1
|
Duan Z, Xue Q, Hao Y, Liu L, Liu X, Pan W, Zhang A, Fu J. Stability and fate of hollow mesoporous silica nanoparticles in aqueous environment: Effects of pH and electrolyte. JOURNAL OF HAZARDOUS MATERIALS 2025; 490:137750. [PMID: 40020298 DOI: 10.1016/j.jhazmat.2025.137750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 02/02/2025] [Accepted: 02/24/2025] [Indexed: 03/03/2025]
Abstract
Hollow mesoporous silica nanoparticles (HMSNs) and their carboxyl-functionalized counterparts (C-HMSNs) are promising materials for environmental applications, but their stability in aquatic environments remains poorly understood. This study investigated the aggregation behavior of HMSNs and C-HMSNs under varying pH and electrolyte conditions. Experimental results showed that HMSNs had critical aggragation concentrations (CCC) of 35 mM in NaCl and 2 mM in CaCl2, while C-HMSNs exhibited higher CCCs of 52 mM and 3 mM, respectively, indicating greater stability. High concentrations of NaCl and CaCl2 promoted rapid aggregation of HMSNs and C-HMSNs, with CaCl2 being more efficient in promoting aggregation. Both HMSNs and C-HMSNs aggregated extensively in acidic environments, while remaining stable in neutral and alkaline environments. Derjaguin-Landau-Verwey-Overbeek (DLVO) theory and molecular dynamics (MD) simulations revealed weakened electrostatic repulsion and reduced total system energy in high ionic strength solutions supporting irreversible aggregation. Simulated environmental conditions showed that HMSNs and C-HMSNs remained stable in rivers, aggregated slightly in groundwater, and aggregated extensively in seawater. These findings provide critical insights into the environmental fate and potential ecological risks of silica nanoparticles, informing future studies on their transport and bioavailability in natural waters.
Collapse
Affiliation(s)
- Zhihui Duan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiao Xue
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Yuxing Hao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100190, PR China
| | - Lizheng Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310000, PR China
| | - Xian Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Wenxiao Pan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Aiqian Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Jianjie Fu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310000, PR China
| |
Collapse
|
2
|
Eitzen L, Ruhl AS, Jekel M. Impact of natural organic matter and inorganic ions on the stabilization of polystyrene micro-particles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172043. [PMID: 38552984 DOI: 10.1016/j.scitotenv.2024.172043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/03/2024] [Accepted: 03/26/2024] [Indexed: 04/09/2024]
Abstract
The orthokinetic coagulation of irregularly shaped polystyrene micro-particles (PS-MP) was investigated in solutions of inorganic cations with different valence (NaCl, CaCl2, LaCl3) using a coagulation jar test set-up combined with light extinction particle counting. The stabilizing effect of model natural organic matter (NOM from reverse-osmosis (RO-NOM), humic (HA) & fulvic acid (FA)) and of surface water components (SW-NOM) was studied. Collision efficiencies were calculated from the decrease in particle concentration applying first order reaction kinetics. The coagulation of PS-MP followed Derjaguin-Landau-Verwey-Overbeek (DLVO) theory with regard to ionic charge in solution. Highest collision efficiencies were obtained close to the suspected critical coagulation concentrations for CaCl2 (12 mM) and LaCl3 (5.5 mM) whereas for NaCl no CCC was found within the applied concentration range (10-1000 mM). The addition of NOM effectively stabilized PS-MP at low ionic strength (10 mM NaCl) in the order HA > RO-NOM > FA > SW-NOM at concentrations of dissolved organic carbon (DOC) as low as 0.2-0.5 mg/L DOC through electrostatic repulsion. PS-MP were effectively stabilized in 6.1 mg DOC/L of SW-NOM even at high ionic strength (100 mM MgCl2). Coagulation at intermediate ionic strength (10 mM MgCl2) was only observed for SW-NOM concentrations below 0.6 mg/L DOC. The results showed that even low NOM concentrations prevent PS-MP from orthokinetic coagulation in the presence of high ion concentrations. The study provides further insight in the orthokinetic coagulation behavior of PS-MP in the presence of NOM and highlights the importance of NOM for the stabilization of microplastics in aquatic suspensions. Further research is needed to elucidate the behavior of MP in turbulent systems to predict the mobility MP in aquatic systems such as rivers.
Collapse
Affiliation(s)
- Lars Eitzen
- Technische Universität Berlin, Sekr. KF 4, Straße des 17, Juni 135, D-10623 Berlin, Germany.
| | - Aki Sebastian Ruhl
- Technische Universität Berlin, Sekr. KF 4, Straße des 17, Juni 135, D-10623 Berlin, Germany; German Environment Agency (UBA), Section II 3.1, Schichauweg 58, D-12307 Berlin, Germany
| | - Martin Jekel
- Technische Universität Berlin, Sekr. KF 4, Straße des 17, Juni 135, D-10623 Berlin, Germany; Kompetenzzentrum Wasser Berlin gGmbH, Cicerostr. 24, 10709 Berlin, Germany
| |
Collapse
|
3
|
Peng B, Liao P, Jiang Y. A Meta-Analysis to Revisit the Property-Aggregation Relationships of Carbon Nanomaterials: Experimental Observations versus Predictions of the DLVO Theory. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:7127-7138. [PMID: 38512061 DOI: 10.1021/acs.langmuir.4c00274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Contradicting relationships between physicochemical properties of nanomaterials (e.g., size and ζ-potential) and their aggregation behavior have been constantly reported in previous literature, and such contradictions deviate from the predictions of the classic Derjaguin-Landau-Verwey-Overbeek (DLVO) theory. To resolve such controversies, in this work, we employed a meta-analytic approach to synthesize the data from 46 individual studies reporting the critical coagulation concentration (CCC) of two carbon nanomaterials, namely, graphene oxide (GO) and carbon nanotube (CNT). The correlations between CCC and material physicochemical properties (i.e., size, ζ-potential, and surface functionalities) were examined and compared to the theoretical predictions. Results showed that the CCC of electrostatically stabilized carbon nanomaterials increased with decreasing nanomaterial size when their hydrodynamic sizes were smaller than ca. 200 nm. This is qualitatively consistent with the prediction of the DLVO theory but with a smaller threshold size than the predicted 2 μm. Above the threshold size, the material ζ-potential can be correlated to CCC for nanomaterials with moderate/low surface charge, in agreement with the DLVO theory. The correlation was not observed for highly charged nanomaterials because of their underestimated surface potential by the ζ-potential. Furthermore, a correlation between the C/O ratio and CCC was observed, where a lower C/O ratio resulted in a higher CCC. Overall, our findings rationalized the inconsistency between experimental observation and theoretical prediction and provided essential insights into the aggregation behavior of nanomaterials in water, which could facilitate their rational design.
Collapse
Affiliation(s)
- Bo Peng
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
| | - Peng Liao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, 99 Lingcheng West Road, Guiyang 550081, China
| | - Yi Jiang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
| |
Collapse
|
4
|
Guo C, Shen W, Jin W, Jia X, Ji Z, Li J, Li B. Aggregation kinetics of green tea nanoparticles: Effects of pH, metal ions, and temperature. J Food Sci 2023; 88:4068-4078. [PMID: 37623917 DOI: 10.1111/1750-3841.16750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/04/2023] [Accepted: 08/10/2023] [Indexed: 08/26/2023]
Abstract
Colloidal nanoparticles in tea infusion are the link connecting micromolecular mechanism and macro-aggregation process of tea cream formation. In order to elucidate, the kinetics mechanism of green tea nanoparticles (gTNPs) aggregation, zeta-potentials, total average aggregation (TAA) rates, and critical coagulation concentration (CCC) in the presence of various pH and metal ions were investigated. Additionally, the effect of temperature on gTNPs aggregation was further explored. The results revealed that the TAA rate of gTNPs increased with decreasing pH values, the CCC of gTNPs increased in the order Mg2+ ≈ Ca2+ < Na+ ≈ K+ . The reason was that different positive ions changed the surface electric field strength of gTNPs to a different extent. Furthermore, it was indicated that low temperature could promote gTNPs aggregation in indirect way. Low temperature promoted the binding of epigallocatechin gallate (EGCG) and caffeine, and the combination between gTNPs and EGCG-caffeine complexes weakened the stability of gTNPs resulting from reduction in electrostatic repulsion. PRACTICAL APPLICATION: Tea is a popular beverage all over the world. This research revealed the mechanism of green tea nanoparticles aggregation and laid a theoretical foundation for the regulation of tea cream formation in tea beverage.
Collapse
Affiliation(s)
- Cheng Guo
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, China
- Key Laboratory for Deep Processing of Major Grain and Oil (Wuhan Polytechnic University), Ministry of Education, Wuhan, China
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan, China
| | - Wangyang Shen
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, China
- Key Laboratory for Deep Processing of Major Grain and Oil (Wuhan Polytechnic University), Ministry of Education, Wuhan, China
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan, China
| | - Weiping Jin
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, China
- Key Laboratory for Deep Processing of Major Grain and Oil (Wuhan Polytechnic University), Ministry of Education, Wuhan, China
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan, China
| | - Xiwu Jia
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, China
- Key Laboratory for Deep Processing of Major Grain and Oil (Wuhan Polytechnic University), Ministry of Education, Wuhan, China
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan, China
| | - Zhili Ji
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, China
- Key Laboratory for Deep Processing of Major Grain and Oil (Wuhan Polytechnic University), Ministry of Education, Wuhan, China
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan, China
| | - Jinling Li
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, China
- Key Laboratory for Deep Processing of Major Grain and Oil (Wuhan Polytechnic University), Ministry of Education, Wuhan, China
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan, China
| | - Bin Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan, China
| |
Collapse
|
5
|
Sato S, Kobayashi M. The Relationship between Gelation Behavior and the Amount of Polymer Dose per Silica Surface Area of "Shake-Gels" Consisting of Silica Nanoparticles and Poly(Ethylene Oxide). Molecules 2023; 28:molecules28083555. [PMID: 37110789 PMCID: PMC10142058 DOI: 10.3390/molecules28083555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/13/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
The understanding and control of the rheological behaviors of colloids and polymer mixtures is an important issue for scientific interests and industrial applications. Aqueous mixed suspensions of silica nanoparticles and poly(ethylene oxide) (PEO) under certain conditions are interesting systems called "shake-gels", whose states vary reversibly between sol-like and gel-like under repeated shaking and being left to stand. Previous studies have indicated that the amount of PEO dose per silica surface area (Cp) is a crucial parameter for the formation of shake-gels and the relaxation time from gel-like to sol-like states. However, the relationship between the gelation dynamics and the Cp values has not been fully investigated. To determine how the gelation dynamics are affected by the Cp, we measured the time taken for silica and PEO mixtures to gelate from the sol-like to gel-like states as a function of the Cp under different shear rates and flow types. Our results show that the gelation time decreased with increasing shear rates and depended on the Cp values. Moreover, the minimum gelation time was found around a certain Cp (=0.03 mg/m2) for the first time. The finding suggests that there is an optimum Cp value at which the bridging of silica nanoparticles using PEO is significant, and thus, the shake-gels and stable gel-like states are most likely to form.
Collapse
Affiliation(s)
- Shunsuke Sato
- Graduate School of Science and Technology, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba 305-8572, Japan
| | - Motoyoshi Kobayashi
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba 305-8572, Japan
| |
Collapse
|