1
|
Zhang Q, Ye X, Chen D, Chen H, Zhang ZX, Fu M, Dong Y. Interfacial electronic structure engineering on nano-confined cobalt nanoparticles to enhance Fenton-like reaction. JOURNAL OF HAZARDOUS MATERIALS 2025; 491:137930. [PMID: 40112435 DOI: 10.1016/j.jhazmat.2025.137930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/06/2025] [Accepted: 03/11/2025] [Indexed: 03/22/2025]
Abstract
Rational design of nano-confined cobalt-based heterogeneous catalysts for peroxymonosulfate (PMS) activation remains challenging in Fenton-like systems, particularly in regulating interfacial electronic structures and establishing explicit electron transfer-activity correlations. To address this, we engineered a hierarchically structured Co@C-CNT composite featuring cobalt nanoparticles encapsulated in N-doped carbon polyhedrons interconnected by carbon nanotubes, forming a unique one-dimensional beads-on-string architecture. The strategic integration of CNTs significantly enhanced interfacial electron transfer kinetics, endowing the Co@C-CNT/PMS system with exceptional catalytic performance for carbamazepine degradation (kobs = 0.2281 min⁻¹), demonstrating a twofold enhancement over the CNT-free Co@C counterpart (0.1053 min⁻¹). Mechanistic studies through DFT calculations unveiled that the CNT-induced electronic string effect synergistically modulates the d-band center of confined Co sites and facilitates electron donation to PMS, preferentially cleaving O-H bonds to generate metastable SO5•- intermediates. This electronic configuration promotes selective O12 generation through PMS self-decomposition while suppressing radical pathways. The optimized system exhibited high efficiency across electron-rich pollutants, maintained robust performance in real wastewater matrices, and demonstrated operational stability in continuous-flow reactors. This work elucidates the critical role of electronic structure engineering in manipulating PMS activation pathways and provides a paradigm for designing advanced oxidation catalysts through targeted electron transport optimization.
Collapse
Affiliation(s)
- Quanzhi Zhang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, School of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, China
| | - Xinchun Ye
- Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, School of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, China
| | - Dezhi Chen
- Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, School of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, China.
| | - Huan Chen
- Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, School of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, China
| | - Zhi-Xia Zhang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, School of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, China
| | - Maosheng Fu
- Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, School of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, China
| | - Yongquan Dong
- Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, School of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, China
| |
Collapse
|
2
|
Wang Z, Li Z, Du Z, Geng J, Zong W, Chen R, Dong H, Gao X, Zhao F, Wang T, Munshi T, Liu L, Zhang P, Shi W, Wang D, Wang Y, Wang M, Xiong F, He G. Na 3V 2(PO 4) 3 cathode materials for advanced sodium-ion batteries: Modification strategies and density functional theory calculations. J Colloid Interface Sci 2025; 682:760-783. [PMID: 39644747 DOI: 10.1016/j.jcis.2024.11.212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/14/2024] [Accepted: 11/26/2024] [Indexed: 12/09/2024]
Abstract
With the rapid development of electric vehicles and smart grids, the demands for energy supply systems such as secondary batteries are increasing exponentially. Despite the world-renowned achievements in portable devices, lithium-ion batteries (LIBs) have struggled to meet the demands due to the constraints of total lithium resources. As the most promising alternative to LIBs, sodium-ion batteries (SIBs) are generating widespread research enthusiasm around the world. Among all components, the cathode material remains the primary obstacle to the practical application of SIBs due to its inability to match the performance of other components. Na3V2(PO4)3 (NVP) stands out as a promising cathode material for SIBs, given its suitable theoretical specific capacity, appropriate operating voltage, robust structural stability, and excellent ionic conductivity. In this article, we first review recent modification strategies for NVP, including conductive substance coating, ion doping (single-, dual- and multi-site doping) and morphology modulation (from zero-dimensional (0D) to three-dimensional (3D)). Subsequently, we summarize five ways in which density functional theory (DFT) calculations can be applied in guiding NVP modification studies. Furthermore, a series of emerging studies combining DFT calculations are introduced. Finally, the remaining challenges and the prospects for optimization of NVP in SIBs are presented.
Collapse
Affiliation(s)
- Zhaoyang Wang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, College of Chemistry Engineering, School of Physics Science and Information Technology, Liaocheng University, Liaocheng, 252059, China; State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China.
| | - Zhi Li
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Zijuan Du
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China; Christopher Ingold Laboratory, Department of Chemistry, University College London, London WC1H 0AJ, UK.
| | - Jiajun Geng
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, College of Chemistry Engineering, School of Physics Science and Information Technology, Liaocheng University, Liaocheng, 252059, China
| | - Wei Zong
- Christopher Ingold Laboratory, Department of Chemistry, University College London, London WC1H 0AJ, UK
| | - Ruwei Chen
- Christopher Ingold Laboratory, Department of Chemistry, University College London, London WC1H 0AJ, UK
| | - Haobo Dong
- Christopher Ingold Laboratory, Department of Chemistry, University College London, London WC1H 0AJ, UK
| | - Xuan Gao
- Christopher Ingold Laboratory, Department of Chemistry, University College London, London WC1H 0AJ, UK
| | - Fangjia Zhao
- Christopher Ingold Laboratory, Department of Chemistry, University College London, London WC1H 0AJ, UK
| | - Tianlei Wang
- Christopher Ingold Laboratory, Department of Chemistry, University College London, London WC1H 0AJ, UK
| | - Tasnim Munshi
- School of Chemistry, University of Lincoln, Brayford PoolLincoln, Lincolnshire LN6 7TS, UK
| | - Lingyang Liu
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, College of Chemistry Engineering, School of Physics Science and Information Technology, Liaocheng University, Liaocheng, 252059, China
| | - Pengfang Zhang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, College of Chemistry Engineering, School of Physics Science and Information Technology, Liaocheng University, Liaocheng, 252059, China
| | - Wenjing Shi
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, College of Chemistry Engineering, School of Physics Science and Information Technology, Liaocheng University, Liaocheng, 252059, China
| | - Dong Wang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, College of Chemistry Engineering, School of Physics Science and Information Technology, Liaocheng University, Liaocheng, 252059, China
| | - Yaoyao Wang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, College of Chemistry Engineering, School of Physics Science and Information Technology, Liaocheng University, Liaocheng, 252059, China
| | - Min Wang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, College of Chemistry Engineering, School of Physics Science and Information Technology, Liaocheng University, Liaocheng, 252059, China
| | - Fangyu Xiong
- College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China.
| | - Guanjie He
- Christopher Ingold Laboratory, Department of Chemistry, University College London, London WC1H 0AJ, UK.
| |
Collapse
|
3
|
Abdul M, Zhang M, Ma T, Alotaibi NH, Mohammad S, Luo YS. Facile synthesis of Co 3Te 4-Fe 3C for efficient overall water-splitting in an alkaline medium. NANOSCALE ADVANCES 2025; 7:433-447. [PMID: 39760026 PMCID: PMC11698179 DOI: 10.1039/d4na00930d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 12/20/2024] [Indexed: 01/07/2025]
Abstract
The large amounts of attention directed towards the commercialization of renewable energy systems have motivated extensive research to develop non-precious-metal-based catalysts for promoting the electrochemical production of H2 and O2 from water. Here, we report promising technology, i.e., electrochemical water splitting for OER and HER. This work used a simple hydrothermal method to synthesize a novel Co3Te4-Fe3C nanocomposite directly on a stainless-steel substrate. Various physical techniques like XRD, FESEM/EDX, and XPS have been used to characterize the good composite growth and confirm the correlation between the structural features. It has been shown that the composite's morphology consists of interconnected particles, each uniformly coated with a thin layer of carbon. This structure then forms a porous network with defects, which helps stabilize the material and improve its charge conductivity. XPS analysis shows that combining Fe3C with Co3Te4 adjusts the atomic structure of both metals. This interaction creates redox sites (Fe3+/Fe2+ and Co3+/Co2+) at the Co₃Te₄-Fe₃C interface, which are crucial for activating redox reactions and enhancing electrochemical performance. The results also confirm the presence of multiple synergistic active sites, which contribute to improved catalytic activity. The optimized chemical composition and conductive structure result in enhanced electrocatalytic activity of Co3Te4-Fe3C towards electron transportation between the material interface and medium. It is found that the Co3Te4-Fe3C catalyst exhibits robust OER/HER activity with reduced overpotential values of 235/210 mV@10 mA cm-2 and Tafel slopes of 62/45 mV dec-1 in an alkaline solution. For overall water-splitting, cell voltages of 1.44, 1.88, and 2.0 V at current densities of 10, 50, and 100 mA cm-2 were achieved with a stability of 102 h. The electrochemically active surface area of the composite is 1125 cm2, indicating that a large surface area offered numerous reactive sites for electron transfer in the promotion of the electrochemical activity. The enhancement in catalytic performance was also checked using chronoamperometry analysis, reflecting long-term stability. Our results provide a novel idea for designing a composite of carbide with chalcogenide with robust catalytic mechanisms, which is useful for various applications in environmental and energy conversion fields.
Collapse
Affiliation(s)
- M Abdul
- School of Electronics and Communication Engineering, Quanzhou University of Information Engineering Quanzhou Fujian China
- Research Institute of Electronic Science and Technology of UESTC Chengdu China
| | - Miao Zhang
- School of Electronics and Communication Engineering, Quanzhou University of Information Engineering Quanzhou Fujian China
| | - Tianjun Ma
- School of Electronics and Communication Engineering, Quanzhou University of Information Engineering Quanzhou Fujian China
| | - Nouf H Alotaibi
- Department of Chemistry, College of Science, King Saud University Riyadh 11451 Saudi Arabia
| | - Saikh Mohammad
- Department of Chemistry, College of Science, King Saud University Riyadh 11451 Saudi Arabia
| | - Yin-Sheng Luo
- School of Electronics and Communication Engineering, Quanzhou University of Information Engineering Quanzhou Fujian China
| |
Collapse
|
4
|
Guo K, Bao L, Yu Z, Lu X. Carbon encapsulated nanoparticles: materials science and energy applications. Chem Soc Rev 2024; 53:11100-11164. [PMID: 39314168 DOI: 10.1039/d3cs01122d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
The technological implementation of electrochemical energy conversion and storage necessitates the acquisition of high-performance electrocatalysts and electrodes. Carbon encapsulated nanoparticles have emerged as an exciting option owing to their unique advantages that strike a high-level activity-stability balance. Ever-growing attention to this unique type of material is partly attributed to the straightforward rationale of carbonizing ubiquitous organic species under energetic conditions. In addition, on-demand precursors pave the way for not only introducing dopants and surface functional groups into the carbon shell but also generating diverse metal-based nanoparticle cores. By controlling the synthetic parameters, both the carbon shell and the metallic core are facilely engineered in terms of structure, composition, and dimensions. Apart from multiple easy-to-understand superiorities, such as improved agglomeration, corrosion, oxidation, and pulverization resistance and charge conduction, afforded by the carbon encapsulation, potential core-shell synergistic interactions lead to the fine-tuning of the electronic structures of both components. These features collectively contribute to the emerging energy applications of these nanostructures as novel electrocatalysts and electrodes. Thus, a systematic and comprehensive review is urgently needed to summarize recent advancements and stimulate further efforts in this rapidly evolving research field.
Collapse
Affiliation(s)
- Kun Guo
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Lipiao Bao
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Zhixin Yu
- Department of Energy and Petroleum Engineering, University of Stavanger, Stavanger 4036, Norway
| | - Xing Lu
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
- School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, China
| |
Collapse
|
5
|
Zhao P, Liu Q, Yang X, Yang S, Chen L, Zhu J, Zhang Q. Ru nanocrystals modified porous FeOOH nanostructures with open 3D interconnected architecture supported on NiFe foam as high-performance electrocatalyst for oxygen evolution reaction and electrocatalytic urea oxidation. J Colloid Interface Sci 2024; 673:49-59. [PMID: 38875797 DOI: 10.1016/j.jcis.2024.06.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/06/2024] [Accepted: 06/06/2024] [Indexed: 06/16/2024]
Abstract
The construction of binder-free electrodes with well-defined three-dimensional (3D) morphology and optimized electronic structure represents an efficient strategy for the design of high-performance electrocatalysts for the development of efficient green hydrogen technologies. Herein, Ru nanocrystals were modified on 3D interconnected porous FeOOH nanostructures with open network-like frameworks on NiFe foam (Ru/FeOOH@NFF), which were used as an efficient electrocatalyst. In this study, a 3D interconnected porous FeOOH with an open network structure was first electrodeposited on NiFe foam and served as the support for the in-situ modification of Ru nanocrystals. Subsequently, the Ru nanocrystals and abundant oxygen vacancies were simultaneously incorporated into the FeOOH matrix via the adsorption-reduction method, which involved NaBH4 reduction. The Ru/FeOOH@NFF electrocatalyst shows a large specific surface area, abundant oxygen vacancies, and modulated electronic structure, which collectively result in a significant enhancement of catalytic properties with respect to the oxygen evolution reaction (OER) and urea oxidation reaction (UOR). The Ru/FeOOH@NFF catalyst exhibits an outstanding OER performance, requiring a low overpotential (360 mV) at 200 mA cm-2 with a small Tafel slope (58 mV dec-1). Meanwhile, the Ru/FeOOH@NFF catalyst demonstrates more efficient UOR activity for achieving 200 mA cm-2 at a lower overpotential of 272 mV. Furthermore, an overall urea electrolysis cell using the Ru/FeOOH@NFF as the anode and Pt as the cathode (Ru/FeOOH@NFF||Pt) reveals a cell voltage of 1.478 V at 10 mA cm-2 and a prominent durability (120 h at 50 mA cm-2). This work will provide a valuable understanding of the construction of high-performance electrocatalysts with 3D microstructure for promoting urea-assisted water electrolysis.
Collapse
Affiliation(s)
- Peng Zhao
- Institute for Advanced Study, Chengdu University, Chengdu, Sichuan 610106, PR China.
| | - Qiancheng Liu
- Institute for Advanced Study, Chengdu University, Chengdu, Sichuan 610106, PR China
| | - Xulin Yang
- School of Mechanical Engineering, Chengdu University, Chengdu, Sichuan 610106, PR China; Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, Jianghan University, Wuhan 430056, PR China
| | - Sudong Yang
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, PR China
| | - Lin Chen
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, PR China
| | - Jie Zhu
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, PR China
| | - Qian Zhang
- Institute for Advanced Study, Chengdu University, Chengdu, Sichuan 610106, PR China.
| |
Collapse
|
6
|
Wang S, Hu Y, Lu S, Zhang B, Li S, Chen X. Highly Efficient Recycling Waste Plastic into Hydrogen and Carbon Nanotubes through a Double Layer Microwave-Assisted Pyrolysis Method. Macromol Rapid Commun 2024; 45:e2400270. [PMID: 39072921 DOI: 10.1002/marc.202400270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/24/2024] [Indexed: 07/30/2024]
Abstract
Microwave-assisted pyrolysis of PE to hydrogen and carbon material has great potential to solve the problem of waste PE induced white pollution and provide a promising way to produce hydrogen energy. To increase the hydrogen yield, a new microwave-assisted pyrolysis procedure should be developed. In the present study, a facile double-layer microwave-assisted pyrolysis (DLMP) method is developed to pyrolyze PE. Within this method, PE can be converted to hydrogen, multiwalled carbon nanotubes with extremely high efficiency compared with the traditional methods. A high hydrogen yield of 66.4 mmol g-1 PE is achieved, which is ≈93% of the upper limit of the theoretical hydrogen yield generated from the PE pyrolysis process. The mechanism of high hydrogen yield during the microwave-assisted pyrolysis of PE using the DLMP method is also clarified in detail. The DLMP method paved the potential way for recycling plastic waste into high-value-added products.
Collapse
Affiliation(s)
- Song Wang
- School of Environmental and Chemical Engineering, Shenyang University of Technology, Shenyang, 110870, China
| | - Yanbing Hu
- School of Environmental and Chemical Engineering, Shenyang University of Technology, Shenyang, 110870, China
| | - Shuai Lu
- School of Environmental and Chemical Engineering, Shenyang University of Technology, Shenyang, 110870, China
| | - Bin Zhang
- School of Environmental and Chemical Engineering, Shenyang University of Technology, Shenyang, 110870, China
| | - Sanxi Li
- School of Environmental and Chemical Engineering, Shenyang University of Technology, Shenyang, 110870, China
| | - Xuecheng Chen
- Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology, Szczecin, Piastów Ave. 42, Szczecin, 71-065, Poland
| |
Collapse
|
7
|
Gao T, An Q, Tang X, Yue Q, Zhang Y, Li B, Li P, Jin Z. Recent progress in energy-saving electrocatalytic hydrogen production via regulating the anodic oxidation reaction. Phys Chem Chem Phys 2024; 26:19606-19624. [PMID: 39011574 DOI: 10.1039/d4cp01680g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Hydrogen energy with its advantages of high calorific value, renewable nature, and zero carbon emissions is considered an ideal candidate for clean energy in the future. The electrochemical decomposition of water, powered by renewable and clean energy sources, presents a sustainable and environmentally friendly approach to hydrogen production. However, the traditional electrochemical overall water-splitting reaction (OWSR) is limited by the anodic oxygen evolution reaction (OER) with sluggish kinetics. Although important advances have been made in efficient OER catalysts, the theoretical thermodynamic difficulty predetermines the inevitable large potential (1.23 V vs. RHE for the OER) and high energy consumption for the conventional water electrolysis to obtain H2. Besides, the generation of reactive oxygen species at high oxidation potentials can lead to equipment degradation and increase maintenance costs. Therefore, to address these challenges, thermodynamically favorable anodic oxidation reactions with lower oxidation potentials than the OER are used to couple with the cathodic hydrogen evolution reaction (HER) to construct new coupling hydrogen production systems. Meanwhile, a series of robust catalysts applied in these new coupled systems are exploited to improve the energy conversion efficiency of hydrogen production. Besides, the electrochemical neutralization energy (ENE) of the asymmetric electrolytes with a pH gradient can further promote the decrease in application voltage and energy consumption for hydrogen production. In this review, we aim to provide an overview of the advancements in electrochemical hydrogen production strategies with low energy consumption, including (1) the traditional electrochemical overall water splitting reaction (OWSR, HER-OER); (2) the small molecule sacrificial agent oxidation reaction (SAOR) and (3) the electrochemical oxidation synthesis reaction (EOSR) coupling with the HER (HER-SAOR, HER-EOSR), respectively; (4) regulating the pH gradient of the cathodic and anodic electrolytes. The operating principle, advantages, and the latest progress of these hydrogen production systems are analyzed in detail. In particular, the recent progress in the catalytic materials applied to these coupled systems and the corresponding catalytic mechanism are further discussed. Furthermore, we also provide a perspective on the potential challenges and future directions to foster advancements in electrocatalytic green sustainable hydrogen production.
Collapse
Affiliation(s)
- Taotao Gao
- Institute for Advanced Study and School of Mechanical Engineering, Chengdu University, Chengdu, 610106, P. R. China
| | - Qi An
- Institute for Advanced Study and School of Mechanical Engineering, Chengdu University, Chengdu, 610106, P. R. China
| | - Xiangmin Tang
- Institute for Advanced Study and School of Mechanical Engineering, Chengdu University, Chengdu, 610106, P. R. China
| | - Qu Yue
- Institute for Advanced Study and School of Mechanical Engineering, Chengdu University, Chengdu, 610106, P. R. China
| | - Yang Zhang
- Institute for Advanced Study and School of Mechanical Engineering, Chengdu University, Chengdu, 610106, P. R. China
| | - Bing Li
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, 442000, P. R. China
| | - Panpan Li
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Zhaoyu Jin
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China.
| |
Collapse
|
8
|
Liu Y, Ma X, Huang H, Deng G, Wang J, Chen X, Gao T. Ammonia-assisted Ni particle preferential deposition in Ni-Fe pyrophosphates on iron foam to improve the catalytic performance for overall water splitting. J Colloid Interface Sci 2024; 665:573-581. [PMID: 38552574 DOI: 10.1016/j.jcis.2024.03.162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/16/2024] [Accepted: 03/24/2024] [Indexed: 04/17/2024]
Abstract
Designing efficient and cost-effective electrocatalysts for overall water splitting remains a major challenge in hydrogen production. Herein, ammonia was introduced to pyrophosphate chelating solution assisted Ni particles preferential plating on porous Fe substrate to form coral-like Ni/NiFe-Pyro electrode. The pyrophosphate with multiple complex sites can couple with nickel and iron ions to form an integrated network structure, which also consists of metallic nickel due to the introduction of ammonia. The large network structure in Ni/NiFe-Pyro significantly enhances the synergistic effect between nickel and iron and then improves the electrocatalytic performance. As a result, the coral-like Ni/NiFe-Pyro@IF exhibits good electrocatalytic activity and stability for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER). The electrolyzer assembled with Ni/NiFe-Pyro@IF as cathode and anode just needs a low water-splitting voltage of 1.54 V to obtain the current density of 10 mA cm-2. Meanwhile, the stability test of Ni/NiFe-Pyro@IF is performed at the current densities ranging from 10 to 400 mA cm-2 for 50 h without any significant decay, indicating robust catalytic stability for overall water splitting. This strategy for synthesizing metal/metal pyrophosphate composites may provide a new avenue for future studies of efficient bifunctional electrocatalysts.
Collapse
Affiliation(s)
- Yunhua Liu
- School of Chemical Engineering of Guizhou Institute of Technology, Guiyang, 550000, PR China
| | - Xianguo Ma
- School of Chemical Engineering of Guizhou Institute of Technology, Guiyang, 550000, PR China
| | - Hongsheng Huang
- School of Chemical Engineering of Guizhou Institute of Technology, Guiyang, 550000, PR China
| | - Guowei Deng
- Sichuan Provincial Key Laboratory for Structural Optimization and Application of Functional Molecules, College of Chemistry and Life Science, Chengdu Normal University, Chengdu, 611130, PR China
| | - Jiexue Wang
- Sichuan Provincial Key Laboratory for Structural Optimization and Application of Functional Molecules, College of Chemistry and Life Science, Chengdu Normal University, Chengdu, 611130, PR China
| | - Xiaojuan Chen
- School of Chemical Engineering, Sichuan University, Chengdu 610065, PR China.
| | - Taotao Gao
- Institute for Advanced Study, Chengdu University, Chengdu, 610106, PR China.
| |
Collapse
|
9
|
Zhao P, Liu Q, Yang X, Zhu J, Yang S, Chen L, Zhang Q. High-performance flexible asymmetric supercapacitor based on hierarchical MnO 2/PPy nanocomposites covered MnOOH nanowire arrays cathode and 3D network-like Fe 2O 3/PPy hybrid nanosheets anode. J Colloid Interface Sci 2024; 662:322-332. [PMID: 38354559 DOI: 10.1016/j.jcis.2024.02.039] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/28/2024] [Accepted: 02/04/2024] [Indexed: 02/16/2024]
Abstract
The configuration of asymmetric supercapacitors (ASCs) has proven to be an effective approach to increase the energy storage properties due to the expanded working voltage resulting from the well-separated potential windows of the cathode and anode. However, carbonaceous anode materials generally suffer from relatively low capacitance, which restricts the enhancement of the energy storage performance of the full device in a traditional asymmetrical design. Herein, a rational design of all-pseudocapacitive ASCs (APASCs) using pseudocapacitive materials with a novel hierarchical nanostructure on both electrodes was developed to optimize the electrochemical properties for high-performance ASC devices. The assembled APASC employed the MnO2/PPy nanocomposites covered MnOOH nanowire arrays with core-shell hierarchical architecture as the cathode and Fe2O3/PPy hybrid nanosheets with 3D porous network-like structure as the anode. Owing to the coordinated pseudocapacitive properties and unique hierarchical nanostructures, this assembled APASC exhibited an exceptional volumetric capacitance of 4.92F cm-3 in a stable voltage window of 2 V, a maximum volumetric energy density of 2.66 mWh cm-3 at 19.72 mW cm-3, and excellent cyclic stability over 10,000 cycles (90.6 % capacitance retention), as well as remarkable flexibility and mechanical stability, providing insights for the design of flexible energy storage systems with enhanced performance.
Collapse
Affiliation(s)
- Peng Zhao
- Institute for Advanced Study, Chengdu University, Chengdu, Sichuan 610106, PR China.
| | - Qiancheng Liu
- Institute for Advanced Study, Chengdu University, Chengdu, Sichuan 610106, PR China
| | - Xulin Yang
- School of Mechanical Engineering, Chengdu University, Chengdu, Sichuan 610106, PR China; Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, Jianghan University, Wuhan 430056, PR China
| | - Jie Zhu
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, PR China
| | - Sudong Yang
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, PR China
| | - Lin Chen
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, PR China
| | - Qian Zhang
- Institute for Advanced Study, Chengdu University, Chengdu, Sichuan 610106, PR China.
| |
Collapse
|
10
|
Gao C, Yao H, Wang P, Zhu M, Shi XR, Xu S. Carbon-Based Composites for Oxygen Evolution Reaction Electrocatalysts: Design, Fabrication, and Application. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2265. [PMID: 38793344 PMCID: PMC11122737 DOI: 10.3390/ma17102265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/30/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024]
Abstract
The four-electron oxidation process of the oxygen evolution reaction (OER) highly influences the performance of many green energy storage and conversion devices due to its sluggish kinetics. The fabrication of cost-effective OER electrocatalysts via a facile and green method is, hence, highly desirable. This review summarizes and discusses the recent progress in creating carbon-based materials for alkaline OER. The contents mainly focus on the design, fabrication, and application of carbon-based materials for alkaline OER, including metal-free carbon materials, carbon-based supported composites, and carbon-based material core-shell hybrids. The work presents references and suggestions for the rational design of highly efficient carbon-based OER materials.
Collapse
Affiliation(s)
| | | | | | | | - Xue-Rong Shi
- School of Material Science and Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Shusheng Xu
- School of Material Science and Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| |
Collapse
|
11
|
Liu Y, Li P, Wang Z, Gao L. Shape-Preserved CoFeNi-MOF/NF Exhibiting Superior Performance for Overall Water Splitting across Alkaline and Neutral Conditions. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2195. [PMID: 38793262 PMCID: PMC11123414 DOI: 10.3390/ma17102195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/26/2024]
Abstract
This study reported a multi-functional Co0.45Fe0.45Ni0.9-MOF/NF catalyst for oxygen evolution reaction (OER), hydrogen evolution reaction (HER), and overall water splitting, which was synthesized via a novel shape-preserving two-step hydrothermal method. The resulting bowknot flake structure on NF enhanced the exposure of active sites, fostering a superior electrocatalytic surface, and the synergistic effect between Co, Fe, and Ni enhanced the catalytic activity of the active site. In an alkaline environment, the catalyst exhibited impressive overpotentials of 244 mV and 287 mV at current densities of 50 mA cm-2 and 100 mA cm-2, respectively. Transitioning to a neutral environment, an overpotential of 505 mV at a current density of 10 mA cm-2 was achieved with the same catalyst, showing a superior property compared to similar catalysts. Furthermore, it was demonstrated that Co0.45Fe0.45Ni0.9-MOF/NF shows versatility as a bifunctional catalyst, excelling in both OER and HER, as well as overall water splitting. The innovative shape-preserving synthesis method presented in this study offers a facile method to develop an efficient electrocatalyst for OER under both alkaline and neutral conditions, which makes it a promising catalyst for hydrogen production by water splitting.
Collapse
Affiliation(s)
| | | | | | - Liangjuan Gao
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China; (Y.L.); (P.L.); (Z.W.)
| |
Collapse
|
12
|
Yue Q, Wan Y, Li X, Zhao Q, Gao T, Deng G, Li B, Xiao D. Restraining the shuttle effect of polyiodides and modulating the deposition of zinc ions to enhance the cycle lifespan of aqueous Zn-I 2 batteries. Chem Sci 2024; 15:5711-5722. [PMID: 38638220 PMCID: PMC11023047 DOI: 10.1039/d4sc00792a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 03/11/2024] [Indexed: 04/20/2024] Open
Abstract
The boom of aqueous Zn-based energy storage devices, such as zinc-iodine (Zn-I2) batteries, is quite suitable for safe and sustainable energy storage technologies. However, in rechargeable aqueous Zn-I2 batteries, the shuttle phenomenon of polyiodide ions usually leads to irreversible capacity loss resulting from both the iodine cathode and the zinc anode, and thus impinges on the cycle lifespan of the battery. Herein, a nontoxic, biocompatible, and economical polymer of polyvinyl alcohol (PVA) is exploited as an electrolyte additive. Based on comprehensive analysis and computational results, it is evident that the PVA additive, owing to its specific interaction with polyiodide ions and lower binding energy, can effectively suppress the migration of polyiodide ions towards the zinc anode surface, thereby mitigating adverse reactions between polyiodide ions and zinc. Simultaneously, the hydrogen bond network of water molecules is disrupted due to the abundant hydroxyl groups within the PVA additive, leading to a decrease in water activity and mitigating zinc corrosion. Further, because of the preferential adsorption of PVA on the zinc anode surface, the deposition environment for zinc ions is adjusted and its nucleation overpotential increases, which is favorable for the dense and uniform deposition of zinc ions, thus ensuring the improvement of the performance of the Zn-I2 battery. This investigation has inspired the development of a user-friendly and high-performance Zn-I2 battery.
Collapse
Affiliation(s)
- Qu Yue
- Institute for Advanced Study, School of Mechanical Engineering, Chengdu University Chengdu 610106 P. R. China
| | - Yu Wan
- Institute for Advanced Study, School of Mechanical Engineering, Chengdu University Chengdu 610106 P. R. China
| | - Xiaoqin Li
- Institute for Advanced Study, School of Mechanical Engineering, Chengdu University Chengdu 610106 P. R. China
| | - Qian Zhao
- Institute for Advanced Study, School of Mechanical Engineering, Chengdu University Chengdu 610106 P. R. China
| | - Taotao Gao
- Institute for Advanced Study, School of Mechanical Engineering, Chengdu University Chengdu 610106 P. R. China
| | - Guowei Deng
- Sichuan Provincial Key Laboratory for Structural Optimization and Application of Functional Molecules, College of Chemistry and Life Science, Chengdu Normal University Chengdu 611130 P. R. China
| | - Bing Li
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine Shiyan 442000 P. R. China
| | - Dan Xiao
- Institute for Advanced Study, School of Mechanical Engineering, Chengdu University Chengdu 610106 P. R. China
- College of Chemical Engineering, Sichuan University No. 24 South Section 1, Yihuan Road Chengdu 610064 PR China
| |
Collapse
|
13
|
Li X, Xiang J, Liu H, Wang P, Chen C, Gao T, Guo Y, Xiao D, Jin Z. Molecularly modulating solvation structure and electrode interface enables dendrite-free zinc-ion batteries. J Colloid Interface Sci 2024; 654:476-485. [PMID: 37862799 DOI: 10.1016/j.jcis.2023.10.057] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/10/2023] [Accepted: 10/12/2023] [Indexed: 10/22/2023]
Abstract
The performance of aqueous Zn ion batteries (AZIBs) is hindered by the uncontrollable growth of Zn dendrites and side reactions at the Zn anode/electrolyte interface. Here, we introduce low-cost glucosamine hydrochloride (GLA) into the ZnSO4 electrolyte system to modulate the Zn anode/electrolyte interface and the solvation structure of Zn2+, which leads to improved reversibility of Zn plating/striping. Through experimental and theoretical analyses, we demonstrate that GLA molecules could adsorp on the Zn metal surface to form a new interface with reduced active water, effectively suppressing water-induced side reactions. Moreover, after adding GLA, the flux of Zn2+ ions is regulated, the desolvation of the primary [Zn(H2O)6]2+ ions is promoted, and the Zn dendrite growth is significantly inhibited. Consequently, superior cyclic stability with a lower voltage hysteresis is simultaneously achieved in a Zn//Zn symmetric cell. When coupled with the Mn3O4 cathode, the fabricated Zn-Mn batteries with the modified ZnSO4 + GLA electrolyte system deliver boosted capacity, improved long-term cycling stability, and better self-discharge performance. This work provides insight into the development of high-efficient and low-cost electrolytes for high-performance Zn-based energy storage devices.
Collapse
Affiliation(s)
- Xiaoqin Li
- Institute for Advanced Study, Chengdu University, Chengdu, PR China; Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071, China.
| | - Jian Xiang
- School of Mechanical Engineering, Chengdu University, Chengdu, PR China
| | - Hai Liu
- School of Mechanical Engineering, Chengdu University, Chengdu, PR China
| | - Pengfei Wang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, PR China
| | - Chao Chen
- School of Mechanical Engineering, Chengdu University, Chengdu, PR China
| | - Taotao Gao
- Institute for Advanced Study, Chengdu University, Chengdu, PR China
| | - Yongqiang Guo
- School of Mechanical Engineering, Chengdu University, Chengdu, PR China
| | - Dan Xiao
- Institute for Advanced Study, Chengdu University, Chengdu, PR China; College of Chemical Engineering, Sichuan University, Chengdu, PR China.
| | - Zhaoyu Jin
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, PR China.
| |
Collapse
|
14
|
Li S, Ma Z, Fu M, Luo W, Yu Y, Jiang Y, Shen W, He R, Li M. Anion/cation-induced strong electronic polarization of N,Fe-CoS 2 electrocatalyst to boost efficient oxygen evolution. J Colloid Interface Sci 2023; 654:1089-1097. [PMID: 39491066 DOI: 10.1016/j.jcis.2023.10.104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 10/09/2023] [Accepted: 10/19/2023] [Indexed: 11/05/2024]
Abstract
Designing and developing the high activity and long-term durability electrocatalysts for oxygen evolution reaction (OER) has primary significance for breaking the bottleneck of water electrolysis. Herein, an anion/cation-codoped CoS2 based electrocatalyst, N,Fe-CoS2, for the efficient OER was constructed via two-step electrodeposition and low-temperature calcination. The anion and cation optimized significantly the surface electronic structure of N,Fe-CoS2 and induced synergistically a strong surface electronic polarization along with the generation of abundant Co3+ active sites, which improved considerably the intrinsic catalytic activity. The doping N anion also hindered effectively the catalyst surface oxidation and enhanced the catalytic durability. Benefiting from these, N,Fe-CoS2 exhibited the outstanding OER activity and catalytic durability, and especially at a high current density, acquired its ultra-low OER overpotential of 261 mV at 300 mA∙cm-2 and maintained continuously a stable current density for 80 h without visible attenuation at 100 mA∙cm-2. DFT calculations confirmed the cooperative effect of N anions and Fe cations on improving catalytic activity and unveiled that Fe cations in N,Fe-CoS2 acted a key role in modulating electron densities instead of acting as catalytic sites. This work has an important implication for realizing the synergistic regulation of electron densities of catalytic materials by anions and cations.
Collapse
Affiliation(s)
- Sijun Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Zemian Ma
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Mimi Fu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Wei Luo
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Yanli Yu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Yimin Jiang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Wei Shen
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Rongxing He
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China.
| | - Ming Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China.
| |
Collapse
|
15
|
Gao T, Qiu L, Xie M, Jin Z, Li P, Yu G. Defect-stabilized and oxygen-coordinated iron single-atom sites facilitate hydrogen peroxide electrosynthesis. MATERIALS HORIZONS 2023; 10:4270-4277. [PMID: 37556212 DOI: 10.1039/d3mh00882g] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
The selective two-electron electrochemical oxygen reduction reaction (ORR) for hydrogen peroxide (H2O2) production is a promising and green alternative method to the current energy-intensive anthraquinone process used in industry. In this study, we develop a single-atom catalyst (CNT-D-O-Fe) by anchoring defect-stabilized and oxygen-coordinated iron atomic sites (Fe-O4) onto porous carbon nanotubes using a local etching strategy. Compared to O-doped CNTs with vacancy defects (CNT-D-O) and oxygen-coordinated Fe single-atom site modifying CNTs without a porous structure (CNT-O-Fe), CNT-D-O-Fe exhibits the highest H2O2 selectivity of 94.4% with a kinetic current density of 13.4 mA cm-2. Fe-O4 single-atom sites in the catalyst probably contribute to the intrinsic reactivity for the two-electron transfer process while vacancy defects greatly enhance the electrocatalytic stability. Theoretical calculations further support that the coordinated environment and defective moiety in CNT-D-O-Fe could efficiently optimize the adsorption strength of the *OOH intermediate over the Fe single atomic active sites. This contribution sheds light on the potential of defect-stabilized and oxygen-coordinated single-atom metal sites as a promising avenue for the rational design of highly efficient and selective catalysts towards various electrocatalytic reactions.
Collapse
Affiliation(s)
- Taotao Gao
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, P. R. China.
- Institute for Advanced Study, Chengdu University, Chengdu, 610106, P. R. China
| | - Lu Qiu
- Institute for Advanced Study, Chengdu University, Chengdu, 610106, P. R. China
- College of Chemical Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Minghao Xie
- Materials Science and Engineering Program and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, USA.
| | - Zhaoyu Jin
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Panpan Li
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, P. R. China.
| | - Guihua Yu
- Materials Science and Engineering Program and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, USA.
| |
Collapse
|