/2024] [Accepted: 12/16/2024] [Indexed: 12/21/2024]
Abstract
Adjusting the structure of the membrane and improving its performance proved to be an effective technique for accomplishing efficient dye wastewater purification. Water erosion of polyvinylpyrrolidone (PVP) core in polyacrylonitrile (PAN) nanofiber membrane modified with UiO-66-NH2 was successfully achieved, in this study, using coaxial electrospinning, and ZIF-8 with excellent performance was further epitaxy-grown in situ. Two differently shaped and positively charged MOFs confer strong adsorption capacity (adsorption capacity >2042 mg/g) on cationic dyes. In addition, the multi-dimensional separation pores brought by the micro/nano graded porous groove structure and MOFs not only make the membrane have excellent static adsorption performance, but also have excellent dynamic separation performance under the influence of toxic heavy ions (separation efficiency >99 %; Flux >1666 L m-2 h-1 bar-1). More importantly, this special structure of the membrane has an excellent photocatalytic activity for the dye, so the membrane can be used for a long time in a green and environmentally friendly way. Together, membranes show a significant deal of potential for the treatment of wastewater containing dyes due to the combination of these outstanding characteristics.
Collapse
Affiliation(s)
- Wanwan Peng
- State Key Lab of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, 610500, PR China; College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, PR China
| | - Shuting Tian
- State Key Lab of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, 610500, PR China; College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, PR China; Gong County Emergency Management Bureau, Yibin, 644500, PR China.
| | - Shuangshuang Li
- State Key Lab of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, 610500, PR China; College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, PR China
| | - Jingcheng Wu
- State Key Lab of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, 610500, PR China; College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, PR China
| | - Daqing Wu
- State Key Lab of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, 610500, PR China; College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, PR China
| | - Peng Zhou
- State Key Lab of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, 610500, PR China; College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, PR China
| | - Hongjie Li
- State Key Lab of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, 610500, PR China; College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, PR China
| | - Yi He
- State Key Lab of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, 610500, PR China; College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, PR China; Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Chengdu, 610500, PR China.
| | - Yang Bai
- State Key Lab of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, 610500, PR China; College of Petroleum and Gas Engineering Southwest Petroleum University, Chengdu, 610500, PR China; Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Chengdu, 610500, PR China.
| |
Collapse
|
2
|
Pan X, Pan J, Li Z, Gai W, Dong G, Huang M, Huang L. Preparation of N-MG-modified PVDF-CTFE substrate composite nanofiltration membrane and its selective separation of salt and dye. RSC Adv 2024; 14:11992-12008. [PMID: 38638887 PMCID: PMC11024597 DOI: 10.1039/d4ra00359d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 03/15/2024] [Indexed: 04/20/2024] Open
Abstract
Poly(vinylidene fluoride-co-chlorotrifluoroethylene) (PVDF-CTFE) is considered an ideal membrane material for the treatment of complex environmental water due to its exceptional thermal stability and chemical resistance. Thus, to expand its application in the field of nanofiltration (NF) membranes, in this study, N-methylglucamine (N-MG) was used to hydrophilically modify PVDF-CTFE, overcoming the inherent hydrophobicity of PVDF-CTFE as a porous substrate membrane, which leads to difficulties in controlling the interfacial polymerization (IP) reaction and instability of the separation layer structure. The -OH present in N-MG could replace the C-Cl bond in the CTFE chain segment, thus enabling the hydrophilic graft modification of PVDF-CTFE. The influence of the addition of N-MG on the surface and pore structure, wettability, permeability, ultrafiltration separation, and mechanical properties of the PVDF-CTFE substrate membrane was studied. According to the comparison of the comprehensive capabilities of the prepared porous membranes, the M4 membrane with the addition of 1.5 wt% N-MG exhibited the best hydrophilicity and permeability, indicating that it is a desirable modified membrane for use as an NF substrate membrane. The experiments showed that the rejection of Na2SO4 by the NF membrane was 96.5% and greater than 94.0% for various dyes. In the test using dye/salt mixed solution, this membrane exhibited a good separation selectivity (CR/NaCl = 177.8) and long-term operational stability.
Collapse
Affiliation(s)
- Xinyu Pan
- School of Materials Science and Engineering, Shandong University of Technology No. 266 West Xincun Road, Zhangdian District Zibo 255000 China
| | - Jian Pan
- School of Materials Science and Engineering, Shandong University of Technology No. 266 West Xincun Road, Zhangdian District Zibo 255000 China
| | - Zhuoqun Li
- School of Materials Science and Engineering, Shandong University of Technology No. 266 West Xincun Road, Zhangdian District Zibo 255000 China
| | - Wenqiang Gai
- School of Materials Science and Engineering, Shandong University of Technology No. 266 West Xincun Road, Zhangdian District Zibo 255000 China
| | - Guangshun Dong
- School of Materials Science and Engineering, Shandong University of Technology No. 266 West Xincun Road, Zhangdian District Zibo 255000 China
| | - Min Huang
- School of Materials Science and Engineering, Shandong University of Technology No. 266 West Xincun Road, Zhangdian District Zibo 255000 China
| | - Lilan Huang
- School of Materials Science and Engineering, Shandong University of Technology No. 266 West Xincun Road, Zhangdian District Zibo 255000 China
| |
Collapse
|
3
|
Dai J, Chen T, Chen Q, Ma H, Xu X, Yuan W, Wang L. Facile synthesis of ZIF-8-lignosulfonate microspheres with ultra-high adsorption capacity for Congo red and tetracycline removal from water. Int J Biol Macromol 2023; 242:124672. [PMID: 37164136 DOI: 10.1016/j.ijbiomac.2023.124672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/10/2023] [Accepted: 04/26/2023] [Indexed: 05/12/2023]
Abstract
Zeolitic imidazolate frameworks (ZIFs) can be used as adsorbent to efficiently adsorb organic pollutants. However, the hydrophobicity of the ZIFs may be easily to form ZIFs nanoparticles aggregates, hampering the effective and practical application in adsorption. In this study, novel spherical composites of ZIF-8 incorporated with lignosulfonate (LS) were synthesized by in-situ growth method. The effects of different mass ratios of LS and Zn in ZIF-8-LS composites were evaluated with respect to structural characteristics and adsorption properties. As an adsorbent for adsorptive removing Congo Red (CR) and tetracycline (TC) from water, the prepared ZIF-8-LS4 shows the best adsorption capacity of 31.5 mg g-1 and 48 mg g-1, respectively. The spherical structure facilitates the contact between the ZIF-8 and the adsorbed substance, in addition to the H-bonding, electrostatic and π-π stacking interactions also contribute to the improvement of the adsorption performance of the ZIF-8-LS4 composite. The outstanding adsorption capacity and good reusability of the ZIF-8-LS4 composite provide a good prospect for the effective removal of other contaminants from water.
Collapse
Affiliation(s)
- Juan Dai
- Biological Engineering Technology Innovation Center of Shandong Province, Qilu University of Technology (Shandong Academy of Sciences), Heze Branch, Heze, 274000, China.
| | - Tianying Chen
- Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; Zhejiang Provincial Engineering Research Center for Green and Low-carbon Dyeing & Finishing, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Qixu Chen
- Biological Engineering Technology Innovation Center of Shandong Province, Qilu University of Technology (Shandong Academy of Sciences), Heze Branch, Heze, 274000, China
| | - Hao Ma
- Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Xianmang Xu
- Biological Engineering Technology Innovation Center of Shandong Province, Qilu University of Technology (Shandong Academy of Sciences), Heze Branch, Heze, 274000, China
| | - Wenpeng Yuan
- Biological Engineering Technology Innovation Center of Shandong Province, Qilu University of Technology (Shandong Academy of Sciences), Heze Branch, Heze, 274000, China
| | - Luying Wang
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|