1
|
Ma L, Tian J, Zhou X. Facile synthesis of carbon-coated silicon nanocomposite with tremella-like porous structure for superior lithium-ion storage. J Chem Phys 2025; 162:184703. [PMID: 40337937 DOI: 10.1063/5.0265543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Accepted: 04/21/2025] [Indexed: 05/09/2025] Open
Abstract
Silicon/carbon (Si/C) composites have been envisaged as one of the most promising anode materials for the next-generation lithium-ion batteries (LIBs) with high energy density, and constructing reasonable and cross-scale structures is crucial adjective for high-performance Si/C electrodes. Herein, a facile synthesis strategy was developed by combining gel coating, carbonization, and molten salt-assisted magnesiothermic reduction (MSA-MR), and a unique tremella-like Si/C composite with internal void structure (IV-Si/C) was successfully prepared. The working mechanisms of both sodium alginate (SA) and molten salt (NaCl) on the successful preparation of the target IV-Si/C nanocomposite were also investigated in detail. It was demonstrated that, α-L-guluronic (G) blocks in SA can be cross-linked with cations to promote the interactions with silicon dioxide (SiO2) particles, boosting uniform distribution of nanosized Si particles in the SA-derived carbon matrix. Meanwhile, NaCl generated from SA not only effectively boosted the crystallization of SiO2 during the high-temperature carbonization process but also can effectively inhibit the formation of inert SiC and strengthen reduction of carbon during the MSA-MR treatment, resulting in successful preparation of the tremella-like Si/C composite with abundant internal voids. Benefitting from its unique structure, when used as an alternative anode material for electrochemical lithium storage, the as-obtained IV-Si/C nanocomposite delivered a high reversible specific capacity of 1899.6 mAh g-1 with an initial Coulomb efficiency of 75.96% and superior rate capability and long-term cycling stability. This facile and low-cost synthesis strategy may shed light on the controllable preparation of functional nanomaterials with unique structures, especially high-performance Si/C anode materials for their large-scale application in LIBs.
Collapse
Affiliation(s)
- Lihua Ma
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Jibin Tian
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Xiaozhong Zhou
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| |
Collapse
|
2
|
Qiao Y, Hu Y, Qian Z, Qu M, Liu Z. An innovative strategy for constructing multicore yolk-shell Si/C anodes for lithium-ion batteries. J Colloid Interface Sci 2025; 684:678-689. [PMID: 39813784 DOI: 10.1016/j.jcis.2025.01.078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 01/06/2025] [Accepted: 01/09/2025] [Indexed: 01/18/2025]
Abstract
The yolk-shell architecture offers a promising solution to the challenges of silicon (Si) anodes in lithium-ion batteries (LIBs), particularly in addressing the significant volume changes that occur during charge and discharge cycles. However, traditional construction methods often rely on sacrificial templates and acid or alkali etching, which limits industrial applicability. In this work, we successfully constructed a silicon/carbon (Si/C) composite with a multicore yolk-shell structure using scalable spray drying technology and in-situ growth of metal-organic frameworks (MOFs) at room temperature. By controlling the spray drying parameters and the size of the MOF, we achieved a controllable adjustment of cavity size and shell integrity without the need for sacrificial templates, facilitating large-scale preparation. Electrochemical characterization shows that the composites exhibit impressive performance, achieving a reversible specific capacity of 1,054.5 mAh g-1 after 100 cycles at 0.5 A g-1, and retaining 734.8 mAh g-1 after 400 cycles at 1 A g-1. Moreover, finite element analysis (FEA) revealed another reason why the yolk-shell structure improves the performance of Si anodes: the presence of cavities promotes ion diffusion processes. This study provides a new synthetic paradigm for preparing Si-C composite materials with yolk shell structure and offers new insights into the improvement mechanism of this structure.
Collapse
Affiliation(s)
- Yingjun Qiao
- Key Laboratory of Green and High-end Utilization of Salt Lake Resources, Qinghai Provincial Key Laboratory of Resources and Chemistry of Salt Lakes, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, Qinghai 810008, China
| | - Yuxin Hu
- Sichuan Province Academy of Industrial Environmental Monitoring, Chengdu, Sichuan 610041, China.
| | - Zhiqiang Qian
- Key Laboratory of Green and High-end Utilization of Salt Lake Resources, Qinghai Provincial Key Laboratory of Resources and Chemistry of Salt Lakes, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, Qinghai 810008, China
| | - Meizhen Qu
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, Sichuan 610041, China
| | - Zhong Liu
- Key Laboratory of Green and High-end Utilization of Salt Lake Resources, Qinghai Provincial Key Laboratory of Resources and Chemistry of Salt Lakes, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, Qinghai 810008, China.
| |
Collapse
|
3
|
Shen Y, Zheng Y, Jiang J, Guo J, Huang Y, Liu Y, Zhang H, Zhang Q, Xu J, Shao H. Li-Si alloy pre-lithiated silicon suboxide anode constructing a stable multiphase lithium silicate layer promoting Ion-transfer kinetics. J Colloid Interface Sci 2025; 679:855-867. [PMID: 39406034 DOI: 10.1016/j.jcis.2024.10.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/25/2024] [Accepted: 10/07/2024] [Indexed: 11/20/2024]
Abstract
Enhancing the initial Coulombic efficiency (ICE) and cycling stability of silicon suboxide (SiOx) anode is crucial for promoting its commercialization and practical implementation. Herein, we propose an economical and effective method for constructing pre-lithiated core-shell SiOx anodes with high ICE and stable interface during cycling. The lithium silicon alloy (Li13Si4) is used to react with SiOx in advance, allowing for improved ICE of SiOx without compromising its reversible specific capacity. The pre-lithiated surface layer contains uniform multiphase lithium silicates (L2SiO3, Li4SiO4, and Li2Si2O5) in the nanoscale. This multiphase lithium silicate layer exhibits mechanical robustness against variation of micro-stress, which can act as a buffer layer to relieve volume variation. In addition, analysis of dynamic electrochemical impedance spectroscopy (dEIS) and distribution of relaxation time (DRT) confirm that the multiphase lithium silicate layer enhances Li-ion diffusion kinetics and contributed to constructing stable SEI. As a result, the optimal L10-850 anode shows a high ICE of 85.3 %, together with a high specific capacity of 1771.5mAh mg-1. This work gives a perspective strategy to modify SiOx anodes by constructing a pre-lithiated surface layer with practical application potentials.
Collapse
Affiliation(s)
- Yingying Shen
- Guangdong-Hong Kong-Macau Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Macao, SAR, 999078, China
| | - Yun Zheng
- Guangdong-Hong Kong-Macau Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Macao, SAR, 999078, China
| | - Jiangmin Jiang
- Guangdong-Hong Kong-Macau Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Macao, SAR, 999078, China; Jiangsu Province Engineering Laboratory of High Efficient Energy Storage Technology and Equipments, School of Materials and Physics, China University of Mining and Technology, Xuzhou 221116, China
| | - Junpo Guo
- Department of Chemistry and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China; School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Yike Huang
- Guangdong-Hong Kong-Macau Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Macao, SAR, 999078, China
| | - Yinan Liu
- Guangdong-Hong Kong-Macau Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Macao, SAR, 999078, China
| | - Hebin Zhang
- Guangdong-Hong Kong-Macau Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Macao, SAR, 999078, China; Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Qi Zhang
- Guangdong-Hong Kong-Macau Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Macao, SAR, 999078, China; Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jincheng Xu
- Guangdong-Hong Kong-Macau Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Macao, SAR, 999078, China
| | - Huaiyu Shao
- Guangdong-Hong Kong-Macau Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Macao, SAR, 999078, China.
| |
Collapse
|
4
|
Gao Y, Song S, He F, Kong X, Xiao Z, Cui X, Cao L, Zhang Y, Liu Z, Yang P. Controllable Synthesis of Hollow Dodecahedral Si@C Core-Shell Structures for Ultrastable Lithium-Ion Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2406489. [PMID: 39340269 DOI: 10.1002/smll.202406489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/14/2024] [Indexed: 09/30/2024]
Abstract
Silicon (Si) has attracted considerable attention as a promising alternative to graphite in lithium-ion batteries (LIBs) because of its high theoretical capacity and voltage. However, the durability and cycling stability of Si-based composites have emerged as major obstacles to their widespread adoption as LIBs anode materials. To tackle these challenges, a hollow core-shell dodecahedra structure of a Si-based composite (HD-Si@C) is developed through a novel double-layer in situ growth approach. This innovative design ensures that the nano-sized Si particles are evenly distributed within a hollow carbon shell, effectively addressing issues like Si fragmentation, volume expansion, and detachment from the carbon layer during cycles. The HD-Si@C composite demonstrates remarkable structural integrity as a LIBs anode, resulting in exceptional electrochemical performance and promising practical applications, as evidenced by tests in pouch-type full cells. Notably, the composite shows outstanding cycling stability, retaining 85% of its initial capacity (713 mAh g-1) even after 3000 cycles at a high current rate of 5000 mA g-1. Additionally, the material achieves a gravimetric energy density of 369 W h kg-1, showcasing its potential for efficient energy storage solutions. This research signifies a significant step toward realizing the practical utilization of Si-based materials in the next generation of LIBs.
Collapse
Affiliation(s)
- Yijun Gao
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Shanshan Song
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Fei He
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Xianglong Kong
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Zhong Xiao
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Xianchang Cui
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Linbo Cao
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Yumeng Zhang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Zhiliang Liu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Piaoping Yang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| |
Collapse
|
5
|
Zhang K, He Y, Zhou J, Wang X, Li Y, Yang F. Effects of external pressure on cycling performance of silicon-based lithium-ion battery: modelling and experimental validation. RSC Adv 2024; 14:29979-29991. [PMID: 39309648 PMCID: PMC11413622 DOI: 10.1039/d4ra05354k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 09/13/2024] [Indexed: 09/25/2024] Open
Abstract
Controlling the stress state of electrodes during electrochemical cycling can have a positive effect on the cycling performance of lithium-ion battery. In this work, we study the cycling performance of silicon-based lithium-ion half cells under the action of pressure in a range of 0.1 to 0.4 MPa. The cycling performance of the silicon-based lithium-ion half cells increases first with increasing the pressure to 0.2 MPa and then decreases with further increasing the pressure. The analysis of the surface morphologies of cycled electrodes reveals that applying a pressure of 0.2 MPa leads to the formation of fine electrode surface with the least surface cracks after the silicon-based lithium-ion half cells are cycled for 50 times, which supports the dependence of the cycling performance of the lithium-ion half cells on the pressure. The numerical results from the single particle model reveal that applying pressure can tune the stress state in a single electrode particle and reduce the tensile stress. However, the numerical results from the two-particle model point to that applying pressure can introduce tensile stress in the electrode particles due to contact deformation. Suitable pressure applied onto a lithium-ion battery is needed in order to improve the cycling performance of the lithium-ion battery without causing detrimental effects.
Collapse
Affiliation(s)
- Kai Zhang
- School of Aerospace Engineering and Applied Mechanics, Tongji University Shanghai 200092 China
| | - Yinan He
- School of Aerospace Engineering and Applied Mechanics, Tongji University Shanghai 200092 China
| | - Junwu Zhou
- School of Aerospace Engineering and Applied Mechanics, Tongji University Shanghai 200092 China
| | - Xinyang Wang
- School of Aerospace Engineering and Applied Mechanics, Tongji University Shanghai 200092 China
| | - Yong Li
- School of Intelligent Manufacturing and Control Engineering, Shanghai Polytechnic University Shanghai 201209 China
| | - Fuqian Yang
- Materials Program, Department of Chemical and Materials Engineering, University of Kentucky Lexington Kentucky 40506 USA
| |
Collapse
|
6
|
Yu Z, Guan T, Liu J, Ge M, Zhou L, Cheng Y. Binder-Free Intertwined Si and MnO 2 Composite Electrode for High-Performance Li-Ion Battery Anode. ACS APPLIED MATERIALS & INTERFACES 2024; 16:33316-33324. [PMID: 38887818 DOI: 10.1021/acsami.4c01976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Silicon is considered as the most felicitous anode material candidate for lithium-ion batteries on account of abundant availability, suitable operating potential, and high specific capacity. Nevertheless, drastic volume expansion during the cycle impedes its practical utilization. Herein, Si and MnO2 (Si-MO) constructed the binder-free intertwined electrode that is reported to effectively improve upon the cycling stability of Si-based materials. The Si-based electrode without a binder has good electrical conductivity, strong adhesion to the substrate, and ample space for mitigating volume expansion. The incorporation of MnO2 establishes a multiphase interface, which mitigates the electrode volume expansion, and supports the electrode structure. Furthermore, MnO2 (∼1230 mAh g-1 theoretical capacity) synergistically enhances the overall capacity of the composite electrodes. Consequently, the Si-MO composite electrode exhibits a reversible specific capacity of 1300 mAh g-1 at 420 mA g-1 and remarkable cycling performance with a specific capacity of 830 mAh g-1 after 500 cycles. In particular, a reversible specific capacity of 837 mAh g-1 at 4200 mA g-1 is achieved and remains stable during 200 cycles. This work provides a potentially feasible way to achieve the Si-based anode commercialization for LIBs.
Collapse
Affiliation(s)
- Zhaozhe Yu
- Guangxi Key Laboratory of Manufacturing Systems and Advanced Manufacturing Technology, Guilin University of Electronic Technology, Guilin 541004, PR China
| | - Tingfeng Guan
- Guangxi Key Laboratory of Manufacturing Systems and Advanced Manufacturing Technology, Guilin University of Electronic Technology, Guilin 541004, PR China
| | - Jiahui Liu
- Guangxi Key Laboratory of Manufacturing Systems and Advanced Manufacturing Technology, Guilin University of Electronic Technology, Guilin 541004, PR China
| | - Miao Ge
- Guangxi Key Laboratory of Manufacturing Systems and Advanced Manufacturing Technology, Guilin University of Electronic Technology, Guilin 541004, PR China
| | - Lihang Zhou
- Guangxi Key Laboratory of Manufacturing Systems and Advanced Manufacturing Technology, Guilin University of Electronic Technology, Guilin 541004, PR China
| | - Yan Cheng
- Guangxi Key Laboratory of Manufacturing Systems and Advanced Manufacturing Technology, Guilin University of Electronic Technology, Guilin 541004, PR China
| |
Collapse
|
7
|
Du J, Jin B, Liu L, Chen L, Fan X, Lei B, Liang L. Synthesis of Co@CoO/C by micro-tube method and their electrochemical performances. Heliyon 2024; 10:e31362. [PMID: 38813198 PMCID: PMC11133897 DOI: 10.1016/j.heliyon.2024.e31362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 05/31/2024] Open
Abstract
Lithium-ion batteries (LIBs) are promising secondary batteries that are widely used in portable electronic devices, electric vehicles and smart grids. The design and synthesis of high-performance electrode materials play a crucial role in achieving lithium-ion batteries with high energy density, prolonged cycle life, and superior safety. CoO has attracted significant attention as a negative electrode material for lithium-ion batteries due to its high theoretical capacity and abundant resources. However, its limited conductivity and suboptimal cycling performance impede its potential applications. The study proposes a novel micro-tube reaction method for the synthesis of Co@CoO/C, utilizing Kapok fiber as a template with a special hollow structure. The microstructure and composition of the samples were characterized using X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). After conducting electrochemical performance tests, it was discovered that at a current density of 100 mA/g and within the range of 0.01-3.0 V for 50 charge and discharge cycles. Co@CoO/C composite negative electrode exhibits a reversible lithium insertion specific capacity of 499.8 mAh/g and keep a discharge capacity retention rate of 97.6 %. The greatly improved lithium storage and stability performance of Co@CoO/C composite anode is mainly attributed to the synergistic effect between Co@CoO nanoparticles and the kapok carbon microtubule structure.
Collapse
Affiliation(s)
- Jun Du
- School of Materials and Environment, Guangxi Minzu University, Nanning, 530000, PR China
- Guangxi Colleges and Universities Key Laboratory of Environmental-Friendly Materials and Ecological Remediation, Guangxi Key Laboratory of Advanced Structural Materials and Carbon Neutralization, School of Materials and Environment, Guangxi Minzu University, Nanning, 530105, PR China
| | - Binbin Jin
- School of Materials and Environment, Guangxi Minzu University, Nanning, 530000, PR China
- Guangxi Colleges and Universities Key Laboratory of Environmental-Friendly Materials and Ecological Remediation, Guangxi Key Laboratory of Advanced Structural Materials and Carbon Neutralization, School of Materials and Environment, Guangxi Minzu University, Nanning, 530105, PR China
| | - Lang Liu
- School of Materials and Environment, Guangxi Minzu University, Nanning, 530000, PR China
- Guangxi Colleges and Universities Key Laboratory of Environmental-Friendly Materials and Ecological Remediation, Guangxi Key Laboratory of Advanced Structural Materials and Carbon Neutralization, School of Materials and Environment, Guangxi Minzu University, Nanning, 530105, PR China
| | - Ling Chen
- School of Materials and Environment, Guangxi Minzu University, Nanning, 530000, PR China
- Guangxi Colleges and Universities Key Laboratory of Environmental-Friendly Materials and Ecological Remediation, Guangxi Key Laboratory of Advanced Structural Materials and Carbon Neutralization, School of Materials and Environment, Guangxi Minzu University, Nanning, 530105, PR China
| | - Xing Fan
- School of Materials and Environment, Guangxi Minzu University, Nanning, 530000, PR China
- Guangxi Colleges and Universities Key Laboratory of Environmental-Friendly Materials and Ecological Remediation, Guangxi Key Laboratory of Advanced Structural Materials and Carbon Neutralization, School of Materials and Environment, Guangxi Minzu University, Nanning, 530105, PR China
| | - Bingxin Lei
- School of Materials and Environment, Guangxi Minzu University, Nanning, 530000, PR China
- Guangxi Colleges and Universities Key Laboratory of Environmental-Friendly Materials and Ecological Remediation, Guangxi Key Laboratory of Advanced Structural Materials and Carbon Neutralization, School of Materials and Environment, Guangxi Minzu University, Nanning, 530105, PR China
| | - Liying Liang
- School of Materials and Environment, Guangxi Minzu University, Nanning, 530000, PR China
- Guangxi Colleges and Universities Key Laboratory of Environmental-Friendly Materials and Ecological Remediation, Guangxi Key Laboratory of Advanced Structural Materials and Carbon Neutralization, School of Materials and Environment, Guangxi Minzu University, Nanning, 530105, PR China
- Guangxi Research Institute of Chemical Industry Co., Ltd, Nanning, 530001, PR China
| |
Collapse
|
8
|
Deng XG, Fan LQ, Fu XY, Tang T, Lin SH, Chen L, Yu FD, Huang YF, Huang ML, Wu JH. Carbon-reinforced Ni 3S 2/Ti 3C 2T x MXene composite as an anode for superior-performance lithium-ion capacitors. J Colloid Interface Sci 2024; 661:237-248. [PMID: 38301462 DOI: 10.1016/j.jcis.2024.01.140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/03/2024] [Accepted: 01/21/2024] [Indexed: 02/03/2024]
Abstract
Lithium ion capacitors (LICs) are a new generation of energy storage devices that combine the super energy storage capability of lithium ion batteries with the satisfactory power density of supercapacitors. The development of high-performance LICs still faces great challenges due to the unbalanced reaction kinetics at the anode and cathode. Therefore, it is an inevitable need to enhance the electron/ion transfer capability of the anode materials. In this paper, to obtain a superior-rate and high-capacity Ni3S2-based anode, highly conductive Ti3C2Tx MXene sheets were introduced to sever as the carrier of Ni3S2 nanoparticles and simultaneously an amorphous carbon layer which coats onto the surface of Ni3S2 nanoparticles was in-situ generated by the carbonization of dopamine reactant. The as-synthesized Ni3S2/Ti3C2Tx/C composite exhibits a high specific surface area (112.6 m2/g) because of the addition of Ti3C2Tx that can reduce the aggregation of Ni3S2 nanoparticles and the in-situ generated amorphous carbon layer that can suppress the growth of Ni3S2 nanoparticles. The Ni3S2/Ti3C2Tx/C anode possesses a remarkable reversible discharge specific capacity (626.0 mAh/g under 0.2 A/g current density), which increases to 1150.8 mAh/g after 400-cycle charge/discharge measurement at the same measurement condition indicating eminent cyclability, along with superior rate capability. To construct a superior-performance LIC device, a sterculiae lychnophorae derived porous carbon (SLPC) cathode with an average discharge specific capacity of 73.4 mAh/g@0.1A/g was prepared. The Ni3S2/Ti3C2Tx/C//SLPC LIC device with optimal cathode/anode mass ratio has a satisfactory energy density ranging from 32.8 to 119.1 Wh kg-1 at the corresponding power density of 8799.4 to 157.5 W kg-1, together with a prominent capacity retention (95.5 %@1 A/g after 10,000 cycles).
Collapse
Affiliation(s)
- Xu-Geng Deng
- Fujian Key Laboratory of Photoelectric Functional Materials, College of Materials Science and Engineering, Huaqiao University, Xiamen, Fujian 361021, China; Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education, Huaqiao University, Xiamen, Fujian 361021, China
| | - Le-Qing Fan
- Fujian Key Laboratory of Photoelectric Functional Materials, College of Materials Science and Engineering, Huaqiao University, Xiamen, Fujian 361021, China; Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education, Huaqiao University, Xiamen, Fujian 361021, China.
| | - Xiao-Yun Fu
- Fujian Key Laboratory of Photoelectric Functional Materials, College of Materials Science and Engineering, Huaqiao University, Xiamen, Fujian 361021, China; Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education, Huaqiao University, Xiamen, Fujian 361021, China
| | - Tao Tang
- Fujian Key Laboratory of Photoelectric Functional Materials, College of Materials Science and Engineering, Huaqiao University, Xiamen, Fujian 361021, China; Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education, Huaqiao University, Xiamen, Fujian 361021, China
| | - Shi-Hua Lin
- Fujian Key Laboratory of Photoelectric Functional Materials, College of Materials Science and Engineering, Huaqiao University, Xiamen, Fujian 361021, China; Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education, Huaqiao University, Xiamen, Fujian 361021, China
| | - Long Chen
- Fujian Key Laboratory of Photoelectric Functional Materials, College of Materials Science and Engineering, Huaqiao University, Xiamen, Fujian 361021, China; Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education, Huaqiao University, Xiamen, Fujian 361021, China
| | - Fu-Da Yu
- Fujian Key Laboratory of Photoelectric Functional Materials, College of Materials Science and Engineering, Huaqiao University, Xiamen, Fujian 361021, China; Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education, Huaqiao University, Xiamen, Fujian 361021, China
| | - Yun-Fang Huang
- Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education, Huaqiao University, Xiamen, Fujian 361021, China
| | - Miao-Liang Huang
- Fujian Key Laboratory of Photoelectric Functional Materials, College of Materials Science and Engineering, Huaqiao University, Xiamen, Fujian 361021, China; Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education, Huaqiao University, Xiamen, Fujian 361021, China.
| | - Ji-Huai Wu
- Fujian Key Laboratory of Photoelectric Functional Materials, College of Materials Science and Engineering, Huaqiao University, Xiamen, Fujian 361021, China; Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education, Huaqiao University, Xiamen, Fujian 361021, China
| |
Collapse
|
9
|
Duan X, Yu J, Liu Y, Lan Y, Zhou J, Lu B, Zan L, Fan Z, Zhang L. A highly conductive and robust micrometre-sized SiO anode enabled by an in situ grown CNT network with a safe petroleum ether carbon source. Phys Chem Chem Phys 2024; 26:12628-12637. [PMID: 38597698 DOI: 10.1039/d4cp00116h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
SiO-based materials as lithium-ion anodes have attracted huge attention owing to their ultrahigh capacity. However, they usually undergo severe volume expansion over the repeated lithiation/delithiation processes and have low electronic conductivity, leading to an inferior cycling stability and poor rate capability. In this study, carbon nanotubes in situ grown on the surface of commercially available micro-sized SiO (D50 = 5 μm) were prepared. The conductive network composed of one-dimensional carbon nanotubes could enhance its conductivity and enhance the structural stability during the cycling. The synthesized 3D-SiO@C material demonstrates good long-term cycling stability, with a reversible capacity of up to 687.7 mA h g-1 after 1000 cycles, and it maintains a high reversible capacity of 736.8 mA h g-1, even at a high current density of 1 A g-1.
Collapse
Affiliation(s)
- Xiaobo Duan
- Department of Materials Science & Engineering, Xi'an University of Science and Technology, Xi'an710054, China.
| | - Jiaao Yu
- Department of Materials Science & Engineering, Xi'an University of Science and Technology, Xi'an710054, China.
| | - Yancai Liu
- Department of Materials Science & Engineering, Xi'an University of Science and Technology, Xi'an710054, China.
| | - Yanqiang Lan
- Department of Materials Science & Engineering, Xi'an University of Science and Technology, Xi'an710054, China.
| | - Jian Zhou
- Department of Materials Science & Engineering, Xi'an University of Science and Technology, Xi'an710054, China.
| | - Birou Lu
- Department of Materials Science & Engineering, Xi'an University of Science and Technology, Xi'an710054, China.
| | - Lina Zan
- Department of Materials Science & Engineering, Xi'an University of Science and Technology, Xi'an710054, China.
| | - Zimin Fan
- Department of Materials Science & Engineering, Xi'an University of Science and Technology, Xi'an710054, China.
| | - Lei Zhang
- Department of Materials Science & Engineering, Xi'an University of Science and Technology, Xi'an710054, China.
| |
Collapse
|
10
|
Liu X, Yuan M, Shi W, Fei A, Tian Y, Hu ZY, Chen L, Li Y, Su BL. Synergistic Protecting-Etching Synthesis of Carbon Nanoboxes@Silicon for High-Capacity Lithium-Ion Battery. ACS APPLIED MATERIALS & INTERFACES 2024; 16:17870-17880. [PMID: 38537160 DOI: 10.1021/acsami.3c19114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Silicon (Si) is considered as the most likely choice for the high-capacity lithium-ion batteries owing to its ultrahigh theoretical capacity (4200 mA h g-1) being over 10 times than that of traditional graphite anode materials (372 mA h g-1). However, its widespread application is limited by problems such as a large volume expansion and low electrical conductivity. Herein, we design a hollow nitrogen-doped carbon-coated silicon (Si@Co-HNC) composite in a water-based system via a synergistic protecting-etching strategy of tannic acid. The prepared Si@Co-HNC composite can effectively mitigate the volume change of silicon and improve the electrical conductivity. Moreover, the abundant voids inside the carbon layer and the porous carbon layer accelerate the transport of electrons and lithium ions, resulting in excellent electrochemical performance. The reversible discharge capacity of 1205 mA h g-1 can be retained after 120 cycles at a current density of 0.5 A g-1. In particular, the discharge capacity can be maintained at 1066 mA h g-1 after 300 cycles at a high current density of 1 A g-1. This study provides a new strategy for the design of Si-based anode materials with excellent electrical conductivity and structural stability.
Collapse
Affiliation(s)
- Xiaofang Liu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Manman Yuan
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
- Nanostructure Research Centre (NRC), Wuhan University of Technology, Wuhan 430070, China
| | - Wenhua Shi
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Anmin Fei
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Yawen Tian
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Zhi-Yi Hu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
- Nanostructure Research Centre (NRC), Wuhan University of Technology, Wuhan 430070, China
| | - Lihua Chen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Yu Li
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Bao-Lian Su
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
- Laboratory of Inorganic Materials Chemistry (CMI), University of Namur, Namur B-5000, Belgium
| |
Collapse
|
11
|
Li Y, Tian Y, Fu Y, Pang L, Li Y, Xiao P, Li Z. Dual immobilization of porous Si by graphene supported anatase TiO 2/carbon for high-performance and safe lithium storage. J Colloid Interface Sci 2024; 658:12-21. [PMID: 38091794 DOI: 10.1016/j.jcis.2023.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/19/2023] [Accepted: 12/01/2023] [Indexed: 01/12/2024]
Abstract
Smart surface coatings have been proven to be an effective strategy to significantly enhance the electronic conductivity and cycling stability of silicon-based anode materials. However, the single/conventional coatings face critical challenges, including low initial Coulomb efficiency (ICE), poor cyclability, and kinetics failure, etc. Hence, we proposed a dual immobilization strategy to synthesize graphene supported anatase TiO2/carbon-coated porous silicon composite (denoted as PSi@TiO2@C/Graphene) using industrial-grade ferrosilicon as lithium storage raw materials through the simple etching, combined with sol-gel and hydrothermal coating processes. In this work, the dual immobilization from the "confinement effect" of the inner TiO2 shell and the "synergistic effect" of the outer carbon shell, improves the kinetics of the electrochemical reaction and ensures the integrity of the electrode material structure during lithiation. Furthermore, the introduction of the graphene substrate offers ample space for dispersing and anchoring the Si-based granules, which in turn provides a stable 3D conductive network between the particles. As a result, the PSi@TiO2@C/Graphene electrode delivers high reversible capacity of 1605.4 mAh g-1 with 93.65% retention at 0.5 A g-1 after 100 cycles (vs. 4th discharge), high initial Coulomb efficiency (82.30%), and superior cyclability of 1159.9 mAh g-1 after 250 cycles. The above results suggest that the particle structure has great potential for applications in Si-based anode and may provide some inspiration for the design of other energy storage materials.
Collapse
Affiliation(s)
- Yangjie Li
- Powder Metallurgy Research Institute, Central South University, Changsha 410083, China
| | - Yirong Tian
- Powder Metallurgy Research Institute, Central South University, Changsha 410083, China
| | - Yu Fu
- Powder Metallurgy Research Institute, Central South University, Changsha 410083, China
| | - Liang Pang
- Powder Metallurgy Research Institute, Central South University, Changsha 410083, China
| | - Yang Li
- Powder Metallurgy Research Institute, Central South University, Changsha 410083, China; National Key Laboratory of Science and Technology on High-Strength Structural Materials, Central South University, Changsha 410083, China
| | - Peng Xiao
- Powder Metallurgy Research Institute, Central South University, Changsha 410083, China; National Key Laboratory of Science and Technology on High-Strength Structural Materials, Central South University, Changsha 410083, China.
| | - Zhuan Li
- Powder Metallurgy Research Institute, Central South University, Changsha 410083, China; National Key Laboratory of Science and Technology on High-Strength Structural Materials, Central South University, Changsha 410083, China.
| |
Collapse
|
12
|
Liu W, Su S, Wang Y, Wang H, Wang F, Wang G, Qu M, Peng G, Xie Z. Constructing a Stable Conductive Network for High-Performance Silicon-Based Anode in Lithium-Ion Batteries. ACS APPLIED MATERIALS & INTERFACES 2024; 16:10703-10713. [PMID: 38353211 DOI: 10.1021/acsami.3c17942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2024]
Abstract
The application of carbon nanotubes to silicon nanoparticles has been used to improve the electrical conductivity of silicon-carbon anodes and prevent agglomeration of silicon nanoparticles during cycling. In this study, the composites are synthesized through an uncomplicated technique that involves the ultrasonication mixing of pyrene derivatives and carbon nanotubes and the formation of complexes with silicon nanoparticles in ultrasonic dispersion and magnetic stirring and then treated under vacuum. When the prepared composites are applied as lithium-ion battery anodes, the Si@(POH-AOCNTs) electrode displays a high reversible capacity of 3254.7 mAh g-1 at a current density of 0.1 A g-1. Furthermore, it exhibits excellent cycling stability with a specific capacity of 1195.8 mAh g-1 after 500 cycles at 1.0 A g-1. The superior electrochemical performance may be attributed to a large π-conjugated electron system of pyrene derivatives, which prompts the formation of a homogeneous CNTs conductive network and ensures the effective electron transfer, while the interaction between hydroxyl functional groups of hydroxypyrene and binder synergizes with CNTs network to further enhance the cycling stability of the composite.
Collapse
Affiliation(s)
- Wenjing Liu
- Chengdu Organic Chemicals Co., Ltd., Chinese Academy of Sciences, Chengdu 610093, Sichuan, People's Republic of China
| | - Shaoxiang Su
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610093, Sichuan, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 101408, People's Republic of China
| | - Yao Wang
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610093, Sichuan, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 101408, People's Republic of China
| | - Hao Wang
- Chengdu Organic Chemicals Co., Ltd., Chinese Academy of Sciences, Chengdu 610093, Sichuan, People's Republic of China
| | - Feng Wang
- Chengdu Organic Chemicals Co., Ltd., Chinese Academy of Sciences, Chengdu 610093, Sichuan, People's Republic of China
| | - Guodong Wang
- Chengdu Organic Chemicals Co., Ltd., Chinese Academy of Sciences, Chengdu 610093, Sichuan, People's Republic of China
| | - Meizhen Qu
- Chengdu Organic Chemicals Co., Ltd., Chinese Academy of Sciences, Chengdu 610093, Sichuan, People's Republic of China
| | - Gongchang Peng
- Chengdu Organic Chemicals Co., Ltd., Chinese Academy of Sciences, Chengdu 610093, Sichuan, People's Republic of China
| | - Zhengwei Xie
- Chengdu Organic Chemicals Co., Ltd., Chinese Academy of Sciences, Chengdu 610093, Sichuan, People's Republic of China
| |
Collapse
|
13
|
Chen Y, Ji Z, Lian J, Zhou H, Shen X, Kong L, Yuan A. Facile construction of ZnWO 4/ZnO porous nanoplates on reduced graphene oxide for superior lithium storage. J Colloid Interface Sci 2023; 654:1199-1208. [PMID: 39491909 DOI: 10.1016/j.jcis.2023.10.132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/22/2023] [Accepted: 10/25/2023] [Indexed: 11/05/2024]
Abstract
Zinc tungstate (ZnWO4) shows great promise as an anode material for lithium-ion batteries (LIBs) owing to its reversible multi-electron redox reactions and high theoretical capacity. Nevertheless, the low conductivity and big strain during cycling can lead to the inferior electrochemical properties of the ZnWO4 anode, hindering its practical application. Herein, we report a novel composite with ZnWO4/ZnO porous nanoplates in-situ constructed on reduced graphene oxide (rGO) by a metal-organic framework template strategy. The nanoplates with good porosity are composed of nanoparticles and nanorods, providing a short Li+-diffusion distance and plentiful Li+ storage active sites. The introduction of rGO can accelerate charge transfer and reinforce structural stability. As a result of these advantages, the ZnWO4/ZnO/rGO composite as LIBs anode delivers a high reversible capacity of 811 mAh g after 100 cycles at 200 mA g-1, excellent rate capability (437 mAh g at 5000 mA g-1), and good long cycling stability (485 mAh g after 500 cycles at 2000 mA g-1). Notably, the rate capability of the composite far precedes the previously reported ZnWO4-based anodes. This work provides an efficient approach for designing and fabricating advanced metal tungstate-based anodes for high-performance LIBs.
Collapse
Affiliation(s)
- Yao Chen
- School of Material Science and Engineering, School of Chemistry and Chemical Engineering, Institute for Energy Research, Jiangsu University, Zhenjiang 212013, PR China
| | - Zhenyuan Ji
- School of Material Science and Engineering, School of Chemistry and Chemical Engineering, Institute for Energy Research, Jiangsu University, Zhenjiang 212013, PR China
| | - Jiabiao Lian
- School of Material Science and Engineering, School of Chemistry and Chemical Engineering, Institute for Energy Research, Jiangsu University, Zhenjiang 212013, PR China
| | - Hu Zhou
- School of Environmental & Chemical Engineering, School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, PR China
| | - Xiaoping Shen
- School of Material Science and Engineering, School of Chemistry and Chemical Engineering, Institute for Energy Research, Jiangsu University, Zhenjiang 212013, PR China.
| | - Lirong Kong
- School of Material Science and Engineering, School of Chemistry and Chemical Engineering, Institute for Energy Research, Jiangsu University, Zhenjiang 212013, PR China
| | - Aihua Yuan
- School of Environmental & Chemical Engineering, School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, PR China
| |
Collapse
|
14
|
Li Y, Chen G, Yang H, Geng X, Luo Z, Zhang C, Huang L, Luo X. Three-Dimensional Porous Si@SiOx/Ag/CN Anode Derived from Deposition Silicon Waste toward High-Performance Li-Ion Batteries. ACS APPLIED MATERIALS & INTERFACES 2023; 15:43887-43898. [PMID: 37669217 DOI: 10.1021/acsami.3c09561] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
The application of photovoltaic (PV) solid waste to the field of lithium-ion batteries is deemed to be an effective solution for waste disposal, which can not only solve the problem of environmental pollution but also avoid the loss of secondary resources. Herein, based on the volatile deposited waste produced by electron beam refining polysilicon, a simple and environmentally friendly method was designed to synthesize P-Si@SiOx/Ag/CN as an anode material for lithium-ion batteries. Remarkably, the presence of silver and the formation of a carbon-nitrogen network can enhance the electrical conductivity of the composite and boost the transport efficiency of lithium ions. Furthermore, the porous Si@SiOx structure is generated by silver-assisted chemical etching (Ag-ACE), and the carbon-nitrogen grid architecture is formed after lyophilization with NaCl as a template, which can jointly provide sufficient buffer space for the volume change of silicon during lithiation/delithiation. Benefitting from these advantages, the P-Si@SiOx/Ag/CN anode exhibits outstanding cycling performance with 759 mA h g-1 over 300 cycles at 0.5 A g-1. Meanwhile, the lithium-ion batteries employing the P-Si@SiOx/Ag/CN anodes present a superior rate capability of 950 mA h g-1 at 2 A g-1 and retain a high reversible specific capacity of 956 mA h g-1 at 1 A g-1 after 50 cycles. This work opens up a new economic strategy for the fabrication of high-performance silicon anodes and affords a promising avenue for the recycling of PV silicon waste.
Collapse
Affiliation(s)
- Yan Li
- Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen, Fujian Province 361005, China
| | - Guangyu Chen
- Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen, Fujian Province 361005, China
| | - Huaixiang Yang
- Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen, Fujian Province 361005, China
| | - Xiaobing Geng
- Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen, Fujian Province 361005, China
| | - Zhuo Luo
- Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen, Fujian Province 361005, China
| | - Chentong Zhang
- Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen, Fujian Province 361005, China
- Xiamen Key Laboratory of Electronic Ceramic Materials and Devices, Xiamen University, Xiamen, Fujian Province 361005, China
| | - Liuqing Huang
- Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen, Fujian Province 361005, China
- Xiamen Key Laboratory of Electronic Ceramic Materials and Devices, Xiamen University, Xiamen, Fujian Province 361005, China
| | - Xuetao Luo
- Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen, Fujian Province 361005, China
- Xiamen Key Laboratory of Electronic Ceramic Materials and Devices, Xiamen University, Xiamen, Fujian Province 361005, China
| |
Collapse
|